
 Systems Prog. & Script. - Heriot Watt Univ 1

Systems Programming &
Scripting

Lecture 10: C# Threading Introduction,
Accessing Shared Resources

Based on: “An Introduction to programming with C# Threads”
By Andrew Birrell, Microsoft, 2005

Examples from “Programming C# 3.0”, Jesse Liberty, O'Reilly. Chapter 20.

 Systems Prog. & Script. - Heriot Watt Univ 2

Processes and Threads

• Traditionally, a process in an operating system
consists of an execution environment and a single
thread of execution (single activity).

• However, concurrency can be required in many
programs (e.g in GUIs) for various reasons.

• The solution was to improve the notion of a process
to contain an execution environment and one or
more threads of execution.

 Systems Prog. & Script. - Heriot Watt Univ 3

Processes and Threads (cont'd)

• An execution environment is a collection of
kernel resources locally managed, which
threads have access to. It consists of:

–An address space.
–Threads synchronization and

communication resources

–Higher-level resources such as file
access.

 Systems Prog. & Script. - Heriot Watt Univ 4

Processes and Threads (cont'd)

• Threads represent activities which can be created
and destroyed dynamically as required and several
of them can be running on a single execution
environment.

• The aim of using multiple threads in a single
environment is:
– To maximise the concurrency of execution

between operations, enabling the overlap of
computation with input and output.

– E.g. one thread can execute a client request while
another thread serving another request
(optimising server performance).

 Systems Prog. & Script. - Heriot Watt Univ 5

Concurrency and Parallelism

• In some applications concurrency is a natural way of
structuring your program:

– In GUIs separate threads handle separate events

• Concurrency is also useful operating slow devices including
e.g. disks and printers.

– IO operations are implemented as a separate thread while the
program is progressing through other threads.

• Concurrency is required to exploit multi-processor machines.

– Allowing processes to use the available processors rather than
one.

 Systems Prog. & Script. - Heriot Watt Univ 6

Sources of Concurrency (cont'd)

• The support of user interaction profits from
concurrency.
– Program could be processing a user request

in the background and at the same time
responding to user interactions by updating
GUI.

• Concurrency is also used when building
servers.
– A web server is multi-threaded to be able to

handle multiple user requests concurrently.

 Systems Prog. & Script. - Heriot Watt Univ 7

Threads Primitives

• Thread Creation.

• Mutual Exclusion.

• Event waiting.
• Waking up a thread.

• The above primitives are supported by
C#’s System.Threading namespace and
C# lock statement.

 Systems Prog. & Script. - Heriot Watt Univ 8

Thread Creation

• A thread is constructed in C# by:
– Creating a Thread object.
– Passing to it a ThreadStart delegate.

– Calling the start method of the created thread.

• Creating and starting a thread is called forking.

 Systems Prog. & Script. - Heriot Watt Univ 9

Thread Creation Example

Thread t = new Thread(new ThreadStart(func.A));
t.start();
func.B();
t.join();

• The code above executes functions func.A() and func.B()
concurrently.

• Thread t is created and started.

• Execution completes when both method calls have completed.

 Systems Prog. & Script. - Heriot Watt Univ 10

Mutual Exclusion

• Threads interact through access to shared
memory.

• In order to avoid errors, mutual exclusion
techniques are required to control how
threads access a shared resource.

 Systems Prog. & Script. - Heriot Watt Univ 11

Mutual Exclusion

• Mutual exclusion is required to control
threads access to a shared resource.

• We need to be able to specify a region of
code that only one thread can execute at
any time.

• Sometimes called critical section.

 Systems Prog. & Script. - Heriot Watt Univ 12

C# Mutual Exclusion Support

• Mutual exclusion is supported in C# by class Monitor and
the lock statement.
lock(expression)
 statement

• The lock argument can be any C# object.
• By default, C# objects are unlocked.
• The lock statement

– locks the object passed as its argument,
– executes the statements,
– then unlocks the object.

• If another thread attempts to access the locked object, the
second thread is blocked until the lock releases the object.

 Systems Prog. & Script. - Heriot Watt Univ 13

Example: Swap

public void Swap() {
 lock (this) {

Console.WriteLine("Swap enter: x={0}, y={1}",
 this.x, this.y);

int z = this.x;
this.x = this.y;
this.y = z;
Console.WriteLine("Swap leave: x={0}, y={1}",

 this.x, this.y);
 }
}

Examples from “Programming C# 3.0”, Jesse Liberty, O'Reilly. Chapter 20.

 Systems Prog. & Script. - Heriot Watt Univ 14

Example: Swap

 public void DoTest() {
 Thread t1 = new Thread(
 new ThreadStart(Swap));
 Thread t2 = new Thread(
 new ThreadStart(Swap));

 t1.Start();
 t2.Start();
 t1.Join();
 t2.Join();
 }

 Systems Prog. & Script. - Heriot Watt Univ 15

Waiting for a Condition

• Locking an object is a simple scheduling
policy.
– The shared memory accessed inside the lock

statement is the scheduled resource.

• More complicated scheduling is
sometimes required.
– Blocking a thread until a condition is true.
– Supported in C# using the Wait, Pulse and

PulseAll functions of class Monitor.

 Systems Prog. & Script. - Heriot Watt Univ 16

Waiting for a Condition (cont'd)

• A thread must hold the lock to be able to call the
Wait function.

