Industrial Programming

Hans-Wolfgang Loidl

Lecture 1: Course Overview

Industrial Programming 1

F21SC: Course Contents

This course is about the programming skills
We will cover:

— Systems languages: C#

— Scripting languages: Python

It assumes solid prior knowledge of an
object-oriented language, eg. Java.

It is about quickly picking up a new language of
a familiar paradigm.

It is not a gentle introduction to programming.

Industrial Programming 7

Welcome to Heriot-\Watt

Hans-Wolfgang Loidl

Industrial Programming 2

Learning Outcomes

Appreciation of role of different programming
paradigms in configuring/managing systems:

— Object-oriented: good at structuring large code
— Imperative: good at performance
— Functional: good at abstraction

— Logic: good at reasoning
Autonomous problem analysis/solution:

— Really understand the problem to pick the right
paradigm/approach for producing a solution

Understanding of core characteristics of
contemporary operating systems: make good use
of available resources

Industrial Programming 8

Learning Outcomes

Appreciation of role of “language as glue
wear” in configuring/maintaining systems:
— Scripting languages combine existing code
Knowledge of key abstractions across
programming languages:
— Write reusable and maintainable code

Technical proficiency in advanced
techniques in different programming
paradigms:

— Learn the Best of all Worlds

Industrial Programming 9

Lecture Plan

Week 1: Overview, Linux Introduction (with
shell scripting)

Week 2: .Net and C# Introduction, C#
Fundamentals

Week 3: C# Objects & Classes, C#
Concurrency

Week 4: C# Data Manipulation, Database
access in C# and LINQ, C# GUI development
Week 5: Threading in C#, C# Systems
Programming

Week 6: Advanced C# Features, C# Revision

Industrial Programming 11

Topics to cover

* Overview & Linux introduction (1 week)
* Core C# programming (3 weeks)

* Advanced C# programming (3 weeks)

* Python programming (4 weeks)

* Revision (1 week)

Planned: Guest lecture on testing

Industrial Programming 10

Lecture Plan (cont'd)

* Week 7: Parallel Programming in C#
* Week 8: Python Introduction and Data Types
* Week 9: Python Control Structures and Functions

* Week 10: Python Classes and Advanced Language
Constructs

* Week 11: Python Libraries and Tools
* Week 12: Revision
Course material is available via the Vision system:

Main course information page:

Industrial Programming 12

Main Course Information Page Assessment

* Assessed Coursework: 100%
T - B * Demonstration (mandatory) of the coursework
L H * There is no exam for this module

— News:
This ps
This course will start
As a st ed in IEEE Computer, summarising the characteristics of September 15th, 2014 14:15.
scriptin

A Guide for Independent Lear

Purpose and Learning Objectives Lecturers:

Hans-Wolfgang Loidl (HWL)

The purpose of the Course F21SC System Programming and Scripting is to deepen the understanding of a range of programming
languages and to obtain a critical und nding of the outstanding features of each of the lan s. In doing so, it provides Course Links :
advanced programming language skills, exercised through a series of courseworks. In particular, this course conveys the idea of
scripting languages acting as glueware between components of existing software systems in order to build large systems.

Learning Objectives:

Apprec le of different paradigms in conti ing systems:
Object j00d at structuring large code
Imperative: aood at performance

Industrial Programming 13

Skills Tested in the Coursework

Composing bigger applications out of
existing components

Rapid prototyping

Resource conscious programming
GUI programming

Concurrency

Industrial Programming 15

Coursework:
* Project 1: C# programming project (50%)
* Project 2: Python programming project (50%)

Industrial Programming 14

Software Infrastructure

Visual Studio 2015 with C# (Windows)

Alternatively, stand-alone C# compiler with
libraries needed for GUI etc programming

sh or bash scripting languages (Unix)
Python interpreter
Overall: heavy use of libraries!

Industrial Programming 16

References (C#)

Douglas Bell, Mike Parr, “C# for Students”, Addison Wesley,
2009.
Jesse Liberty, Brian MacDonald, “Learning C# 3.0", O'Reilly,
2009.

