
 Sys Prog & Scrip - Heriot Watt Univ 1

Systems Programming &
Scripting

Lecture 12: Introduction to
Scripting & Regular

Expressions

 Sys Prog & Scrip - Heriot Watt Univ 2

Goals of the Scripting Classes

• Learn how to easily do common
operations on the command-line

• Learn how to generate simple scripts of
repetitive activities

• Understand the structuring constructs
available in the bash scripting language

 Sys Prog & Scrip - Heriot Watt Univ 3

Non-Goals of Scripting Classes

• Give an introduction to Unix commands.
• Cover the full-range of bash
• Compare bash with other scripting

languages (tcsh, python, …)
• Advocate scripting for large scale

programming

 Sys Prog & Scrip - Heriot Watt Univ 4

Introduction to Shell Scripting

• Scripts are sequences of repetitive commands,
usually executed on the command-line.

• Scripting languages provide only an impoverished
set of programming abstractions

• A focus of scripting languages is at easily combining
simple commands to perform a more complex job.

• Powerful tools to achieve that are 'pipes' and
'regular expressions'.

 Sys Prog & Scrip - Heriot Watt Univ 5

 Regular Expressions

• Regular expressions provide a powerful,
efficient and flexible text processing
technique.

• They form the basis of text and data
processing tools.

• They also commonly used to select files.

 Sys Prog & Scrip - Heriot Watt Univ 6

History of Regular Expressions

• Based on mathematical notation developed by
McCulloch and Pitts to describe neural networks.

• Formally introduced in 1956 by Kleene in his
paper “Representation of Events in Nerve Nets”

• Ken Thompson, the inventor of Unix, used
regular expressions in search algorithms.

• Their first practical use was in the Unix editor
qed.

 Sys Prog & Scrip - Heriot Watt Univ 7

Using Regular Expressions
• Integrated in many tools and languages

– vi, grep, Perl, PHP.
• Facilitates a search engine.

– Match upper and lower case.
– Either or string matching.
– Quantify character repeats.
– Match classes of characters.
– Match any character.
– Expressions can be combined.
– You can match anything using regular expressions.

• Syntax is simple.

 Sys Prog & Scrip - Heriot Watt Univ 8

The Regular Expressions language

• Regular expressions are constructed using
two types of characters:
– Special characters or meta characters

– Literal or normal text.

• Can think of regular expressions as a
language:
– Grammar: meta characters.

– Words: literal text.

 Sys Prog & Scrip - Heriot Watt Univ 9

Basic Syntax

• . The dot matches any single character
– E.g. ab. matches aba, abb, abc, etc.

• [] A bracket expression matches a single
character contained within the bracket.
– E.g. [abc] matches a, b or c
– [a-z] specifies a range which matches any

lowercase letter from a to z.

– [abcx-z] matches a, b, c, x, y and z.

 Sys Prog & Scrip - Heriot Watt Univ 10

Cont. Basic Syntax
• [^] negation of []

– Matches a single character not contained in
bracket.

– E.g. [^abc] matches any character other than a, b
or c.

• ^ matches the starting position of a string.

• $ matches the ending position of a string.

• * matches the previous element zero or more times.

– E.g. abc*d matches abd, abcd, abccd, etc.

 Sys Prog & Scrip - Heriot Watt Univ 11

POSIX regular expressions

• [:alnum:] matches alpha-numerical
characters

• [:alpha:] matches alphabetical
characters

• [:digit:] matches numerals
• [:upper:] matches upper case characters
• [:lower:] matches lower case characters

 Sys Prog & Scrip - Heriot Watt Univ 12

Examples

• Searching (in) files
• Using find
• Using version control
• Doing stream processing with sed

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

