
 Industrial Programming 1

Industrial Programming

Lecture 5: C# Threading Introduction,
Accessing Shared Resources

Based on: “An Introduction to programming with C# Threads”
By Andrew Birrell, Microsoft, 2005

Examples from “Programming C# 5.0”, Jesse Liberty, O'Reilly. Chapter 20.

 Industrial Programming 2

Processes and Threads

• Traditionally, a process in an operating
system consists of an execution
environment and a single thread of
execution (single activity).

• However, concurrency can be required in
many programs (e.g in GUIs) for various
reasons.

• The solution was to improve the notion of a
process to contain an execution
environment and one or more threads of
execution.

 Industrial Programming 3

Processes and Threads (cont'd)

• An execution environment is a collection of

kernel resources locally managed, which

threads have access to. It consists of:

–An address space.

–Threads synchronization and

communication resources

–Higher-level resources such as file

access.

 Industrial Programming 4

Processes and Threads (cont'd)

• Threads represent activities which can be
created and destroyed dynamically as required
and several of them can be running on a single
execution environment.

• The aim of using multiple threads in a single
environment is:
– To maximise the concurrency of execution

between operations, enabling the overlap of
computation with input and output.

– E.g. one thread can execute a client request
while another thread serving another request
(optimising server performance).

 Industrial Programming 5

Concurrency and Parallelism

• In some applications concurrency is a natural way of

structuring your program:

– In GUIs separate threads handle separate events

• Concurrency is also useful operating slow devices

including e.g. disks and printers.

– IO operations are implemented as a separate thread

while the program is progressing through other threads.

• Concurrency is required to exploit multi-processor

machines.

– Allowing processes to use the available processors

rather than one.

 Industrial Programming 6

Sources of Concurrency (cont'd)

• Concurrency aides user interaction:
– Program could be processing a user request

in the background and at the same time
responding to user interactions by updating
GUI.

• Concurrency aides performance:
– A web server is multi-threaded to be able to

handle multiple user requests concurrently.

 Industrial Programming 7

Threads Primitives

• Thread Creation.

• Mutual Exclusion.

• Event waiting.

• Waking up a thread.

• The above primitives are supported by

C#’s System.Threading namespace and

C# lock statement.

 Industrial Programming 8

Thread Creation

• A thread is constructed in C# by:

– Creating a Thread object.

– Passing to it a ThreadStart delegate.

– Calling the start method of the created thread.

• Creating and starting a thread is called forking.

 Industrial Programming 9

Thread Creation Example

Thread t = new Thread(new
ThreadStart(func.A));

t.start();

func.B();

t.join();

• The code above executes functions func.A() and func.B()

concurrently.

• Thread t is created and started.

• Execution completes when both method calls have

completed.

 Industrial Programming 11

Mutual Exclusion

• Mutual exclusion is required to control

threads access to a shared resource.

• We need to be able to specify a region of

code that only one thread can execute at

any time.

• Sometimes called critical section.

 Industrial Programming 12

C# Mutual Exclusion Support

• Mutual exclusion is supported in C# by class Monitor and the
lock statement.

lock(expression)

 statement

• The lock argument can be any C# object.

• By default, C# objects are unlocked.

• The lock statement

– locks the object passed as its argument,

– executes the statements,

– then unlocks the object.

• If another thread attempts to access the locked object, the
second thread is blocked until the lock releases the object.

 Industrial Programming 13

Example: Swap

public void Swap() {
 lock (this) {

Console.WriteLine("Swap enter: x={0}, y={1}",
 this.x, this.y);

int z = this.x;
this.x = this.y;
this.y = z;
Console.WriteLine("Swap leave: x={0}, y={1}",

 this.x, this.y);
 }
}

Examples from “Programming C# 3.0”, Jesse Liberty, O'Reilly. Chapter 20.

 Industrial Programming 14

Example: Swap

 public void DoTest() {
 Thread t1 = new Thread(
 new ThreadStart(Swap));
 Thread t2 = new Thread(
 new ThreadStart(Swap));

 t1.Start();
 t2.Start();
 t1.Join();
 t2.Join();
 }

 Industrial Programming 15

Waiting for a Condition

• Locking an object is a simple scheduling
policy.
– The shared memory accessed inside the lock

statement is the scheduled resource.

• More complicated scheduling is
sometimes required.
– Blocking a thread until a condition is true.

