
 Industrial Programming 1

Industrial Programming

Lecture 3: C# Fundamentals

 Industrial Programming 2

C# Types

 Industrial Programming 3

Value Types

• Memory location contains the data.

• Integers:

–Signed: sbyte, int, short, long

–Unsigned: byte, uint, ushort, ulong

–e.g. int count = 5;

• Floating points: float, double

• Examples
– double average = 10.5;

– float total = 34.88f;

 Industrial Programming 4

Signed and Unsigned

• By default int, short, long are signed data
types as they can hold a negative of a
positive value of their ranges.

• Unsigned variable can only hold positive
values of its range.

 Industrial Programming 5

Types and Values

 Industrial Programming 6

Value Types (cont'd)

• Decimal types: appropriate for storing
monetary data. Provides greater precision.

– decimal profit = 2211655.76M;

• Boolean variables: true or false.

–bool student = true;

 Industrial Programming 7

Value Types (cont'd)

• Enum Types:

• The enum keyword is used to declare an
enumeration, a distinct type consisting of a
set of named constants called the
enumerator list.

• Every enumeration type has an underlying
type, which can be any integral type
except char.

 Industrial Programming 8

Value Types (cont'd)

• The default underlying type of the enumeration elements is
int. By default, the first enumerator has the value 0, and the
value of each successive enumerator is increased by 1, eg

 enum Days {Sat, Sun, Mon, Tue, Wed, Thu, Fri};

• In this enumeration, Sat is 0, Sun is 1, Mon is 2, and so forth.

• Enumerators can have initialisers to override the default values, eg

 enum Days {Sat=1, Sun, Mon, Tue, Wed, Thu, Fri};

• In this enumeration, the sequence of elements is forced to
start from 1 instead of 0.

 Industrial Programming 9

Value Types (cont'd)

• Example of enum types:

enum Fruit
{
apple,
banana,
peach

}
Fruit f = Fruit.apple

 Industrial Programming 10

Value Types (cont'd)
• Struct types:

– User-defined types.
– Can contain data members of different types.
– Can’t be extended.

struct Person
{

public String fName, lName;
public Person(String fName, String lName)

 {
 this.fName = fName;
 this.lName = lName;

 }
}
Person p = new Person(“John”, “Smith”);

 Industrial Programming 12

Structs vs Classes
Classes Structs

Reference type Value type

Used w/ dynamic instantiation Used with static instantiation

Ancestors of class Object Ancestors of class Object

Can be extended by inheritance Cannot be extended by
inheritance

Can implement one or more
interfaces

Can implement one or more
interfaces

Can initialize fields with
initializers

Cannot initialize fields with
initializers

Can have a parameterless
constructor

Cannot have a parameterless
constructor

 Industrial Programming 13

Reference Types

• A variable of reference type contains a
reference to a memory location where
data is stored (as pointers in C/C++).

• Direct inheritance from Object.

• Can implement many interfaces.

• Two predefined reference types in C#:
String and Object.
– E.g. string name = “John”;

– Object, root of all types.

 Industrial Programming 14

Value vs Reference Type

• If x and y are of value type, the assignment

x = y

• Copies the contents of y into x.

• If x and y are of reference type, the
assignment

x = y

• Causes x to point to the same memory
location as y.

 Industrial Programming 15

Boxing and Unboxing
• Boxing is the conversion of a value type to a

reference type. Unboxing is the opposite
process.

• Using boxing, an int value can be converted to
an object to be passed to a method (that takes
an object as argument).

int n = 5;

object nObject = n; //boxing

int n2 = (int) nObject; //unboxing

 Industrial Programming 16

Casting

• There are 2 ways of changing the type of
a value in the program
– Implicit conversion by assignment e.g.

 short myShort = 5;

 int myInt = myShort;

– Explicit conversion using the syntax
(type)expression

 double myDouble = 4.7;

 int myInt = (int)myDouble;

 Industrial Programming 17

Nullable types

• Variables of reference type can have the value
null, if they don't refer to anything.

• Variables of value type cannot have the value
null, because they represent values.

• Sometimes it is useful to have a variable of value
type that may have “no value”.

• To this end, a nullable type can be used:

int? i;

• Here, i is of type int, but may have the value
null

 Industrial Programming 18

Arrays

• C# supports one- and multi-dimensional
arrays.

• One-dimensional array

– Declaring:

 string[] names = new string[30];

– Starts at index 0 up to index 29.

– Accessing: names[2] = “john”;

• Multi-dimensional array
– int[,] numbers = new int[5,10];

 Industrial Programming 19

Some useful methods on arrays

Length
• Gives the number of elements in an array.

Rank
• Gives the number of dimensions of the array.

