
 Syst Prog & Scripting - Heriot Watt University 1

Systems Programming &
Scripting

Lecture 14 - Shell Scripting:
Control Structures, Functions

 Syst Prog & Scripting - Heriot Watt University 2

Control Structures

• Shell scripting supports creating more
complex programs using control
structures.

• Decision:
– if statement

• Iteration (looping):
– while/until statement

– for statement

 Syst Prog & Scripting - Heriot Watt University 3

The if statement

if command
then

statement
else

statement
fi

• Similar in behaviour to the if statement in other
programming languages with few differences:
– The command is executed which could be a script.

Based on the return value, the statement after the
then or else get executed.

 Syst Prog & Scripting - Heriot Watt University 4

The if statement (cont'd)

– Return value 0 is true and any other value is
considered to be false.

if script1; then

 ls –l

else

echo “script1 returned false”

fi

 Syst Prog & Scripting - Heriot Watt University 5

The test Command

• The if statement is used to run executable.

• To use the if statement to only compare
two values, it is required to run a program
to do that.

• The test program is provided by the
operating system for this purpose.

• The test program is invoked by running [, a
symbolic link to /bin/test.

 Syst Prog & Scripting - Heriot Watt University 6

Example

#! /bin/sh

FIRST_ARGUMENT=“$1”
if [x$FIRST_ARGUMENT = “xHans”]; then
echo “Hello Hans, good to see you”

else
echo “Hello World”

fi

 Syst Prog & Scripting - Heriot Watt University 7

Example Explained

• Reading from standard input
– Sending a message to standard output based

on input.

• The test program is called to compare input
with “Hans”
– Note spaces after [and before].

– Note spaces before and after =.

– Those spaces are required.

 Syst Prog & Scripting - Heriot Watt University 8

Example Explained (cont'd)

• Two arguments in the comparison
statement are proceeded by an x
– To take into account when

FIRST_ARGUMENT has no value.

– Could also use double quote marks to solve
the empty variable problem.

 Syst Prog & Scripting - Heriot Watt University 9

Example
#!/bin/bash
copy a file, creating a backup if the target
file exists

if [$# -lt 2]
then
 echo "Usage: $0 <fromfile> <tofile>"
 exit 1
fi

if [-f $2]
 then mv $2 $2.bak
fi

cp $1 $2

 Syst Prog & Scripting - Heriot Watt University 10

Example Explained

• The first conditional checks whether enough
arguments are supplied.

• The second conditional checks whether the
target file already exists.

• If so, it is moved to a .bak file

• Then the source file is copied to the target file.

 Syst Prog & Scripting - Heriot Watt University 11

Comparison Operators

• is equal to: if ["$a" -eq "$b"]

• Is not equal to: if ["$a" -ne "$b"]
• Is greater than: if ["$a" -gt "$b"]
• Is greater than or equal to: if ["$a" -ge "$b"]

• Other integer operators: -lt, -le
• String operators: =, ==, !=, <, >, -z (string is null)

 Syst Prog & Scripting - Heriot Watt University 12

The expr Command

• Performs string comparison and integer
mathematics.

• Takes a number of arguments, each
representing a token from the expression to be
evaluated.

• (2*5) + 7
expr ‘(‘ ‘2’ ‘*’ ‘5’ ‘)’ ‘+’ ‘7’

• To compare two string alphabetically
 expr “hello” ‘<‘ “why”

 Syst Prog & Scripting - Heriot Watt University 13

The while Statement
while command; do

statement
done

• The while statement block is between while and done.
• Similar to the if statement, the command (or script) is

executed. The statement will be executed as long as the
command evaluates to true.

• The test (bracket) command is commonly used as with
the if statement.

 Syst Prog & Scripting - Heriot Watt University 14

Example

while [“$*” != “”]
do
echo “value is $1”
shift

done

Source: http://lowfatlinux.com/linux-script-looping.html

• Prints arguments passed to the script while the input
argument string is not null.

• The shift command moves the values stored in the
command line variables to the left one position.

