Industrial Programming
Systems Programming & Scripting

Lecture 12: C# Revision

Industrial Programming 1



3 Pillars of Object-oriented
Programming

* Encapsulation: each class should be self-
contained to localise changes. Realised through
public and private attributes.

* Specialisation: model relationships between
classes. Realised through inheritance.

* Polymorphism: treat a collection of items as a
group. Realised through methods at the right
level in the class hierarchy.

Industrial Programming 2



Bank Account

* Attribute:
* Account Noy Class Example Object
* Name
* Balance (in (BankAccount)
£'s) accountNo : ulong 11111
name: string Savings account
balance: decimal 101.00
) MethO(_iS.!_> Deposit(decimal)
: \?Veiti(()jsrigw Withdraw(decimal)

Industrial Programming 3



Extending the Example

* Define another class ProperBankAccount with
an overdraft facility.

* Automatically assign account numbers to new
accounts when generating them.

* Keep all field information secure within the
account.

Industrial Programming 4



Designing the Class

* Filelds:
— Those in BankAccount + overdraft
* Methods:

— Those in BankAccount but modified

* |nvariants:

— Balance in ProperBankAccount is
never lower than the negative overdraft.

Industrial Programming 5



Revisiting the BankAccount Class

class BankAccount {
protected static ulong latestAccountNo = 1000;
protected ulong accountNo;
protected decimal balance;
protected string name;

* We use the access modifier protected to
hide all fields from other classes, except
derived classes.

* We use a static field to keep track of the
assigned account numbers.

Industrial Programming 6



Revisiting the BankAccount Class

public BankAccount(string name) {
latestAccountNo++;
this.accountNo = latestAccountNo;
this.name = name;
this.balance = 0OM;

}

public BankAccount(ulong no, string name) {
this.accountNo = no;
this.name = name;
this.balance = 0OM;

}

* We use overloading of the constructor class and
the static field to auto assign account numbers.

Industrial Programming 7



Revisiting the BankAccount Class

public void Deposit(decimal x) {
this.balance += x;

}

* The Deposit method is unchanged.
* Its access modifier is public.

Industrial Programming 8



Revisiting the BankAccount Class

public virtual void Withdraw(decimal x) {
if (this.balance >= x) {
this.balance -= Xx;
} else {
throw new InsufficientBalance("Balance too low:
{0}", this.balance);

}
}

* We use exceptions to cover the case of an
insufficient balance for making a withdrawl.

* The method must be declared virtual to
allow overriding in a sub-class.

Industrial Programming 9



Revisiting the BankAccount Class

public decimal GetBalance() { return this.balance; }

public void ShowBalance() {
Console.WriteLine("Current Balance: " + this.balance.ToString());

}

public virtual void ShowAccount() {
Console.WriteLine("Account Number: {0}\tAccount Name: {1}\tCurrent
Balance: {2}",
this.accountNo, this.name, this.balance.ToString());

* ShowAccount must be declared virtual to
allow overriding in sub-classes.

* The other methods are unchanged.

Industrial Programming 10



Invariants

// Class invariants:
// 1nvarlant: this.balance >= 0

* We record the above class invariants: this
predicate must hold at any point in the
lifetime of an object of this class.

Industrial Programming 11



Revisiting the BankAccount Class

public class InsufficientBalance : System.Exception {
public InsufficientBalance(string msg, decimal Xx):base(msg)

{
Console.WriteLine(" " + x.ToString());

}
}

* The exception class derives from
System.Exception

* It prints a message by calling the
constructor of this base class

* Additionally, it prints the balance.

Industrial Programming 12



Implementing the Class

class ProperBankAccount: BankAccount {
public decimal overdraft { get ; set;}

* ProperBankAccount inherits from
BankAccount, thus all non-private fields

and methods are available.

* The overdraft is implemented as a
property with default get and set methods.

Industrial Programming 13



Implementing the Class (cont'd)

public ProperBankAccount(string name) :base(name) {
// nothing; use set property on overdraft
}

public ProperBankAccount(ulong no, string name)
:base(no,name) {

// nothing; use set property on overdraft
}

* We use overloading to implement 2 constructors for
ProperBankAccount

* The static field is used to keep track of assigned
account numbers.

Industrial Programming 14



Implementing the Class

public override void Withdraw(decimal x) {
if (this.balance+this.overdraft >= x) {
this.balance -= Xx;
} else {
throw new InsufficientBalance("Balance (including overdraft) too
low", this.balance);

}
}

* By declaring the Withdraw method as override,
the instance in ProperBankAccount
overrides/replaces the one in BankAccount

Industrial Programming 15



Implementing the Class

public override void ShowAccount() {
base.ShowAccount();
Console.WriteLine("\twith an overdraft of {0}",
this.overdraft) ;

}

* Similarly, the ShowAccount method is
overridden to additionally show the
overdraft for this account.

* base.ShowAccount () calls the method
In the base class.

Industrial Programming 16



Implementing the Class

// Class invariants:
// 1nvariant: this.balance >= - this.overdraft

Finally, we record the class invariants for
this class.

Industrial Programming 17



Testing the Class

public void RunTransactions(BankAccount acct) {

// if it has an overdraft facility, initialise its value
ProperBankAccount pacct = acct as ProperBankAccount;
if (pacct != null) {

pacct.overdraft = 200;
}
acct.ShowAccount();
acct.ShowBalance();
// first, deposit something
decimal x = 600M;
Console.WriteLine("Depositing " + X);
acct.Deposit(x);
acct.ShowBalance();
// then, try to withdraw something
decimal y = 400M;
Console.WriteLine("Withdrawing " + y);
try {

acct.Withdraw(y);
} catch (InsufficientBalance e) {
Console.WriteLine("InsufficientBalance {0} for withdrawl of {1}", acct.GetBalance(), y);
}
acct.ShowBalance();
// then, try to withdraw the same amount again

Industrial Programming 18



The Main Method

public static void Main(){

RunTester t = new RunTester();

// create a basic account

BankAccount mine = new BankAccount("MyAccount");

// create a proper account

ProperBankAccount mineOvdft = new ProperBankAccount("MyProperAccount");
// collect them in an array

BankAccount[] accts = new BankAccount[2] { mine, mineOvdft };

for (int 1i=0; i<accts.Length; i++) {

t.RunTransactions(accts[i]);

}

We can use the same RunTransactions method for
both accounts.

We use polymorphism in defining the array accts,
holding both types of accounts.

Industrial Programming 19



Running the Program

Account Number:

Current Balance:

Depositing 600

Current Balance:

Withdrawing 400

Current Balance:

Withdrawing 400
200

InsufficientBalance 200 for withdrawl
Current Balance:

Account Number:
Account Number:
with an

Current Balance:

Depositing 600

Current Balance:

Withdrawing 400

Current Balance:

Withdrawing 400

Current Balance:

Account Number:
with an

1001
)

600

200

200
1001 Account Name:
1002 Account Name:

overdraft of 200
0

600
200
-200

1002
overdraft of 200

Account Name:

of 400

Account Name: MyAccount Current Balance: 0

MyAccount Current Balance: 200
Current Balance: 0

MyProperAccount

MyProperAccount

Industrial Programming

Current Balance:

20

-200



Concepts used in the Example

* Overloading to have several constructors with
different numbers of arguments.

Inheritance of methods is used to share code.

Overriding of methods is used to modify the
behaviour of methods in sub-classes.

Polymorphism is used to collect (sub-)classes.
* Exceptions are used for error handling.

* Access modifiers are used to hide fields.

* Properties are used for convenience.

Static fields are used to count instances.

Industrial Programming 21



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

