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Systems Programming & 
Scripting

Lecture 10: C# Threading Introduction, 
Accessing Shared Resources

Based on: “An Introduction to programming with C# Threads” 
By Andrew Birrell, Microsoft, 2005

Examples from “Programming C# 3.0”, Jesse Liberty, O'Reilly. Chapter 20.
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Processes and Threads

• Traditionally, a process in an operating system 
consists of an execution environment and a single 
thread of execution (single activity).

• However, concurrency can be required in many 
programs (e.g in GUIs) for various reasons. 

• The solution was to improve the notion of a process 
to contain an execution environment and one or 
more threads of execution.
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Processes and Threads (cont'd)

• An execution environment is a collection of 
kernel resources locally managed, which 
threads have access to. It consists of:

–An address space.
–Threads synchronization and 

communication resources 

–Higher-level resources such as file 
access.
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Processes and Threads (cont'd)

• Threads represent activities which can be created 
and destroyed dynamically as required and several 
of them can be running on a single execution 
environment.

• The aim of using multiple threads in a single 
environment is:
– To maximise the concurrency of execution 

between operations, enabling the overlap of 
computation with input and output.

– E.g. one thread can execute a client request while 
another thread serving another request 
(optimising server performance).
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Concurrency and Parallelism 

• In some applications concurrency is a natural way of 
structuring your program:

– In GUIs separate threads handle separate events

• Concurrency is also useful operating slow devices including 
e.g. disks and printers.

– IO operations are implemented as a separate thread while the 
program is progressing through other threads.

• Concurrency is required to exploit multi-processor machines.

– Allowing processes to use the available processors rather than 
one.
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Sources of Concurrency (cont'd)

• The support of user interaction profits from 
concurrency.
– Program could be processing a user request 

in the background and at the same time 
responding to user interactions by updating 
GUI.

• Concurrency is also used when building 
servers.
– A web server is multi-threaded to be able to 

handle multiple user requests concurrently.
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Threads Primitives 

• Thread Creation.

• Mutual Exclusion.

• Event waiting.
• Waking up a thread.

• The above primitives are supported by 
C#’s System.Threading namespace and 
C# lock statement.
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Thread Creation

• A thread is constructed in C# by:
– Creating a Thread object.
– Passing to it a ThreadStart delegate.

– Calling the start method of the created thread.

• Creating and starting a thread is called forking.
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Thread Creation Example

Thread t = new Thread(new ThreadStart(func.A));
t.start();
func.B();
t.join();

• The code above executes functions func.A() and func.B() 
concurrently.

• Thread t is created and started.

• Execution completes when both method calls have completed. 
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Mutual Exclusion

• Threads interact through access to shared 
memory.

• In order to avoid errors, mutual exclusion 
techniques are required to control how 
threads access a shared resource.
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Mutual Exclusion

• Mutual exclusion is required to control 
threads access to a shared resource.

• We need to be able to specify a region of 
code that only one thread can execute at 
any time.

• Sometimes called critical section.
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C# Mutual Exclusion Support

• Mutual exclusion is supported in C# by class Monitor and 
the lock statement.
lock(expression) 
  statement

• The lock argument can be any C# object.
• By default, C# objects are unlocked.
• The lock statement

–  locks the object passed as its argument, 
– executes the statements, 
– then unlocks the object.

• If another thread attempts to access the locked object, the 
second thread is blocked until the lock releases the object. 
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Example: Swap

public void Swap() {
 lock (this) {

Console.WriteLine("Swap enter: x={0}, y={1}",  
                     this.x, this.y);

int z = this.x;
this.x = this.y;
this.y = z;
Console.WriteLine("Swap leave: x={0}, y={1}",  

                     this.x, this.y);
 }
}

Examples from “Programming C# 3.0”, Jesse Liberty, O'Reilly. Chapter 20.
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Example: Swap

   public void DoTest() {
      Thread t1 = new Thread( 
                        new ThreadStart(Swap));
      Thread t2 = new Thread( 
                        new ThreadStart(Swap));

      t1.Start();
      t2.Start();
      t1.Join();
      t2.Join();
    }
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Waiting for a Condition

• Locking an object is a simple scheduling 
policy.
– The shared memory accessed inside the lock 

statement is the scheduled resource.

• More complicated scheduling is 
sometimes required.
– Blocking a thread until a condition is true. 
– Supported in C# using the Wait, Pulse and 

PulseAll functions of class Monitor.
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Waiting for a Condition (cont'd)

• A thread must hold the lock to be able to call the 
Wait function. 

• The Wait call unlocks the object and blocks the 
thread.