– Supported in C# using the Wait, Pulse and
PulseAll functions of class Monitor.

 Industrial Programming 16

Waiting for a Condition (cont'd)

• A thread must hold the lock to be able to call the
Wait function.

• The Wait call unlocks the object and blocks the
thread.

• The Pulse function awakens at least one thread
blocked on the locked object.

• The PulseAll awakens all threads currently
waiting on the locked object.

• When a thread is awoken after calling Wait and
blocking, it re-locks the object and return.

 Industrial Programming 17

Example: Increment/Decrement
public void Decrementer() {
 try {

// synchronise this area
Monitor.Enter(this);
if (counter < 1) {
 Console.WriteLine("[{0}] In Decrementer. Counter: {1}.

Waiting...",
 Thread.CurrentThread.Name, counter);

 Monitor.Wait(this);
}

while (counter > 0) {
 long temp = counter;
 temp--;
 Thread.Sleep(1);
 counter = temp;
 Console.WriteLine("[{0}] In Decrementer. Counter:{1}.",

 Thread.CurrentThread.Name, counter);
} } finally {
 Monitor.Exit(this);

 } }

 Industrial Programming 18

Example: Increment/Decrement
 public void Incrementer() {
 try {

// synchronise this area
Monitor.Enter(this);

while (counter < 10) {
 long temp = counter;
 temp++;
 Thread.Sleep(1);
 counter = temp;
 Console.WriteLine("[{0}] In Incrementer.{1}.",

 Thread.CurrentThread.Name, counter);
 }

Monitor.Pulse(this);
 } finally {

Console.WriteLine("[{0}] Exiting ...",
 Thread.CurrentThread.Name);

Monitor.Exit(this);
 } }

 Industrial Programming 19

Example: Increment/Decrement
 public void DoTest() {
 Thread[] myThreads = {

new Thread(new ThreadStart(Decrementer)),
new Thread(new ThreadStart(Incrementer)) };

 int n = 1;
 foreach (Thread myThread in myThreads) {

 myThread.IsBackground = true;
 myThread.Name = "Thread"+n.ToString();
 Console.WriteLine("Starting thread {0}", myThread.Name);
 myThread.Start();
 n++;
 Thread.Sleep(500);

 }
 foreach (Thread myThread in myThreads) {

 myThread.Join();
 }
 Console.WriteLine("All my threads are done");
 }
 private long counter = 0;

 Industrial Programming 21

Example Explained

• 2 threads are created: one for incrementing

another for decrementing a global counter

• A monitor is used to ensure that reading and

writing of the counter is done atomically

• Monitor.Enter/Exit are used for entering/leaving an

atomic block (critical section).

• The decrementer first checks whether the value

can be decremented.

• Monitor.Pulse is used to inform the waiting thread

of a status change.

 Industrial Programming 22

Thread Interruption
• Interrupting a thread is sometimes required to

get the thread out from a wait.

• This can be achieved in C# by using the
interrupt function of the Thread class.

• A thread t in a wait state can be interrupted by
another thread by calling t.interrupt().

– t will then resume execution by relocking the
object (maybe after waiting for the lock to
become unlocked).

 Interrupts complicates programs and should be avoided if
possible.

 Industrial Programming 23

Race Conditions

Example:

Thread A opens a file

Thread B writes to the file

→ The program is successful, if A is fast

enough to open the file, before B starts

writing.

 Industrial Programming 24

Deadlocks

Example:

Thread A locks object M1

Thread B locks object M2

Thread A blocks trying to lock M2

Thread B blocks trying to lock M1

→ None of the 2 threads can make progress

 Industrial Programming 25

Avoiding Deadlocks Involving

Locks

• Maintain a partial order for acquiring locks

in the program.

– For any pair of objects {M1, M2}, each thread

that needs to have both objects locked

simultaneously should lock the objects in the

same order.

– E.g. M1 is always locked before M2.

→ This avoids deadlocks caused by locks.

 Industrial Programming 26

Deadlock Caused By Wait

• Example:

Thread A acquires resource 1

Thread B acquires resource 2

Thread A wants 2, so it calls Wait to wait for 2

Thread B wants 1, so it calls Wait to wait for 1

• Again, partial order can be used to avoid the

deadlock.

 Industrial Programming 27

Other Potential Problems

• Starvation: When locking objects or using

Monitor.Wait() on an object, there is a risk

that the object will never make progress.

• Program complexity.

