
Parallel Programming
in C#

Hans-Wolfgang Loidl
<H.W.Loidl@hw.ac.uk>

School of Mathematical and Computer Sciences,
Heriot-Watt University,

Edinburgh

Semester 1 — 2021/22

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 1 / 41

Computers are always too slow!

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 2 / 41

Clock Rates

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 3 / 41

The Free Lunch is over!

Don’t expect your sequential program to run faster on
new processors
Still, processor technology advances
BUT the focus now is on multiple cores per chip
Today’s desktops typically have 4 cores.
Latest experimental multi-core chips have up to 1,000
cores1.

1See “World’s First 1,000-Processor Chip”, University of California, Davis,
June 2016
H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 4 / 41

https://www.ucdavis.edu/news/worlds-first-1000-processor-chip/


Options for Parallel Programming in C#
C# provides several mechanisms for par. programming:
Explicit threads with synchronisation via locks, critical regions
etc.

The user gets full control over the parallel code.
BUT orchestrating the parallel threads is tricky and error
prone (race conditions, deadlocks etc)
This technique requires a shared-memory model .

Explicit threads with a message-passing library :
Threads communicate by explicitly sending messages,
with data required/produced, between workstations.
Parallel code can run on a distributed-memory
architecture, eg. a network of workstations.
The programmer has to write code for (un-)serialising the
data that is sent between machines.
BUT threads are still explicit, and the difficulties in
orchestrating the threads are the same.
A common configuration is C+MPI.

OpenMP provides a standardised set of program annotations
for parallelism, without explicit threads.

The annotations provide information to the compiler
where and when to generate parallelism.
It uses a shared-memory model and communication
between (implicit) threads is through shared data.
This provides a higher level of abstraction and simplifies
parallel programming.
BUT it currently only works on physical shared-memory
systems.

Declarative languages, such as F# or Haskell, do not operate
on a shared program state, and therefore provide a high
degree if inherent parallelism:

Implicit parallelism is possible, ie. no additional code is
needed to generate parallelism.
The compiler and runtime-system automatically
introduce parallelism.
BUT the resulting parallelism is often fine-grained and
inefficient.
Therefore, typically annotations are used to improve
parallel performance.
Imperative and object-oriented programming models are
inherently sequential:

I They describe an algorithm step-by-step.

Parallelising a program often needs re-structuring, is
difficult and therefore expensive.
Declarative programming models describe what to
compute, rather than how to compute it:

I The order of computation may be modified

Parallelising a program does not require restructuring of
the code and is much easier.

Parallel patterns, or skeletons, capture common patterns of
parallel computation and provide a fixed parallel
implementation. They are a specific instance of design
patterns.

To the programmer, most parallelism is implicit.
The program has to use a parallel pattern to exploit
parallelism.
Using such patterns requires advanced language features,
in particular delegates (higher-order functions).

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 5 / 41

Types of Parallelism in C#

C# supports two main models of parallelism:
Data parallelism: where an operation is applied to each
element in a collection.
Task parallelism: where independent computations are
executed in parallel.

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 6 / 41

Parallel Loops in C#

A sequential for loop in C#:

int n = ...
for (int i = 0; i<=n; i++)
{

// ...
});

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 7 / 41

Parallel Loops in C#

A parallel for loop in C#:

int n = ...
Parallel.For(0, n, i =>
{

// ...
});

The language construct for is translated into a
(higher-order) function Parallel.For .
The argument to Parallel.For is an anonymous method ,
specifying the code to be performed in each loop
iteration.
The arguments to this anonymous method are the start
value, the end value and the iteration variable.

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 8 / 41



A Simple Example

We can limit the degree of parallelism like this:

var options = new ParallelOptions() {
MaxDegreeOfParallelism = 2 };

Parallel.For(0, n, options, i =>
{
fibs[i] = Fib(i);

});

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 9 / 41

Terminating a Parallel Loop

Parallel loops have two ways to break or stop a loop instead
of just one.

Parallel break, loopState.Break(), allows all steps with
indices lower than the break index to run before
terminating the loop.
Parallel stop, loopState.Stop(), terminates the loop
without allowing any new steps to begin.

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 10 / 41

Parallel Aggregates

The parallel aggregate pattern combines data parallelism
over a collection, with the aggregation of the result
values to an overall result.
It is parameterised both over the operation on each
element as well as the combination (aggregation) of the
partial results to an overall results.
This is a very powerful pattern, and it has become
famous as the Google MapReduce pattern.