• The Pulse function awakens at least one thread 
blocked on the locked object.

• The PulseAll awakens all threads currently 
waiting on the locked object.

• When a thread is awoken after calling Wait and 
blocking, it re-locks the object and return.
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Example: Increment/Decrement
public void Decrementer() {
  try {

// synchronise this area
Monitor.Enter(this);
if (counter < 1) {
  Console.WriteLine("[{0}] In Decrementer. Counter: {1}. 

Waiting...",
    Thread.CurrentThread.Name, counter);

  Monitor.Wait(this);
}

while (counter > 0) {
  long temp = counter;
  temp--;
  Thread.Sleep(1);
  counter = temp;
  Console.WriteLine("[{0}] In Decrementer. Counter:{1}.",

    Thread.CurrentThread.Name, counter);
}    } finally {
  Monitor.Exit(this);

    }  }
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Example: Increment/Decrement
 public void Incrementer() {
 try {

// synchronise this area
Monitor.Enter(this);

while (counter < 10) {
  long temp = counter;
  temp++;
  Thread.Sleep(1);
  counter = temp;
  Console.WriteLine("[{0}] In Incrementer.{1}.",

    Thread.CurrentThread.Name, counter);
    }

Monitor.Pulse(this);
 } finally {

Console.WriteLine("[{0}] Exiting ...",
  Thread.CurrentThread.Name);

Monitor.Exit(this);
 }   }
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Example: Increment/Decrement
 public void DoTest() {
      Thread[] myThreads = {

new Thread( new ThreadStart(Decrementer)),
new Thread( new ThreadStart(Incrementer)) };

    int n = 1;
    foreach (Thread myThread in myThreads) {

  myThread.IsBackground = true;
  myThread.Name = "Thread"+n.ToString();
  Console.WriteLine("Starting thread {0}", myThread.Name);
  myThread.Start();
  n++;
  Thread.Sleep(500);

    }
    foreach (Thread myThread in myThreads) {

  myThread.Join();
    }
    Console.WriteLine("All my threads are done");
    }
 private long counter = 0;
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Example: Increment/Decrement
  public void DoTest() {
   Thread[] myThreads = {

new Thread( new ThreadStart(Decrementer)),
new Thread( new ThreadStart(Incrementer)) };

    int n = 1;
    foreach (Thread myThread in myThreads) {

  myThread.IsBackground = true;
  myThread.Start();
  myThread.Name = "Thread"+n.ToString();
  n++;
  Console.WriteLine("Started thread {0}", 

myThread.Name);
  Thread.Sleep(50);

    }
    foreach (Thread myThread in myThreads) {

  myThread.Join();
    }
    Console.WriteLine("All my threads are done");
  }
  private long counter = 0;
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Example Explained

• 2 threads are created: one for incrementing 
another for decrementing a global counter

• A monitor is used to ensure that reading and 
writing of the counter is done atomically

• Monitor.Enter/Exit are used for entering/leaving 
an atomic block (critical section).

• The decrementer first checks whether the value 
can be decremented.

• Monitor.Pulse is used to inform the waiting 
thread of a status change.
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Thread Interruption 
• Interrupting a thread is sometimes required to 

get the thread out from a wait.
• This can be achieved in C# by using the interrupt 

function of the Thread class.
• A thread t in a wait state can be interrupted by 

another thread by calling t.interrupt().
– t will then resume execution by relocking the 

object (maybe after waiting for the lock to 
become unlocked).

   Interrupts complicates programs and should be avoided if 
possible.
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Race Conditions

Example: 

Thread A opens a file

Thread B writes to the file

→ The program is successful, if A is fast 
enough to open the file, before B starts 
writing.
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Deadlocks

Example:

Thread A locks object M1

Thread B locks object M2

Thread A blocks trying to lock M2

Thread B blocks trying to lock M1

→ None of the 2 threads can make progress
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Avoiding Deadlocks Involving 
Locks

• Maintain a partial order for acquiring locks 
in the program.
– For any pair of objects {M1, M2}, each thread 

that needs to have both objects locked 
simultaneously should lock the objects in the 
same order.

– E.g. M1 is always locked before M2.

→ This avoids deadlocks caused by locks.
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Deadlock Caused By Wait

• Example:
Thread A acquires resource 1

Thread B acquires resource 2

Thread A wants 2, so it calls Wait to wait for 2

Thread B wants 1, so it calls Wait to wait for 1
• Again, partial order can be used to avoid the 

deadlock.
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Other Potential Problems

• Starvation: When locking objects or using  
Monitor.Wait() on an object, there is a risk 
that the object will never make progress.

• Program complexity.
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