
 Industrial Programming 1

Industrial Programming

Hans-Wolfgang Loidl

hwloidl@macs.hw.ac.uk

http://www.macs.hw.ac.uk/~hwloidl

Lecture 1: Course Overview
 Industrial Programming 2

Welcome to Heriot-Watt

Hans-Wolfgang Loidl

 Industrial Programming 7

F21SC: Course Contents

• This course is about the programming skills

• We will cover:

– Systems languages: C#

– Scripting languages: Python

• It assumes solid prior knowledge of an
object-oriented language, eg. Java.

• It is about quickly picking up a new language of

a familiar paradigm.

• It is not a gentle introduction to programming.

 Industrial Programming 8

Learning Outcomes

• Appreciation of role of different programming
paradigms in configuring/managing systems:

– Object-oriented: good at structuring large code

– Imperative: good at performance

– Functional: good at abstraction

– Logic: good at reasoning
• Autonomous problem analysis/solution:

– Really understand the problem to pick the right

paradigm/approach for producing a solution
• Understanding of core characteristics of

contemporary operating systems: make good use
of available resources

 Industrial Programming 9

Learning Outcomes

• Appreciation of role of “language as glue
wear” in configuring/maintaining systems:

– Scripting languages combine existing code
• Knowledge of key abstractions across

programming languages:

– Write reusable and maintainable code
• Technical proficiency in advanced

techniques in different programming
paradigms:

– Learn the Best of all Worlds

 Industrial Programming 10

Topics to cover

• Overview & Linux introduction (1 week)

• Core C# programming (3 weeks)

• Advanced C# programming (3 weeks)

• Python programming (4 weeks)

• Revision (1 week)

• Planned: Guest lecture on testing

 Industrial Programming 11

Lecture Plan

• Week 1: Overview, Linux Introduction (with
shell scripting)

• Week 2: .Net and C# Introduction, C#
Fundamentals

• Week 3: C# Objects & Classes, C#
Concurrency

• Week 4: C# Data Manipulation, Database
access in C# and LINQ, C# GUI development

• Week 5: Threading in C#, C# Systems
Programming

• Week 6: Advanced C# Features, C# Revision

 Industrial Programming 12

Lecture Plan (cont'd)

• Week 7: Parallel Programming in C#

• Week 8: Python Introduction and Data Types

• Week 9: Python Control Structures and Functions

• Week 10: Python Classes and Advanced Language

Constructs

• Week 11: Python Libraries and Tools

• Week 12: Revision

Course material is available via the Vision system:
http://vision.hw.ac.uk/

Main course information page:

 http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/

 Industrial Programming 13

Main Course Information Page

 Industrial Programming 14

Assessment

• Assessed Coursework: 100%

• Demonstration (mandatory) of the coursework

• There is no exam for this module

Coursework:

• Project 1: C# programming project (50%)

• Project 2: Python programming project (50%)

 Industrial Programming 15

Skills Tested in the Coursework

• Composing bigger applications out of
existing components

• Rapid prototyping

• Resource conscious programming

• GUI programming

• Concurrency

 Industrial Programming 16

Software Infrastructure

• Visual Studio 2015 with C# (Windows)

• Alternatively, stand-alone C# compiler with
libraries needed for GUI etc programming

• sh or bash scripting languages (Unix)

• Python interpreter

• Overall: heavy use of libraries!

 Industrial Programming 17

References (C#)

• Douglas Bell, Mike Parr, “C# for Students”, Addison Wesley,

2009.

• Jesse Liberty, Brian MacDonald, “Learning C# 3.0”, O'Reilly,
2009.

• Joseph Albahari, Ben Albahari, “C# 5.0 in a Nutshell: The

Definitive Reference”, O'Reilly, 2012. C# 6.0 due Nov 2015!

• Kurt Normark, “Object-oriented Programming in C# for C and
Java Programmers”, 2010. http://www.cs.aau.dk/~normark/oop-

csharp/html/notes/theme-index.html

• Eric Gunnerson, “A programmer’s Introduction to C# 5.0,

Springer, 2012

• Andrew Birrell, “An Introduction to programming with C#
Threads”, Microsoft, 2005.

• Arnold Robbins, “Classic Shell Scripting: Hidden Commands

that Unlock the Power of Unix”, O’Reilly, 2005. Industrial Programming 18

Characteristics of Systems Lang

• Build algorithms and data structures from
scratch

• Use strong typing to help manage complexity
of large pieces of software

• Focus is often on speed of execution

• Easy access to low-level operating system is
crucial

• Examples: C, C#

 Industrial Programming 19

Characteristics of Scripting Lang.