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 11 / 41

An Example of Parallel Aggregates

var options = new ParallelOptions() {
MaxDegreeOfParallelism = k};

Parallel.ForEach(seq /* sequence */, options,
() => 0, // The local initial partial result
// The loop body
(x, loopState, partialResult) => {

return Fib(x) + partialResult; },
// The final step of each local context
(localPartialSum) => {

// Protect access to shared result
lock (lockObject)

{
sum += localPartialSum;

}
});

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 12 / 41



Discussion

The ForEach loop iterates over all elements of a
sequence in parallel .
Its arguments are:

I A sequence to iterate over;
I options to control the parallelism (optional);
I a delegate initialising the result value;
I a delegate specifying the operation on each element of
the sequence;

I a delegate specifying how to combine the partial results;
To protect access to the variable holding the overall
result, a lock has to be used.

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 13 / 41

Another Example of Parallel Aggregates
int size = seq.Count / k; // make a partition large enough to feed k cores
var rangePartitioner = Partitioner.Create(0, seq.Count, size);
Parallel.ForEach(
rangePartitioner, () => 0, // The local initial partial result
// The loop body for each interval
(range, loopState, initialValue) => {

// a *sequential* loop to increas the granularity of the parallelism
int partialSum = initialValue;
for (int i = range.Item1; i < range.Item2; i++) {

partialSum += Fib(seq[i]);
}
return partialSum; },

// The final step of each local context
(localPartialSum) => {

// Use lock to enforce serial access to shared result
lock (lockObject) {

sum += localPartialSum;
}

});
H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 14 / 41

Discussion

A Partitioner (System.Collections.Concurrent) is used
to split the entire range into sub-ranges.
Each call to the partitioner returns an index-pair,
specifying a sub-range.
Each task now works on such a sub-range, using a
sequential for loop.
This reduces the overhead of parallelism and can improve
performance.

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 15 / 41

Task Parallelism in C#

When independent computations are started in different
tasks, we use a model of task parallelism.
This model is more general than data parallelism, but
requires more detailed control of synchronisation and
communication.
The most basic construct for task parallelism is:
Parallel.Invoke(DoLeft, DoRight);
It executes the methods DoLeft and DoRight in parallel,
and waits for both of them to finish.

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 16 / 41



Example of Task Parallelism

The following code sorts 2 lists in parallel, providing a
comparison operation as an argument:

Parallel.Invoke( // generate two parallel threads
() => ic1.Sort(cmp_int_lt),
() => ic2.Sort(cmp_int_gt));

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 17 / 41

Implementation of Task Parallelism

The implementation of Invoke uses the more basic
constructs

I StartNew , for starting a computation;
I Wait, WaitAll , WaitAny , for synchronising several
computations.

Any shared data structure needs to be protected with
locks, semaphores or such.
Programming on this level is similar to explicitly
managing threads:

I it can be more efficient but
I it is error-prone.

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 18 / 41

Task Parallelism in C#

Sometimes we want to start several computations, but
need only one result value.
As soon as the first computation finishes, all other
computations can be aborted.
This is a case of speculative parallelism.
The following construct executes the methods DoLeft
and DoRight in parallel, waits for the first task to finish,
and cancels the other, still running, task:
Parallel.SpeculativeInvoke(DoLeft, DoRight);

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 19 / 41

Futures

A future is variable, whose result may be evaluated by a
parallel thread.
Synchronisation on a future is implicit, depending on the
evaluation state of the future upon read:

I If it has been evaluated, its value is returned;
I if it is under evaluation by another task, the reader task
blocks on the future;

I if evaluation has not started, yet, the reader task will
evaluate the future itself

The main benefits of futures are:
I Implicit synchronisation;
I automatic inlining of unnecessary parallelism;
I asynchronous evaluation

Continuation tasks can be used to build a chain of tasks,
controlled by futures.

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 20 / 41



Example: Sequential Code

private static int seq_code(int a) {
int b = F1(a);
int c = F2(a);
int d = F3(c);
int f = F4(b, d);
return f;

}

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 21 / 41

Example: Parallel Code with Futures

private static int par_code(int a) {
// constructing a future generates potential parallelism
Task<int> futureB = Task.Factory.StartNew<int>(() => F1(a));
int c = F2(a);
int d = F3(c);
int f = F4(futureB.Result, d);
return f;

}

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 22 / 41

Divide-and-Conquer Parallelism

Divide-and-Conquer is a common (sequential) pattern:
I If the problem is atomic, solve it directly;
I otherwise the problem is divided into a sequence of
sub-problems;

I each sub-problem is solved recursively by the pattern;
I the results are combined into an overall solution.