• The Wait call unlocks the object and blocks the
thread.

• The Pulse function awakens at least one thread
blocked on the locked object.

• The PulseAll awakens all threads currently
waiting on the locked object.

• When a thread is awoken after calling Wait and
blocking, it re-locks the object and return.

 Systems Prog. & Script. - Heriot Watt Univ 17

Example: Increment/Decrement
public void Decrementer() {
 try {

// synchronise this area
Monitor.Enter(this);
if (counter < 1) {
 Console.WriteLine("[{0}] In Decrementer. Counter: {1}.

Waiting...",
 Thread.CurrentThread.Name, counter);

 Monitor.Wait(this);
}

while (counter > 0) {
 long temp = counter;
 temp--;
 Thread.Sleep(1);
 counter = temp;
 Console.WriteLine("[{0}] In Decrementer. Counter:{1}.",

 Thread.CurrentThread.Name, counter);
} } finally {
 Monitor.Exit(this);

 } }

 Systems Prog. & Script. - Heriot Watt Univ 18

Example: Increment/Decrement
 public void Incrementer() {
 try {

// synchronise this area
Monitor.Enter(this);

while (counter < 10) {
 long temp = counter;
 temp++;
 Thread.Sleep(1);
 counter = temp;
 Console.WriteLine("[{0}] In Incrementer.{1}.",

 Thread.CurrentThread.Name, counter);
 }

Monitor.Pulse(this);
 } finally {

Console.WriteLine("[{0}] Exiting ...",
 Thread.CurrentThread.Name);

Monitor.Exit(this);
 } }

 Systems Prog. & Script. - Heriot Watt Univ 19

Example: Increment/Decrement
 public void DoTest() {
 Thread[] myThreads = {

new Thread(new ThreadStart(Decrementer)),
new Thread(new ThreadStart(Incrementer)) };

 int n = 1;
 foreach (Thread myThread in myThreads) {

 myThread.IsBackground = true;
 myThread.Name = "Thread"+n.ToString();
 Console.WriteLine("Starting thread {0}", myThread.Name);
 myThread.Start();
 n++;
 Thread.Sleep(500);

 }
 foreach (Thread myThread in myThreads) {

 myThread.Join();
 }
 Console.WriteLine("All my threads are done");
 }
 private long counter = 0;

 Systems Prog. & Script. - Heriot Watt Univ 20

Example: Increment/Decrement
 public void DoTest() {
 Thread[] myThreads = {

new Thread(new ThreadStart(Decrementer)),
new Thread(new ThreadStart(Incrementer)) };

 int n = 1;
 foreach (Thread myThread in myThreads) {

 myThread.IsBackground = true;
 myThread.Start();
 myThread.Name = "Thread"+n.ToString();
 n++;
 Console.WriteLine("Started thread {0}",

myThread.Name);
 Thread.Sleep(50);

 }
 foreach (Thread myThread in myThreads) {

 myThread.Join();
 }
 Console.WriteLine("All my threads are done");
 }
 private long counter = 0;

 Systems Prog. & Script. - Heriot Watt Univ 21

Example Explained

• 2 threads are created: one for incrementing
another for decrementing a global counter

• A monitor is used to ensure that reading and
writing of the counter is done atomically

• Monitor.Enter/Exit are used for entering/leaving
an atomic block (critical section).

• The decrementer first checks whether the value
can be decremented.

• Monitor.Pulse is used to inform the waiting
thread of a status change.

 Systems Prog. & Script. - Heriot Watt Univ 22

Thread Interruption
• Interrupting a thread is sometimes required to

get the thread out from a wait.
• This can be achieved in C# by using the interrupt

function of the Thread class.
• A thread t in a wait state can be interrupted by

another thread by calling t.interrupt().
– t will then resume execution by relocking the

object (maybe after waiting for the lock to
become unlocked).

 Interrupts complicates programs and should be avoided if
possible.

 Systems Prog. & Script. - Heriot Watt Univ 23

Race Conditions

Example:

Thread A opens a file

Thread B writes to the file

→ The program is successful, if A is fast
enough to open the file, before B starts
writing.

 Systems Prog. & Script. - Heriot Watt Univ 24

Deadlocks

Example:

Thread A locks object M1

Thread B locks object M2

Thread A blocks trying to lock M2

Thread B blocks trying to lock M1

→ None of the 2 threads can make progress

 Systems Prog. & Script. - Heriot Watt Univ 25

Avoiding Deadlocks Involving
Locks

• Maintain a partial order for acquiring locks
in the program.
– For any pair of objects {M1, M2}, each thread

that needs to have both objects locked
simultaneously should lock the objects in the
same order.

– E.g. M1 is always locked before M2.

→ This avoids deadlocks caused by locks.

 Systems Prog. & Script. - Heriot Watt Univ 26

Deadlock Caused By Wait

• Example:
Thread A acquires resource 1

Thread B acquires resource 2

Thread A wants 2, so it calls Wait to wait for 2

Thread B wants 1, so it calls Wait to wait for 1
• Again, partial order can be used to avoid the

deadlock.

 Systems Prog. & Script. - Heriot Watt Univ 27

Other Potential Problems

• Starvation: When locking objects or using
Monitor.Wait() on an object, there is a risk
that the object will never make progress.

• Program complexity.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

