
 Industrial Programming 1

Industrial Programming

Lecture 7: Database access in C#
using LINQ

 Industrial Programming 2

ADO.NET

• ADO.NET provides a direct interface to a
database.

• The interface is database-specific.
• ADO.NET uses a conventional, shallow

embedding of SQL commands into C# as
host language, i.e. SQL commands are
composed as strings

• A more advanced, deep embedding of SQL
commands is provided by LINQ, i.e. SQL
commands a language constructs

 Industrial Programming 3

Structure of database access

• To access a database with ADO.NET
the following steps are necessary:
– Connect to a database
– Compose an SQL query
– Issue the query
– Retrieve and process the results
– Disconnect from the database.

 Industrial Programming 4

ADO.NET Example

• To connect to a database, a connection
string has to specify location, account,
password etc. (fill in user id and pwd)

using MySql.Data.MySqlClient;
string cstr = "Server=anubis;Database=test;User ID=;Password=";
MySqlConnection dbcon;
 try {

 dbcon = new MySqlConnection(cstr);
 dbcon.Open();

 }
 catch (MySql.Data.MySqlClient.MySqlException ex) { … }

 Industrial Programming 5

ADO.NET Example (cont'd)

• Next, compose an SQL query as a string
• This can be any SQL operation
• Depending on the underlying database,

SQL extensions might be available.

MySqlCommand dbcmd = dbcon.CreateCommand();

string sql =
 "SELECT A_ID, A_FNAME, A_LNAME " +
 "FROM authors";
dbcmd.CommandText = sql;

 Industrial Programming 6

ADO.NET Example (cont'd)

• Next, issue the query, and process the
result, typically in a while loop.

MySqlDataReader reader = dbcmd.ExecuteReader();

while(reader.Read()) {
 string FirstName = (string) reader["A_FNAME"];
 string LastName = (string) reader["A_LNAME"];
 Console.WriteLine("Name: " + FirstName + " " + LastName);
}

 Industrial Programming 7

ADO.NET Example (cont'd)

• Finally, clean-up and disconnect.

reader.Close();
reader = null;
dbcmd.Dispose();
dbcmd = null;
dbcon.Close();
dbcon = null;

 Industrial Programming 8

LINQ

• Language Integrated Query (LINQ) is a
more advanced way to interact with
databases.

• It's a new feature with C# 3.0 onwards.
• It provides SQL-like commands as language

extensions, rather than composing SQL
queries as strings (deep embedding)

• It can also be used to access other forms of
data, such as XML data or compound C#
data structures.

 Industrial Programming 9

LINQ Example

• The same example as before, written in
LINQ is much simpler.

• First, classes, representing the tables of
the database are defined.

[Table(Name = "authors")]
public class Authors
{
 [Column]
 public int A_ID { get ; set ; }
 [Column]
 public string A_FNAME { get ; set ; }
 [Column]
 public string A_LNAME { get ; set ; }
}

 Industrial Programming 10

LINQ Example (cont'd)

• Next, a connection is established, using
a connection string similar to ADO.NET.

DataContext db = new DataContext("Data Source = .\\MySql;" +
 "Initial Catalog=test;Integrated Security=True");

 DataContext db = new DataContext(connStr);

 Industrial Programming 11

LINQ Example (cont'd)

• The main advantage of LINQ is the
simplified way of performing queries.

• Note, that SQL-like commands such as
select, from etc are directly available

Table<Authors> AuthorTable = db.GetTable<Authors>();
List<Authors> dbQuery = from author in Authors select author ;

foreach (var author in dbQuery) {
 Console.WriteLine("Author: "+author.A_FNAME+" “+
 author.A_LNAME);
}

 Industrial Programming 12

Querying in-memory Data

• LINQ can also be used to query in-memory
data, such as XML data or compound C#
data structures.

• This results in more uniform and succinct
code.

• Using LINQ in this way requires several
advanced language features.

• It is an alternative to using standard
mechanisms of traversing data structures
such as iterators.

 Industrial Programming 13

Example

• Assume we have a list of books:
List<Book> booklist = new List<Book> {

 new Book { Title = "Learning C#"
 , Author = "Jesse Liberty"
 , Publisher = "O'Reilly"
 , Year = 2008
 },
 new Book { Title = "Programming C#"
 , Author = "Jesse Liberty"
 , Publisher = "O'Reilly"
 , Year = 2008
 },
 new Book { Title = "Programming PHP"
 , Author = "Rasmus Lerdorf, Kevin Tatroe"
 , Publisher = "O'Reilly"
 , Year = 2006
 },

 };

 Industrial Programming 14

Example

• The conventional way to iterate over the
list looks like this:

foreach (Book b in booklist) {
 if (b.Author == "Jesse Liberty") {
 Console.WriteLine(b.Title + " by " + b.Author);
 }

 }

 Industrial Programming 15

Example

In contrast, the LINQ-style iteration looks like an
SQL query and is shorter:

IEnumerable<Book> resultsAuthor =
 from b in booklist
 where b.Author == "Jesse Liberty"
 select b;

 Console.WriteLine("LINQ query: find by author ...");
 // process the result
 foreach (Book r in resultsAuthor) {

 Console.WriteLine(r.Title + " by " + r.Author);
 }

 Industrial Programming 16

Example

To avoid returning entire book results from the
query we can use anonymous types and just
return title and author:

var resultsAuthor1 =// NB: this needs to infer the type (anonymous!)
 from b in booklist
 where b.Author == "Jesse Liberty"
 select new { b.Title, b.Author} ; // NB: anonymous type here!

// process the result
foreach (var r in resultsAuthor1) {
 Console.WriteLine(r.Title + " by " + r.Author);
}

 Industrial Programming 17

Example

Lambda expressions can be used to shorten the
query even further:

var resultsAuthor2 = // NB: lambda expression here
 booklist.Where(bookEval => bookEval.Author == "Jesse Liberty");

 // process the result
 foreach (var r in resultsAuthor2) {

Console.WriteLine(r.Title + " by " + r.Author);
 }

 Industrial Programming 18

Example

We can sort the result by author:

var resultsAuthor3 =
 from b in booklist
 orderby b.Author
 select new { b.Title, b.Author} ; // NB: anonymous type here!

Console.WriteLine("LINQ query: ordered by author ...");
// process the result
foreach (var r in resultsAuthor3) {

Console.WriteLine(r.Title + " by " + r.Author);
}

 Industrial Programming 19

Example

We can join tables like this:
var resultList4 =
 from b in booklist
 join p in purchaselist on b.Title equals p.Title
 where p.Quantity >=2

 select new { b.Title, b.Author, p.Quantity } ;

Console.WriteLine("LINQ query: ordered by author ...");
// process the result
foreach (var r in resultList4) {
 Console.WriteLine(r.Quantity + " items of " + r.Title
 + " by " + r.Author);
}

 Industrial Programming 20

Summary

• C# supports two ways of querying databases:
– ADO.NET with SQL queries as strings
– LINQ with SQL commands embedded into the

language
• ADO.NET is older and more robust
• LINQ is newer and easier to use
• LINQ can also be used to traverse in-memory

data structures.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

