
 Industrial Programming 1

Industrial Programming

Lecture 6: C# Data Manipulation

 Industrial Programming 2

The Stream Programming Model

• File streams can be used to access stored data.
• A stream is an object that represents a generic

sequence of bytes.
• Any type of data, marked Serializable, can be

transformed into a stream.This is called serialisation
• Streams can then be used to:

– Read/Write data from/to disk.
– Move data between machines.

• Although streams work at the byte level,
programmers don’t need to work with bytes.

• Reader and Writer objects are usually used to ease
the use of streams.

 Industrial Programming 3

Manual serialisation

• Writing your own serialisation function is
easy, and useful in many different
contexts, eg. implementing ToString().

• To serialise an object of class A:
– Serialise all value type attributes, by directly

writing the data into the result buffer

– Serialise all reference types attributes by
recursively calling serialisation on them.

 Industrial Programming 4

Naïve serialisation

• We implement ToString() for our Person/Student
example as one special case of serialisation:

 public string ToString0() {
 return String.Format(
 "Name: {0} {1}\tAddress:
{2}\nMatricNo: {3}\tDegree: {4}",

 this.GetfName(),
 this.GetlName(),
 this.GetAddress(),
 this.matricNo,
 this.degree);
}

 Industrial Programming 5

An example of serialisation

 public override string ToString() {
 string base_str = base.ToString();
 string this_str = String.Format(
 "MatricNo: {0}\tDegree: {1}",
 this.matricNo, this.degree);
 return base_str+"\n"+this_str;
}

 Industrial Programming 6

Accessing Files Using Streams

 File

Stream
 Object

 Writer
 Object

Stream
 Object

Reader
 Object

 Industrial Programming 7

C# Support for File Streams

• C# provides a number of classes in the
System.IO namespace to access data in files
including Stream, TextWriter and TextReader.

• The stream class is used to access data at the
byte level.

• TextWriter and TextReader support access to
readable text through using

– Write() and WriteLine() of TextWriter.

– Read() and ReadLine() of TextReader.

 Industrial Programming 8

Accessing a File: Writing

• Open a file (a FileStream object is created).

– A new file could be created.

– Or an existing file opened for data to be
appended to its content.

• Use a StreamWriter object to write text to the
file.

• Close the stream.

 Industrial Programming 9

Accessing a File: Reading

• Open a file (a FileStream object is
created).

• Use a StreamReader object to read text
from the file.

• Close the stream.

 Industrial Programming 10

Example: Accessing a File

using System;

using System.IO;

public class FileReadWrite{

public static void Main(){

// Write to a file

StreamWriter sw = new StreamWriter(“test.txt”);

sw.Write("Hello World!");

sw.Close();

// Reading from a file

StreamReader sr = new StreamReader(“test.txt");
Console.WriteLine(sr.ReadLine());

sr.Close();

}

 }

 Industrial Programming 11

More on File Access
• Reading more than one line from a file

StreamReader sr = new StreamReader("test.txt");

string inValue = "";

while((inValue = sr.ReadLine()) != null)

Console.WriteLine(inValue);

• Handling file access problems with exceptions

try{

StreamWriter sw = new StreamWriter(“test.txt”);

sw.Write("Hello World!");

sw.Close();

}

catch(IOException ex){

Console.WriteLine(ex.Message); }

 Industrial Programming 12

Another common pattern
using (StreamReader sr = new StreamReader(infile)) { // open file

using (StreamWriter sw = new StreamWriter(outfile)) {
 string str = "";

 string str0 = "";
 while ((str = sr.ReadLine()) != null)// iterate over lines
 {

 str0 = "";
 foreach (char c in str) {

 if (Char.IsPunctuation(c)) {
 // nothing
 } else {
 str0 += c;
 }

 }
 sw.WriteLine(str0.ToLower());
 }

 }
}

 Industrial Programming 13

C# Database Access
• C# supports database access through the

ActiveX Data Objects (ADO.NET) technology.

• The ADO.NET architecture supports different
databases through using data providers for:

– Microsoft SQL Server
(System.Data.SqlClient)

– Oracle (System.Data.OracleClient)

– OLE DB (System.Data.OleDb)

– ODBC (System.Data.Odbc)

 Industrial Programming 14

ADO.NET Data Providers

• Each provider contains a collection of
classes:

–Connection: setup a connection with a
data source.

–Command: execute an SQL statement
to retrieve data from a data source.

–DataReader: sequential access of data.

–DataAdapter: update the database.

 Industrial Programming 15

Creating a Connection Object

• To connect to a database hosted by SQL
Server, an SqlConnection object need to
be created.

• The SqlConnection constructor is used to
create the object as follows:

SqlConnection conn = new SqlConnection(

 “Data Source = (local);Initial Catalog=TestDatabase;

 User ID=myId;Password=myPassword”);

 Industrial Programming 16

Cont. Creating a Connection Object

• The SqlConnection constructor takes a
string argument which includes the
following parts:

– Data Source: identifying the server hosting the
database, could be a local machine, domain
name or an IP address.

– Initial Catalog: identifying the database name.

– User ID and Password.

 Industrial Programming 17

Using the Connection

• We have already instantiated an
SqlConnection object.

• We are going now to:

– Open the connection.

– Perform SQL operations.

– Close the connection.

 Industrial Programming 18

Example
using System;
using System.Data;
using System.Data.SqlClient;

class DatabaseConnExample{
public static Main(){

 SqlConnection conn = new SqlConnection(
 “Data Source= (local);Initial Catalog=TestDatabase;User ID

 =myId;Password=myPassword”);
 SqlDataReader dr = null;
 try{
 conn.open(); //open connection

 // pass the connection to a command object
 SqlCommand cmd = new SqlCommand(“Select * from

 Students”, conn);
 //get query results
 dr = cmd.ExecuteReader();

 Industrial Programming 19

Example (cont'd)

 while(dr.Read()){Console.WriteLine(dr[0]);}

}

finally{

 if(dr != null){dr.Close();}

 if(conn != null){conn.Close();} // Close
 // connection

}

 }

}

 Industrial Programming 20

Example Explained

• The connection is opened using the open()
function of the SqlConnection instance (conn).

• The SqlCommand object uses conn to perform a
query on the students table.

• The result set is returned in a SqlDataReader.

• The while loop reads the value of the first field in
each row of the result set.

• The close() function of conn is called to ensure
that the connection is closed.

 Industrial Programming 21

LINQ

• The Language Integrated Query (LINQ) components
makes access to databases easier.

• It provides uniform access to a range of databases and
data formats (e.g. XML).

• The commands are similar to SQL commands.

• When querying a database, tables can be treated like
classes and columns like members.

• It makes use of advanced language features such as
anonymous types, implicitly typed variables, and lambda
expressions.

• From C# 3.0 onwards this is the preferred way of working
with large sets of data.

