Systems Programming &
Scripting

Lecture 14 - Shell Scripting:
Control Structures, Functions

Syst Prog & Scripting - Heriot Wat

Control Structures

* Shell scripting supports creating more
complex programs using control
structures.

* Decision:
— If statement

* [teration (looping):
—while/until statement
— for statement

Syst Prog & Scripting - Heriot Wat

The If statement

If command

then
Statement

else
Statement

fi

* Similar in behaviour to the If statement in other
programming languages with few differences:

— The command is executed which could be a script.
Based on the return value, the statement after the
then or else get executed.

Syst Prog & Scripting - Heriot Wat

The If statement (cont'd)

— Return value O is true and any other value Is
considered to be false.

1f scriptl; then
1s -1
else
echo “scriptl returned false”

fi

Syst Prog & Scripting - Heriot Wat

The test Command

"'he If statement Is used to run executable.
To use the If statement to only compare

two values, it is required to run a program
to do that.

T
O

T

ne test program Is provided by the
perating system for this purpose.

ne test program Iis invoked by running [, a

symbolic link to /bin/test.

Syst Prog & Scripting - Heriot Wat 5

Example
#! /bin/sh

FIRST_ARGUMENT="$1"
1f [X$FIRST_ARGUMENT = “xHans”]; then
echo “Hello Hans, good to see you”

else
echo “Hello World”

f1

Syst Prog & Scripting - Heriot Wat

Example Explained

* Reading from standard input
— Sending a message to standard output based
on input.
* The test program is called to compare input
with “Hans”
— Note spaces after [and before].
— Note spaces before and after =.
— Those spaces are required.

Syst Prog & Scripting - Heriot Wat

Example Explained (cont'd)

* Two arguments in the comparison
statement are proceeded by an x

— To take into account when
FIRST ARGUMENT has no value.

— Could also use double quote marks to solve
the empty variable problem.

Syst Prog & Scripting - Heriot Wat

Example

#!/bin/bash

copy a file, creating a backup if the target
file exists

if [$# -1t 2]

then
echo "Usage: $0 <fromfile> <tofile>"
exit 1

fi

if [-F $2]
then mv $2 $2.bak
fi

cp $1 $2

Syst Prog & Scripting - Heriot Wat

Example Explained

The first conditional checks whether enough
arguments are supplied.

The second conditional checks whether the
target file already exists.

If so, It Is moved to a .bak file
Then the source file is copied to the target file.

Syst Prog & Scripting - Heriot Wat 10

Comparison Operators

Is equal to: if ["$a" -eq "$b"]
s not equal to: if ["$a" -ne "$

s greater than: if ["$a" -gt "$b"
"$a" -ge "$b"]

DIl :

s greater than or equal to: If
Other integer operators: -It, -le
String operators: =, ==, I=, <, >, -z (string is null)

Syst Prog & Scripting - Heriot Wat

11

The expr Command

e Performs string comparison and integer
mathematics.

e Takes a number of arguments, each
representing a token from the expression to be

evaluated.

o (2*5) + 7
expr‘(‘‘27™*'5)+ 7

 To compare two string alphabetically
expr “hello” ‘<* “why”

Syst Prog & Scripting - Heriot Wat

12

The while Statement

while command; do
statement
done

* The while statement block i1s between while and done.

* Similar to the if statement, the command (or script) Is
executed. The statement will be executed as long as the
command evaluates to true.

* The test (bracket) command is commonly used as with
the If statement.

Syst Prog & Scripting - Heriot Wat 13

Example

while [“$*” 1= “7]
do
echo “value is $1”
shift
done

Source: http://lowfatlinux.com/linux-script-looping.html

* Prints arguments passed to the script while the input
argument string is not null.

* The shift command moves the values stored in the
command line variables to the left one position.

Syst Prog & Scripting - Heriot Wat

14

The until Statement

until command
do

statement
done

* Differ from the while statement in that its
body Is executed as long as the condition
IS false.