* Joseph Albahari, Ben Albahari, “C# 5.0 in a Nutshell: The

Definitive Reference”, O'Reilly, 2012. C# 6.0 due Nov 2015!

Kurt Normark, “Object-oriented Programming in C# for C and

Java Programmers”, 2010. http://www.cs.aau.dk/~normark/oop-
csharp/html/notes/theme-index.html

Eric Gunnerson, “A programmer’s Introduction to C# 5.0,
Springer, 2012

Andrew Birrell, “An Introduction to programming with C#
Threads”, Microsoft, 2005.

* Arnold Robbins, “Classic Shell Scripting: Hidden Commands

that Unlock the PowgduefiklmirsgrdmRmily, 2005.17

Characteristics of Scripting Lang.

Their main purpose is to glue software together
Focus is on rapid-prototyping

Safety aspects are of a lesser concern

Thus, scripting languages are often type-less

Modern scripting languages incorporate features
of general purpose programming languages,
especially object-oriented (0-0) features, higher-
order functions

Easier to learn for casual programming
Examples: sh, php, python, perl, ruby, lua

Industrial Programming 19

Characteristics of Systems Lang

* Build algorithms and data structures from
scratch

* Use strong typing to help manage complexity
of large pieces of software

* Focus is often on speed of execution

* Easy access to low-level operating system is
crucial

* Examples: C, C#

Industrial Programming 18

A Short History of System Lang

* Developed as an abstraction over assembler
programs

* They are higher-level by introducing abstraction
mechanisms to manage large pieces of code.

* They are safe by using strong typing to more
easily detect mistakes in the program

* They delegate some control of the underlying
machine to libraries and operating system

* Together this drastically increases programmer
productivity

Industrial Programming 20

Classifying Systems Lang

1000

Scripting

L
-

Instructions/Statement
=
I

00

Assembly System Programuming,

1

Nohe s{rong
Degres of Typing

Fignre 1. A comparison of varions programming langnages based on their level (higher
level langnages execure meore machine instructions for each langnage starement) and their
degree of ryping, System programming langnages like C tend o be strongly typed and

medinm level (5- 10 instmetil tement), Seripting L lilee Tel tend to be
weakly typed and very high level (100-1000 instroctons/starement).

Industrial Programming 21

History (cont'd)

Second Generation: Trying to combine many
different language features into one language

Addresses the problem that different batch
languages do the same thing slightly differently

Thus, the language becomes huge

The mixture of concepts makes it hard to read
third-party code.

Also, extended support for graphical user
interfaces (GUIs)

Examples: perl, tcl

Industrial Programming 23

A Short History of Scripting Lang.

First Generation: simple composition of
command-line jobs (espec. Unix systems);
also called batch-languages

Very little language abstraction
Slightly different syntax in different languages

Rich libraries for low-level coordination with
the operating-system (OS)

Examples: sh, bash, tcsh ...

Industrial Programming 22

History (cont'd)

Third Generation: increasingly use modern
programming language abstractions to make
programming simpler

In particular, heavy use of 0-0 concepts

Also, concepts from other programming
paradigms such as higher-order functions and
polymorphism

Examples: php, python, ruby, lua, go, dart

Industrial Programming 24

Relevance of Scripting Langs

Increasing speed of processor makes the
application of interpreted languages viable

Existence of large libraries makes the
development of new software from scratch
less common-place

Heterogeneous environment make a write-
once run-everywhere approach appealing

New technologies, such as the internet, make
the issue of composing services even more
important

Industrial Programming 25

Common Features (cont'd)

Modern scripting languages provide a limited
amount of type information to re-gain type
safety

To avoid frequent conversion functions
between types, class hierarchies and implicit
type conversions are used

In contrast to systems languages, some type
checks are performed at run-time rather than
compile-time (dynamic typing)

Industrial Programming 27

Common Features of Scripting
Languages

Scripting languages are usually typeless: no
(type) restrictions on the use of the input/output

to/from existing components are imposed

This enhances the flexibility of the language but
reduces the safety

Example from Unix shells: pipeline mechanism:
select | grep scripting | wc

This reads the text currently selected in a window,

passes it to a search for the word “scripting” and
counts the number of lines in the output

