
 Industrial Programming 1

Industrial Programming
Systems Programming & Scripting

Lecture 12: C# Revision

 Industrial Programming 2

3 Pillars of Object-oriented
Programming

• Encapsulation: each class should be self-
contained to localise changes. Realised through
public and private attributes.

• Specialisation: model relationships between
classes. Realised through inheritance.

• Polymorphism: treat a collection of items as a
group. Realised through methods at the right
level in the class hierarchy.

 Industrial Programming 3

Bank Account

BankAccount

accountNo : ulong

name: string

balance: decimal

Deposit(decimal)

Withdraw(decimal)

Class

(BankAccount)

11111

Savings account

101.00

Example Object

 Attribute:
 Account No.
 Name
 Balance (in

£’s)

• Methods:
 Deposit
 Withdraw

 Industrial Programming 4

Extending the Example

• Define another class ProperBankAccount with
an overdraft facility.

• Automatically assign account numbers to new
accounts when generating them.

• Keep all field information secure within the
account.

 Industrial Programming 5

Designing the Class

• Fields:
– Those in BankAccount + overdraft

• Methods:
– Those in BankAccount but modified

• Invariants:
– Balance in ProperBankAccount is

never lower than the negative overdraft.

 Industrial Programming 6

Revisiting the BankAccount Class
class BankAccount {
 protected static ulong latestAccountNo = 1000;
 protected ulong accountNo;
 protected decimal balance;
 protected string name;

• We use the access modifier protected to
hide all fields from other classes, except
derived classes.

• We use a static field to keep track of the
assigned account numbers.

 Industrial Programming 7

Revisiting the BankAccount Class
 public BankAccount(string name) {
 latestAccountNo++;
 this.accountNo = latestAccountNo;
 this.name = name;
 this.balance = 0M;
 }

 public BankAccount(ulong no, string name) {
 this.accountNo = no;
 this.name = name;
 this.balance = 0M;
 }

• We use overloading of the constructor class and
the static field to auto assign account numbers.

 Industrial Programming 8

Revisiting the BankAccount Class

 public void Deposit(decimal x) {
 this.balance += x;
 }

• The Deposit method is unchanged.
• Its access modifier is public.

 Industrial Programming 9

Revisiting the BankAccount Class
public virtual void Withdraw(decimal x) {
 if (this.balance >= x) {
 this.balance -= x;
 } else {
 throw new InsufficientBalance("Balance too low:
{0}", this.balance);
 }
 }

• We use exceptions to cover the case of an
insufficient balance for making a withdrawl.

• The method must be declared virtual to
allow overriding in a sub-class.

 Industrial Programming 10

Revisiting the BankAccount Class
 public decimal GetBalance() { return this.balance; }

 public void ShowBalance() {
 Console.WriteLine("Current Balance: " + this.balance.ToString());
 }

 public virtual void ShowAccount() {
 Console.WriteLine("Account Number: {0}\tAccount Name: {1}\tCurrent
Balance: {2}",

 this.accountNo, this.name, this.balance.ToString());
 }

• ShowAccount must be declared virtual to
allow overriding in sub-classes.

• The other methods are unchanged.

 Industrial Programming 11

Invariants
 // Class invariants:
 // invariant: this.balance >= 0

• We record the above class invariants: this
predicate must hold at any point in the
lifetime of an object of this class.

 Industrial Programming 12

Revisiting the BankAccount Class
public class InsufficientBalance : System.Exception {
 public InsufficientBalance(string msg, decimal x):base(msg)
{
 Console.WriteLine(" " + x.ToString());
 }
}

• The exception class derives from
System.Exception

• It prints a message by calling the
constructor of this base class

• Additionally, it prints the balance.

 Industrial Programming 13

Implementing the Class
class ProperBankAccount: BankAccount {
 public decimal overdraft { get ; set;}

• ProperBankAccount inherits from
BankAccount, thus all non-private fields
and methods are available.

• The overdraft is implemented as a
property with default get and set methods.