• Their main purpose is to glue software together

• Focus is on rapid-prototyping

• Safety aspects are of a lesser concern

• Thus, scripting languages are often type-less

• Modern scripting languages incorporate features
of general purpose programming languages,
especially object-oriented (o-o) features, higher-
order functions

• Easier to learn for casual programming

• Examples: sh, php, python, perl, ruby, lua

 Industrial Programming 20

A Short History of System Lang

• Developed as an abstraction over assembler
programs

• They are higher-level by introducing abstraction
mechanisms to manage large pieces of code.

• They are safe by using strong typing to more
easily detect mistakes in the program

• They delegate some control of the underlying
machine to libraries and operating system

• Together this drastically increases programmer
productivity

 Industrial Programming 21

Classifying Systems Lang

 Industrial Programming 22

A Short History of Scripting Lang.

• First Generation: simple composition of
command-line jobs (espec. Unix systems);
also called batch-languages

• Very little language abstraction

• Slightly different syntax in different languages

• Rich libraries for low-level coordination with
the operating-system (OS)

• Examples: sh, bash, tcsh ...

 Industrial Programming 23

History (cont'd)

• Second Generation: Trying to combine many
different language features into one language

• Addresses the problem that different batch
languages do the same thing slightly differently

• Thus, the language becomes huge

• The mixture of concepts makes it hard to read
third-party code.

• Also, extended support for graphical user

interfaces (GUIs)

• Examples: perl, tcl

 Industrial Programming 24

History (cont'd)

• Third Generation: increasingly use modern
programming language abstractions to make
programming simpler

• In particular, heavy use of o-o concepts

• Also, concepts from other programming
paradigms such as higher-order functions and
polymorphism

• Examples: php, python, ruby, lua, go, dart

 Industrial Programming 25

Relevance of Scripting Langs

• Increasing speed of processor makes the
application of interpreted languages viable

• Existence of large libraries makes the
development of new software from scratch
less common-place

• Heterogeneous environment make a write-
once run-everywhere approach appealing

• New technologies, such as the internet, make
the issue of composing services even more
important

 Industrial Programming 26

Common Features of Scripting

Languages
• Scripting languages are usually typeless: no

(type) restrictions on the use of the input/output

to/from existing components are imposed

• This enhances the flexibility of the language but
reduces the safety

• Example from Unix shells: pipeline mechanism:

select | grep scripting | wc

• This reads the text currently selected in a window,
passes it to a search for the word “scripting” and

counts the number of lines in the output

 Industrial Programming 27

Common Features (cont'd)

• Modern scripting languages provide a limited
amount of type information to re-gain type
safety

• To avoid frequent conversion functions
between types, class hierarchies and implicit
type conversions are used

• In contrast to systems languages, some type
checks are performed at run-time rather than
compile-time (dynamic typing)

 Industrial Programming 28

Common Features (cont'd)

• Scripting languages are usually interpreted
rather than compiled

• This gains rapid turnaround time in writing and
testing code

• It increases flexibility, since the program can
generate strings that are in themselves programs

• It loses performance compared to executing
compiled code; but typically the amount of code
in the scripting language is small and
performance is dominated by the code in the
components

 Industrial Programming 29

Common Features (cont'd)

• Scripting languages are often higher-level
than system languages, espec. for the latest
generation

• For example many scripting languages have
powerful, built-in mechanisms for regular
expression substitution

• In the latest generation high-level concepts
such as class hierarchies are included, too.

 Industrial Programming 30

 Industrial Programming 31

When to use Scripting Lang

• Is the application's main task to connect pre-
existing components?

• Will the application manipulate a variety of
different kinds of things?

• Does the application involve a GUI?

• Does the application do a lot of string
manipulation?

• Will the application's functions evolve rapidly
over time?

• Does the application need to be extensible?

 Industrial Programming 32

When to use Systems Lang

• Does the application implement complex
algorithms or data structures?

• Does the application manipulate large data
sets?

• Are the application's functions well-defined
and changing slowly?

 Industrial Programming 33

Application Domains for Scripting

• Graphical User Interfaces

– Fundamentally “gluing” nature

– Large percentage of code in modern apps

• Internet

– Main role: connecting a huge number of existing

computations and data (see success of perl)

– Web services as the next level of gluing

• Component Frameworks

– A flexible method of assembling components into

applications

 Industrial Programming 34

Summary

• Be aware of the characteristics of systems and
scripting languages

• Decide early on in a project which class of language
to use

• Today's trends in programming languages will be
tomorrow's features in scripting languages

• Main reference:

– “Scripting: Higher Level Programming in the 21st

Century”, John K. Ousterhout, IEEE Computer, March

1998. URL:
http://home.pacbell.net/ouster/scripting.html