Industrial Programming 26

Common Features (cont'd)

Scripting languages are usually interpreted
rather than compiled

This gains rapid turnaround time in writing and
testing code

It increases flexibility, since the program can
generate strings that are in themselves programs

It loses performance compared to executing
compiled code; but typically the amount of code
in the scripting language is small and
performance is dominated by the code in the
components

Industrial Programming 28

Common Features (cont'd)

Scripting languages are often higher-level
than system languages, espec. for the latest
generation

For example many scripting languages have
powerful, built-in mechanisms for regular
expression substitution

In the latest generation high-level concepts
such as class hierarchies are included, too.

Industrial Programming 29

When to use Scripting Lang

Is the application's main task to connect pre-
existing components?

Will the application manipulate a variety of
different kinds of things?

Does the application involve a GUI?

Does the application do a lot of string
manipulation?

Will the application's functions evolve rapidly
over time?

Does the application need to be extensible?

Industrial Programming 31

Application Code | Effort
(Contributor) Comparison Ratio | Ratio | Comments
Datmbast application | G+ vérsion: 2 momnths 60 | C++ version implemented
(Ken Corey) Telversion: L day first; Tel version had more func-
tionality.
Computer system C test application: 272 47 2 | C version implemented first,
test and mstallation | Klines, 120 months, TelfPerl versionreplaced both C
(Andy Belssy) C FIS application: 90 Klines, applications.
60 months,
Tel/Ferl version: 7.7K lines, &
months
Datmbase Library Ci+ version: 2-3 months 8-12 | C++ version implemented first.
(Ken Corey) Telversion: 1 weelk
Secority scanner C version: 3000 lines 10 Cversionimplemented first, Tel
(Yim Graham) Tel version: 300 lines version had more fonctionality.
Display oil well pro- | C version: 3 months 6 | Telversion implemented first
duction curves Tel version: 2 weeks
(Dan Schenck)
Query dispatcher C version: 1200 Lines, 4-8 25 4-8 |C version implemented first,
(Paul Healy) wttls uncommented, Tel version had
Telversion: 500 lines, 1 wesle comments, mors functionality,
Spreadshest ool C wersian: 1460 lines 4 Tel version implemented first,
Tel version: 380 Lines
Simulator and GUI |Java version: 3400 Lines, 3-4 2 3-4 | Tel version had 10-20% more
(Randy Wang) wesks, fonctionality, was implsmemned
Telversion: 1600 Lines, < 1 first.
wesk

Table 1. Eachrow of the table describes an application that was Implemented twice, once
with 2 system programming language such as C or Java and once with a scripting langnage
such as Tcl. The Code Ratio column gives the mtio of lings of code for the two implemen-
tations (»1 means the systtm programming langnage required more Lines}, the Effort
Ratio column gives the ratio of development times, In most cases the Two ¥ersions were
implemeneed by different peopls. The information in the table was provided by various
Tel developers in responst to anamizi.cﬁwsmd on the comy. lang tel néwsgronp; st [’g for

detells Industrial Programming

When to use Systems Lang

* Does the application implement complex
algorithms or data structures?

* Does the application manipulate large data
sets?

* Are the application's functions well-defined
and changing slowly?

Industrial Programming 32

Application Domains for Scripting Summary

* Graphical User Interfaces * Be aware of the characteristics of systems and
scripting languages

— Fundamentally “gluing” nature
* Decide early on in a project which class of language

—Large percentage of code in modern apps

to use
) Interr.1et . o * Today's trends in programming languages will be
— Main role: ConneCtlng a huge number of eXIStIng tomorrow's features in Scripting |anguages
computations and data (see success of perl) « Main reference:
—Web services as the next level of gluing —“Scripting: Higher Level Programming in the 21st
* Component Frameworks Century”, John K. Ousterhout, IEEE Computer, March
1998. URL:

— A flexible method of assembling components into

applications http://home.pacbell.net/ouster/scripting.html

Industrial Programming 33 Industrial Programming 34