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 23 / 41

Recall: Binary Search Trees

public class Node<T> where T:IComparable {
// private member fields
private T data;
private Node<T> left;
private Node<T> right;

// properties accessing fields
public T Value { get { return data; }

set { data = value; } }
public Node<T> Left { get { return this.left; }

set { this.left = value; } }
public Node<T> Right { get { return this.right; }

set { this.right = value; } }

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 24 / 41



Example: Parallel Tree Mapper

public delegate T TreeMapperDelegate(T t);

public static void ParMapTree(TreeMapperDelegate f,
Node<T> node) {

if (node==null) { return ; }

node.Value = f(node.Value);
var t1 = Task.Factory.StartNew(() =>

ParMapTree(f, node.Left));
var t2 = Task.Factory.StartNew(() =>

ParMapTree(f, node.Right));
Task.WaitAll(t1, t2);

}

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 25 / 41

Example: Sorting

static void SequentialQuickSort(int[] array, int from, int to) {
if (to - from <= Threshold) {

InsertionSort(array, from, to);
} else {

int pivot = from + (to - from) / 2;
pivot = Partition(array, from, to, pivot);
SequentialQuickSort(array, from, pivot - 1);
SequentialQuickSort(array, pivot + 1, to);

}
}

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 26 / 41

Example: Parallel Quicksort
static void ParallelQuickSort(int[] array, int from,

int to, int depthRemaining) {
if (to - from <= Threshold) {

InsertionSort(array, from, to);
} else {

int pivot = from + (to - from) / 2;
pivot = Partition(array, from, to, pivot);
if (depthRemaining > 0) {
Parallel.Invoke(

() => ParallelQuickSort(array, from, pivot - 1,
depthRemaining - 1),

() => ParallelQuickSort(array, pivot + 1, to,
depthRemaining - 1));

} else {
ParallelQuickSort(array, from, pivot - 1, 0);
ParallelQuickSort(array, pivot + 1, to, 0);

}
}

}
H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 27 / 41

Example: Partition (Argh)
private static int Partition(int[] array, int from, int to, int pivot) {
// requires: 0 <= from <= pivot <= to <= array.Length-1
int last_pivot = -1;
int pivot_val = array[pivot];
if (from<0 || to>array.Length-1) {

throw new System.Exception(String.Format("Partition: indices out of bounds: from={0}, to={1}, Length={2}",
from, to, array.Length));

}
while (from<to) {
if (array[from] > pivot_val) {

Swap(array, from, to);
to--;

} else {
if (array[from]==pivot_val) {

last_pivot = from;
}
from++;

}
}
if (last_pivot == -1) {

if (array[from]==pivot_val) {
return from;

} else {
throw new System.Exception(String.Format("Partition: pivot element not found in array"));

}
}
if (array[from]>pivot_val) {

// bring pivot element to end of lower half
Swap(array, last_pivot, from-1);
return from-1;

} else {
// done, bring pivot element to end of lower half
Swap(array, last_pivot, from);
return from;

}

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 28 / 41



Discussion

An explicit threshold is used to limit the amount of
parallelism that is generated (throttling).
This parallelism threshold is not to be confused with the
sequential threshold to pick the appropriate sorting
algorithm.
Here the divide step is cheap, but the combine step is
expensive; don’t expect good parallelism from this
implementation!

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 29 / 41

Performance of Parallel QuickSort

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 30 / 41

A Comparison: QuickSort in Haskell

quicksort :: (Ord a, NFData a) => [a] -> [a]
quicksort [] = []
quicksort [x] = [x]
quicksort (x:xs) = (left ++ (x:right))

where
left = quicksort [ y | y <- xs, y < x]
right = quicksort [ y | y <- xs, y >= x]

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 31 / 41

A Comparison: QuickSort in Haskell

quicksort :: (Ord a, NFData a) => [a] -> [a]
quicksort [] = []
quicksort [x] = [x]
quicksort (x:xs) = (left ++ (x:right)) ‘using‘ strategy

where
left = quicksort [ y | y <- xs, y < x]
right = quicksort [ y | y <- xs, y >= x]
strategy result = rnf left ‘par‘

rnf right ‘par‘
rnf result

More on high-level parallel programming next term in
F21DP2 “Distributed and Parallel Systems”

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 32 / 41



Pipelines

A pipeline is a sequence of operations, where the output
of the n-th stage becomes input to the n + 1-st stage.
Each stage is typically a large, sequential computation.
Parallelism is achieved by overlapping the computations
of all stages.
To communicate data between the stages a
BlockingCollection<T> is used.
This pattern is useful, if large computations work on
many data items.

