Industrial Programming

Lecture 7: Database access in C#
using LINQ

Industrial Programming



ADO.NET

ADO.NET provides a direct interface to a
database.

The interface is database-specific.

ADO.NET uses a conventional, shallow
embedding of SQL commands into C# as
host language, i.e. SQL commands are
composed as strings

A more advanced, deep embedding of SQL
commands is provided by LINQ, i.e. SQL
commands a language constructs

Industrial Programming



Structure of database access

* Toaccess a database with ADO.NET
the following steps are necessary:.

— Connect to a database

— Compose an SQL query

— Issue the query

— Retrieve and process the results
— Disconnect from the database.

Industrial Programming



ADO.NET Example

* Toconnect to a database, a connection
string has to specify location, account,
password etc. (fill in user id and pwd)

using MySgl.Data.MySqlClient;

string cstr = "Server=anubis;Database=test;User ID=;Password=";
MySglConnection dbcon;
try {

dbcon = new MySqlConnection(cstr);
dbcon.Open();

}
catch (MySql.Data.MySqlClient.MySqlException ex) { .. }

Industrial Programming



ADO.NET Example (cont'd)

Next, compose an SQL query as a string
This can be any SQL operation

Depending on the underlying database,
SQL extensions might be available.

MySqlCommand dbcmd = dbcon.CreateCommand() ;

string sql =
"SELECT A ID, A FNAME, A LNAME " +
"FROM authors";

dbcmd.CommandText = sql;

Industrial Programming 5



ADO.NET Example (cont'd)

* Next, issue the query, and process the
result, typically in a while loop.

MySqlDataReader reader = dbcmd.ExecuteReader();

while(reader.Read()) {
string FirstName = (string) reader["A FNAME"];
string LastName = (string) reader["A LNAME"];
Console.WriteLine("Name: " + FirstName + " " + LastName);

}

Industrial Programming



ADO.NET Example (cont'd)

* Finally, clean-up and disconnect.

reader.Close();
reader = null;
dbcmd.Dispose();

dbcmd = null;
dbcon.Close();
dbcon = null;

Industrial Programming



LINQ

Language Integrated Query (LINQ) is a
more advanced way to interact with
databases.

It's a new feature with C# 3.0 onwards.

It provides SQL-like commands as language
extensions, rather than composing SQL
queries as strings (deep embedding)

It can also be used to access other forms of
data, such as XML data or compound C#
data structures.

Industrial Programming 8



LINQ Example

* The same example as before, written in
LINQ is much simpler.

* First, classes, representing the tables of

the database are defined.

[Table(Name = "authors")]
public class Authors

{
[Column]
public int A ID { get ; set ; }
[Column]
public string A FNAME { get ; set ; }
[Column]
public string A LNAME { get ; set ; }
}

Industrial Programming 9



LINQ Example (cont'd)

* Next, a connection is established, using
a connection string similar to ADO.NET.

DataContext db = new DataContext("Data Source = \\MySq|l;" +
"Initial Catalog=test;Integrated Security=True");

DataContext db = new DataContext(connStr);

Industrial Programming 10



LINQ Example (cont'd)

* The main advantage of LINQ is the
simplified way of performing queries.

* Note, that SQL-like commands such as
select, from etc are directly available

Table<Authors> AuthorTable = db.GetTable<Authors>();
List<Authors> dbQuery = from author in Authors select author ;

foreach (var author in dbQuery) {
Console.WriteLine("Author: "+author.A FNAME+" “+
author.A LNAME);

Industrial Programming 11



Querying in-memory Data

LINQ can also be used to query in-memory
data, such as XML data or compound C#
data structures.

This results in more uniform and succinct
code.

Using LINQ in this way requires several
advanced language features.

It is an alternative to using standard
mechanisms of traversing data structures
such as iterators.

Industrial Programming 12



Example

e Assume we have a list of books:

List<Book> booklist = new List<Book> {

new Book { Title = "Learning C#"
, Author = "Jesse Liberty"
, Publisher = "O'Reilly"
, Year = 2008
2

new Book { Title = "Programming C#"
, Author = "Jesse Liberty"
, Publisher = "O'Reilly"
, Year = 2008
2

new Book { Title = "Programming PHP"
, Author = "Rasmus Lerdorf, Kevin Tatroe"
, Publisher = "O'Reilly"
, Year = 2006

b,

}; Industrial Programming



Example

* The conventional way to iterate over the
list looks like this:

foreach (Book b in booklist) {
if (b.Author == "Jesse Liberty") {
Console.WriteLine(b.Title + " by " + b.Author);

}
}

Industrial Programming 14



Example

In contrast, the LINQ-style iteration looks like an
SQL query and is shorter:

TEnumerable<Book> resultsAuthor =
from b in booklist

where b.Author == "Jesse Liberty"
select b;
Console.WriteLine("LINQ query: find by author ...");

// process the result
foreach (Book r in resultsAuthor) {
Console.WriteLine(r.Title + " by " + r.Author);

}

Industrial Programming 15



Example

To avoid returning entire book results from the

guery we can use anonymous types and just
return title and author:

var resultsAuthorl =// NB: this needs to infer the type (anonymous!)
from b in booklist
where b.Author == "Jesse Liberty"
select new { b.Title, b.Author} ; // NB: anonymous type here!

// process the result
foreach (var r in resultsAuthorl) {
Console.WriteLine(r.Title + " by " + r.Author);

}

Industrial Programming 16



Example

Lambda expressions can be used to shorten the
query even further:

var resultsAuthor2 = // NB: lambda expression here
booklist.Where(bookEval => bookEval.Author == "Jesse Liberty");

// process the result
foreach (var r in resultsAuthor2) {
Console.WriteLine(r.Title + " by " + r.Author);

}

Industrial Programming 17



Example

We can sort the result by author:

var resultsAuthor3 =
from b in booklist
orderby b.Author
select new { b.Title, b.Author} ; // NB: anonymous type here!

Console.WriteLine("LINQ query: ordered by author ...");

// process the result

foreach (var r in resultsAuthor3) {
Console.WriteLine(r.Title + " by " + r.Author);

}

Industrial Programming 18



Example

We can join tables like this:

var resultlList4 =
from b in booklist
join p in purchaselist on b.Title equals p.Title
where p.Quantity >=2
select new { b.Title, b.Author, p.Quantity } ;

Console.WriteLine("LINQ query: ordered by author ...");
// process the result
foreach (var r in resultList4) {
Console.WriteLine(r.Quantity + " items of " + r.Title
+ " by " + r.Author);

Industrial Programming 19



Summary

C# supports two ways of querying databases:
— ADO.NET with SQL queries as strings

— LINQ with SQL commands embedded into the
language

« ADO.NET is older and more robust
LINQ is newer and easier to use

LINQ can also be used to traverse in-memory
data structures.

Industrial Programming 20



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