GetLength(n)
• Gives the number of elements in the n-th

dimension

 Industrial Programming 20

Jagged Arrays

• A jagged array is a multi-dimensional
array, where the “rows” may have different
sizes. It is declared like this

int [][] myJaggedArray = new int[4][];

• The rows are filled in separately

myJaggedArray[0] = new int[5];

• Access to array elements works like this:

myJaggedArray[0][2];

 Industrial Programming 21

Decision Making
• The if statement:

If (expression)

statement 1

[else

statement 2]

• The expression must evaluate to bool. If
expression is true, flow of control is passed to
statement 1, otherwise, control is passed to
statement 2.

• Can have multiple else clauses (using else if).

 Industrial Programming 22

Logical Operators

• For comparing values these operators exist:

==, !=, <=, >=, <, >

• NB: = is for assignment, not for equality test

• These operators combine boolean values:

&&, ||, !

• Operators over int and float: +, -, *, /, % (int
only)

• A conditional expression is written like this:

boolean_expr ? expr_true : expr_false

 Industrial Programming 23

Decision Making (cont'd)
• The switch statement.
switch (switch_expression)

{

case constant-expression:

statement

jump statement

 .

 .

case constant-expressionN:

statementN

 jump statement

[default]

}

 Industrial Programming 24

Decision Making (cont'd)

• Switch_expression must be of type sbyte, byte,
short, ushort, int, uint, long, ulong, char or string.

• Each case clause must include a jump-statement
(e.g. break statement) apart from the last case in the
switch.

• Case clauses can be combined by writing them
directly one after the other.

• The switch_expression is evaluated and compared to
each of the constant-expressions.

• On finding a match, control is passed to the first line
of code in the matching case statement.

• If no match is found, control is passed to the default
clause.

 Industrial Programming 25

Iteration

• The while statement: boolean expression is evaluated
before the statement is executed, which is iterated while
the boolean expression remains true.

while (boolean_expression)

statement

• The do/while statement: boolean expression is evaluated
after the statement is executed, which is iterated.

do

statement

while (boolean_expression)

 Industrial Programming 26

Iteration (cont'd)

• The for statement

for (initialization; boolean_expression; step)

statement

• The foreach statement

– Specifically designed for the iteration over
arrays and collections.

foreach (type identifier in expression)

statement

 Industrial Programming 27

Functions

• Functions (or static methods) encapsulate
common sequences of instructions.

• As an example, this function returns the n-th
element of an array, e.g.

static int Get (int[] arr, int n) {

 return arr[n]; }

• This static method is called directly, e.g.

i = Get(myArr, 3);

• Exercise: check that n is in a valid range

 Industrial Programming 28

Function Parameters

• All objects, arrays and strings are passed by reference,
i.e. changes effect the argument that is passed to the
function:

static void Set (int[] arr, int n, int x) {

 arr[n] = x; }

• But, value types are copied. The keyword ref is needed for
passing by reference:

static void SetStep (int[] arr, ref int n, int x)
{

 arr[n] = x;

 n += 1 ;

 }

 Industrial Programming 29

Example: nullable types

 public static int? Min(int[] sequence){
 int theMinimum;
 if (sequence.Length == 0)
 return null;
 else {
 theMinimum = sequence[0];
 foreach(int e in sequence)
 if (e < theMinimum)
 theMinimum = e;
 }
 return theMinimum;
 }

 Industrial Programming 30

Discussion

• The type int? is a nullable int type.

• The value null of this type is used to indicate that
there is no minimum in the case of an empty
sequence.

• The method HasValue can be use to check whether
the result is null:

int? min = Min(seq); if (min.HasValue) {…}

• The combinator ?? can be used to select the first
non-null value:

min ?? 0

• Is min, if its value is non-null, 0 otherwise.

 Industrial Programming 31

Example: nullable types (cont'd)
public static void ReportMinMax(int[] sequence){
 if (Min(sequence).HasValue && Max(sequence).HasValue)
 Console.WriteLine("Min: {0}. Max: {1}",
 Min(sequence), Max(sequence));
 else
 Console.WriteLine("Int sequence is empty");
 }

 public static void Main(){
 int[] is1 = new int[] { -5, -1, 7, -8, 13};
 int[] is2 = new int[] { };

 ReportMinMax(is1);
 ReportMinMax(is2);
 }

 Industrial Programming 33

Exercises

(a) Define weekday as an enumeration type and
implement a NextDay method

(b) Implement a WhatDay method returning either
WorkDay or WeekEnd (use another enum)

(c) Write a method calculating the sum from 1 to n,
for a fixed integer value n

(d) Write a method calculating the sum over an
array (one version with foreach, one version with
explicit indexing)

 Industrial Programming 34

Exercise (cont'd)

(a) Use the SetStep method to implement a method
Set0, which sets all array elements to the value 0.

(b) Implement a method, reading via ReadLine, and
counting how many unsigned short, unsigned int and
unsigned long values have been read.

(c) Define complex numbers using structs, and
implement basic arithmetic on them.

(d) Implement Euclid's greatest common divisor
algorithm as a static method over 2 int parameters.

(e) Implement matrix multiplication as a static
method taking 2 2-dimensional arrays as arguments.