Syst Prog & Scripting - Heriot Wat

15

Example

count=1
until [“$*" = "7]
do
echo “value number $count $1
shift
count=$[$count + 1]
count= ‘expr $count + 1’
done

Source: http://lowfatlinux.com/linux-script-looping.html

Syst Prog & Scripting - Heriot Wat

16

The for Statement

for item in list
do

statement
done

o Similar behaviour to foreach statement in other
programming languages.
— Iterates through each item in a list
— Tvoicallv statement mentions $item

Syst Prog & Scripting - Heriot Wat 17

Example

for item in “$*”
do

echo “value is $item”
done

Source: http://lowfatlinux.com/linux-script-looping.html

* In each iteration, the value of item Is assigned
the nth item In the list.

* The loop terminates when all items in the list are
processed.

Syst Prog & Scripting - Heriot Wat 18

Functions

functionname () {
statement

« Functions in shell-scripts are very restricted

- The () indicates that this is a function, but it is
always empty.

- Arguments are referred to in the body of the
function as $1, $2 etc

- A function may return an integer value as the
return code

Syst Prog & Scripting - Heriot Wat

19

A Larger Example

#!/bin/bash

From: Advanced Bash-Scripting Guide

http://tldp.org/LDP/abs/html/

Arabic number to Roman numeral conversion
Usage: roman number-to-convert

LIMIT=200
E_ARG_ERR=65
E_OUT_OF_RANGE=66

if [-z "$1"]
then

echo "Usage: “basename $0° number-to-convert"”
exit $E_ARG_ERR

fi
num=$1
if ["$num" -gt SLIMIT]
then
echo "Out of range!"

exit

i $E_OUT_OF_RANGE ¢, 01 & Scripting - Heriot Wat

20

A Larger Example (cont'd)

to_roman () # Must declare function before
first call to it.
{

humber=%$1

factor=$%$2

rchar=$3

lTet "remainder = number - factor"
while ["$remainder” -ge 0]

do

echo -n $rchar

lTet "number -= factor”

let "remainder = number - factor"
done

return $number

}

Syst Prog & Scripting - Heriot Wat

21

A Larger Example (cont'd)

to_roman $num 100 C
num=$7

to_roman $num 90 LXXXX
num=$7

to_roman $num 50 L
num=$7

to_roman $num 40 XL
num=$7

to_roman $num 10 X
num=$7

to_roman $num 9 IX
num=$7

to_roman $num 5 V
num=$7

to_roman $num 4 IV
num=$7

to_roman $num 1 I
echo

ex1t Syst Prog & Scripting - Heriot Wat

Further Reading

Arnold Robbins, “Classic Shell Scripting: Hidden

Commands that Unlock the Power of Unix”,
O’Rellly, 2005.

My web page on programming languages:
http://www.macs.hw.ac.uk/~hwloidl/prg-lang.htm

Mendel Cooper “Advanced Bash Scripting Guide”,
http://tldp.org/LDP/abs/html/index.html

“Bash Reference Manual’,
http://www.gnu.org/software/bash/manual/bashre

On-line Unix and Shell tutorials
http://www.cyberciti.biz/tips/linux-unix-commands-chee

Syst Prog & Scripting - Heriot Wat 23

http://www.macs.hw.ac.uk/~hwloidl/prg-lang.html#scripting
http://tldp.org/LDP/abs/html/index.html
http://www.gnu.org/software/bash/manual/bashref.html
http://www.cyberciti.biz/tips/linux-unix-commands-cheat-sheets.html

Exercises

In the roman numeral example, extend the
range of numbers that can be covered.

In the line count example, count the number of
lines of files that have been changed within
the last n days, or files owned by yourself.

Work through the exercises in Chapters 10-
12, 23, 26 of the Advanced Bash-Scripting
Guide.

Syst Prog & Scripting - Heriot Wat 24

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