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 33 / 41

Pipelines

var buffer1 = new BlockingCollection<int>(limit);
var buffer2 = new BlockingCollection<int>(limit);

var f = new TaskFactory(TaskCreationOptions.LongRunning,
TaskContinuationOptions.None);

var task1 = f.StartNew(() =>
Pipeline<int>.Producer(buffer1, m, n, inc));

var task2 = f.StartNew(() =>
Pipeline<int>.Consumer(
buffer1,
new Pipeline<int>.ConsumerDelegate(x => x*x),
buffer2));

var task3 = f.StartNew(() =>
{ result_str =

Pipeline<int>.LastConsumer(buffer2, str);
});

Task.WaitAll(task1, task2, task3);

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 34 / 41

Pipelines: Producer Code

public static void Producer(BlockingCollection<T> output, ... ) {
...
try {

foreach (T item in ...) {
output.Add(item);

}
} finally {

output.CompleteAdding();
}

}

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 35 / 41

Pipelines: Consumer Code

public static void Consumer(BlockingCollection<T> input,
ConsumerDelegate worker,
BlockingCollection<T> output) {

try {
foreach (var item in input.GetConsumingEnumerable()) {

var result = worker(item);
output.Add(result);

}
} finally {

output.CompleteAdding();
}

}

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 36 / 41



Selecting the Right Parallel Pattern
Application characteristic Relevant pattern

Do you have sequen-
tial loops where there’s
no communication among
the steps of each itera-
tion?

The Parallel Loop pattern.
Parallel loops apply an
independent operation to
multiple inputs simultane-
ously.

Do you need to summa-
rize data by applying some
kind of combination oper-
ator? Do you have loops
with steps that are not
fully independent?

The Parallel Aggregation
pattern.
Parallel aggregation intro-
duces special steps in the
algorithm for merging par-
tial results. This pat-
tern expresses a reduc-
tion operation and in-
cludes map/reduce as one
of its variations.

Do you have distinct op-
erations with well-defined
control dependencies?
Are these operations
largely free of serializing
dependencies?

The Parallel Task pattern.
Parallel tasks allow you to
establish parallel control
flow in the style of fork
and join.

Does the ordering of steps
in your algorithm depend
on data flow constraints?

The Futures pattern.
Futures make the data
flow dependencies be-
tween tasks explicit. This
pattern is also referred
to as the Task Graph
pattern.

Does your algorithm di-
vide the problem domain
dynamically during the
run? Do you operate on
recursive data structures
such as graphs?

The Divide-and-Conquer
pattern (Dynamic Task
Parallelism pattern).
This pattern takes a
divide-and-conquer ap-
proach and spawns new
tasks on demand.

Does your application
perform a sequence of
operations repetitively?
Does the input data have
streaming characteris-
tics? Does the order of
processing matter?

The Pipelines pattern.
Pipelines consist of com-
ponents that are con-
nected by queues, in the
style of producers and
consumers. All the com-
ponents run in parallel
even though the order of
inputs is respected.

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 37 / 41

Summary

The preferred, high-level way of coding parallel
computation in C# is through parallel patterns, an
instance of design patterns.
Parallel patterns capture common patterns of parallel
computation.
Two main classes of parallelism exist:

I Data parallelism, which is implemented through parallel
For/Foreach loops.

I Task parallelism, which is implemented through parallel
method invocation.

Tuning the parallel performance often requires code
restructuring (eg. thresholding).

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 38 / 41

Further Reading

Further reading:
“Parallel Programming with Microsoft .NET — Design
Patterns for Decomposition and Coordination on
Multicore Architectures”, by C. Campbell, R. Johnson, A.
Miller, S. Toub. Microsoft Press. August 2010.
http://msdn.microsoft.com/en-us/library/ff963553.aspx

“Patterns for Parallel Programming”, by T. G. Mattson, B. A.
Sanders, and B. L. Massingill. Addison-Wesley, 2004.
“MapReduce: Simplified Data Processing on Large Clusters”,
J. Dean and S. Ghemawat. In OSDI ’04 — Symp. on
Operating System Design and Implementation, pages 137–150,
2004. http://labs.google.com/papers/mapreduce.html

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 39 / 41

Advertisment

Next term: F21DP2 “Distributed and Parallel
Systems”
In this course we will cover parallel programming in

C+MPI: threads with explicit message passing
OpenMP: data and (limited) task parallelism
parallel Haskell: semi-explicit parallelism in a
declarative language

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 40 / 41

http://msdn.microsoft.com/en-us/library/ff963553.aspx
http://labs.google.com/papers/mapreduce.html


Exercise

Produce a parallel implementation, testing the “Goldbach
conjecture”:

Every even integer greater than 2 can be expressed as
the sum of two primes.

For details see:
http://en.wikipedia.org/wiki/Goldbach%27s_conjecture
A sample solution is available from the Sample C# source
section of the course page.

H-W. Loidl (Heriot-Watt Univ) Parallel Programming in C# Semester 1 — 2021/22 41 / 41

http://en.wikipedia.org/wiki/Goldbach%27s_conjecture

	Overview
	Parallel Programming Models
	Parallel Patterns
	Data Parallelism
	Task Parallelism
	Futures
	Futures
	Divide-and-Conquer Parallelism
	Pipelines
	Pipelines

	Summary