 Industrial Programming 14

Implementing the Class (cont'd)
public ProperBankAccount(string name) :base(name) {
 // nothing; use set property on overdraft
}

public ProperBankAccount(ulong no, string name)
:base(no,name) {
 // nothing; use set property on overdraft
}

• We use overloading to implement 2 constructors for
ProperBankAccount

• The static field is used to keep track of assigned
account numbers.

 Industrial Programming 15

Implementing the Class
 public override void Withdraw(decimal x) {
 if (this.balance+this.overdraft >= x) {
 this.balance -= x;
 } else {
 throw new InsufficientBalance("Balance (including overdraft) too
low", this.balance);
 }
 }

• By declaring the Withdraw method as override,
the instance in ProperBankAccount
overrides/replaces the one in BankAccount

 Industrial Programming 16

Implementing the Class
 public override void ShowAccount() {
 base.ShowAccount();
 Console.WriteLine("\twith an overdraft of {0}",
this.overdraft);
 }

• Similarly, the ShowAccount method is
overridden to additionally show the
overdraft for this account.

• base.ShowAccount() calls the method
in the base class.

 Industrial Programming 17

Implementing the Class
 // Class invariants:
 // invariant: this.balance >= - this.overdraft

• Finally, we record the class invariants for
this class.

 Industrial Programming 18

Testing the Class
 public void RunTransactions(BankAccount acct) {
 // if it has an overdraft facility, initialise its value
 ProperBankAccount pacct = acct as ProperBankAccount;
 if (pacct != null) {

 pacct.overdraft = 200;
 }
 acct.ShowAccount();
 acct.ShowBalance();
 // first, deposit something
 decimal x = 600M;
 Console.WriteLine("Depositing " + x);
 acct.Deposit(x);
 acct.ShowBalance();
 // then, try to withdraw something
 decimal y = 400M;
 Console.WriteLine("Withdrawing " + y);
 try {

 acct.Withdraw(y);
 } catch (InsufficientBalance e) {

 Console.WriteLine("InsufficientBalance {0} for withdrawl of {1}", acct.GetBalance(), y);
 }
 acct.ShowBalance();
 // then, try to withdraw the same amount again
 ...
 }
 }

 Industrial Programming 19

The Main Method
 public static void Main(){
 RunTester t = new RunTester();

 // create a basic account
 BankAccount mine = new BankAccount("MyAccount");
 // create a proper account
 ProperBankAccount mineOvdft = new ProperBankAccount("MyProperAccount");
 // collect them in an array
 BankAccount[] accts = new BankAccount[2] { mine, mineOvdft };

 for (int i=0; i<accts.Length; i++) {
 t.RunTransactions(accts[i]);
 }
}

• We can use the same RunTransactions method for
both accounts.

• We use polymorphism in defining the array accts,
holding both types of accounts.

 Industrial Programming 20

Running the Program
Account Number: 1001 Account Name: MyAccount Current Balance: 0
Current Balance: 0
Depositing 600
Current Balance: 600
Withdrawing 400
Current Balance: 200
Withdrawing 400
 200
InsufficientBalance 200 for withdrawl of 400
Current Balance: 200
Account Number: 1001 Account Name: MyAccount Current Balance: 200
Account Number: 1002 Account Name: MyProperAccount Current Balance: 0
 with an overdraft of 200
Current Balance: 0
Depositing 600
Current Balance: 600
Withdrawing 400
Current Balance: 200
Withdrawing 400
Current Balance: -200
Account Number: 1002 Account Name: MyProperAccount Current Balance: -200
 with an overdraft of 200

 Industrial Programming 21

Concepts used in the Example

• Overloading to have several constructors with
different numbers of arguments.

• Inheritance of methods is used to share code.
• Overriding of methods is used to modify the

behaviour of methods in sub-classes.
• Polymorphism is used to collect (sub-)classes.
• Exceptions are used for error handling.
• Access modifiers are used to hide fields.
• Properties are used for convenience.
• Static fields are used to count instances.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