 Syst Prog & Scripting - Heriot Watt University 15

The until Statement

until command

do

statement

done

• Differ from the while statement in that its
body is executed as long as the condition
is false.

 Syst Prog & Scripting - Heriot Watt University 16

Example

count=1

until [“$*” = “”]

do

echo “value number $count $1 ”

shift

count=$[$count + 1]

 # count= ‘expr $count + 1’

done
Source: http://lowfatlinux.com/linux-script-looping.html

 Syst Prog & Scripting - Heriot Watt University 17

The for Statement

for item in list

do

statement

done

• Similar behaviour to foreach statement in other
programming languages.
– Iterates through each item in a list

– Typically statement mentions $item

 Syst Prog & Scripting - Heriot Watt University 18

Example

for item in “$*”
do
echo “value is $item”

done
Source: http://lowfatlinux.com/linux-script-looping.html

• In each iteration, the value of item is assigned
the nth item in the list.

• The loop terminates when all items in the list are
processed.

 Syst Prog & Scripting - Heriot Watt University 19

Functions

functionname () {

 statement

}

• Functions in shell-scripts are very restricted

• The () indicates that this is a function, but it is
always empty.

• Arguments are referred to in the body of the
function as $1, $2 etc

• A function may return an integer value as the
return code

 Syst Prog & Scripting - Heriot Watt University 20

A Larger Example
#!/bin/bash
From: Advanced Bash-Scripting Guide
http://tldp.org/LDP/abs/html/
Arabic number to Roman numeral conversion
Usage: roman number-to-convert

LIMIT=200
E_ARG_ERR=65
E_OUT_OF_RANGE=66

if [-z "$1"]
then
 echo "Usage: `basename $0` number-to-convert"
 exit $E_ARG_ERR
fi

num=$1
if ["$num" -gt $LIMIT]
then
 echo "Out of range!"
 exit $E_OUT_OF_RANGE
fi

 Syst Prog & Scripting - Heriot Watt University 21

A Larger Example (cont'd)
to_roman () # Must declare function before
 # first call to it.
{
number=$1
factor=$2
rchar=$3
let "remainder = number - factor"
while ["$remainder" -ge 0]
do
 echo -n $rchar
 let "number -= factor"
 let "remainder = number - factor"
done

return $number
}

 Syst Prog & Scripting - Heriot Watt University 22

A Larger Example (cont'd)
to_roman $num 100 C
num=$?
to_roman $num 90 LXXXX
num=$?
to_roman $num 50 L
num=$?
to_roman $num 40 XL
num=$?
to_roman $num 10 X
num=$?
to_roman $num 9 IX
num=$?
to_roman $num 5 V
num=$?
to_roman $num 4 IV
num=$?
to_roman $num 1 I
echo
exit

 Syst Prog & Scripting - Heriot Watt University 23

Further Reading
Arnold Robbins, “Classic Shell Scripting: Hidden

Commands that Unlock the Power of Unix”,
O’Reilly, 2005.

My web page on programming languages:
http://www.macs.hw.ac.uk/~hwloidl/prg-lang.html#scripting

Mendel Cooper “Advanced Bash Scripting Guide”,
 http://tldp.org/LDP/abs/html/index.html
“Bash Reference Manual”,

http://www.gnu.org/software/bash/manual/bashref.html

On-line Unix and Shell tutorials
http://www.cyberciti.biz/tips/linux-unix-commands-cheat-sheets.html

http://www.macs.hw.ac.uk/~hwloidl/prg-lang.html#scripting
http://tldp.org/LDP/abs/html/index.html
http://www.gnu.org/software/bash/manual/bashref.html
http://www.cyberciti.biz/tips/linux-unix-commands-cheat-sheets.html

 Syst Prog & Scripting - Heriot Watt University 24

Exercises

• In the roman numeral example, extend the
range of numbers that can be covered.

• In the line count example, count the number of
lines of files that have been changed within
the last n days, or files owned by yourself.

• Work through the exercises in Chapters 10-
12, 23, 26 of the Advanced Bash-Scripting
Guide.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

