
Python 3.2 quick reference

John W. Shipman
2012-07-05 14:40

Abstract

A reference guide to most of the common features of the Python programming language, version
3.2.

This publication is available in Web form1 and also as a PDF document2. Please forward any
comments to tcc-doc@nmt.edu.

Table of Contents
1. Python 3.2: A fine general-purpose programming language .. 3

1.1. Python 2.x and 3.x .. 3
2. Starting Python .. 3

2.1. Using Python in Windows .. 4
2.2. Using Python in Linux ... 4

3. Line syntax .. 4
4. Names and keywords ... 4
5. Python types ... 5
6. The bool type: Truth values ... 8
7. Numeric types ... 8

7.1. Type int: Whole numbers .. 8
7.2. Type float: Approximated real numbers ... 9
7.3. Type complex: Imaginary numbers .. 10

8. Sequence types (ordered sets) .. 10
8.1. It's a Unicode world now .. 11
8.2. Mutability and immutability .. 12
8.3. Common operations on sequence types ... 13

9. Type str: Strings of text characters ... 15
9.1. Methods on class str ... 16
9.2. The string .format() method ... 21

10. Type bytes: Immutable sequences of 8-bit integers .. 30
11. Type bytearray: Mutable sequences of 8-bit integers .. 30
12. Type list: Mutable sequences of arbitrary objects ... 30
13. Type tuple: Immutable sequences of arbitrary objects .. 30
14. Type range: A range of values .. 30
15. The set types: set and frozenset ... 30
16. Type dict: Mappings ... 30
17. Type None: The special placeholder value ... 30
18. Operators and expressions .. 30

1 http://www.nmt.edu/tcc/help/pubs/lang/python32/
2 http://www.nmt.edu/tcc/help/pubs/lang/python32/python32.pdf

1Python 3.2 quick referenceNew Mexico Tech Computer Center

About this document
This document has been generated with RenderX XEP.					Visit http://www.renderx.com/ to learn more about					RenderX family of software solutions for digital					typography.

http://www.nmt.edu/tcc/help/pubs/lang/python32/
http://www.nmt.edu/tcc/help/pubs/lang/python32/python32.pdf
http://www.nmt.edu/tcc/help/pubs/lang/python32/
http://www.nmt.edu/tcc/help/pubs/lang/python32/python32.pdf

18.1. What is a predicate? .. 31
18.2. What is an iterable? .. 32
18.3. Duck typing, or: what is an interface? .. 32
18.4. What is the locale? .. 33
18.5. Comprehensions .. 34

19. Basic built-in functions .. 34
19.1. abs(): Absolute value .. 34
19.2. ascii(): Convert to 8-bit ASCII ... 34
19.3. bool(): Convert to bool type .. 34
19.4. complex(): Convert to complex type .. 34
19.5. input(): Read a string from standard input ... 34
19.6. int(): Convert to int type .. 34
19.7. iter(): Return an iterator for a given sequence ... 35
19.8. len(): How many elements in a sequence? ... 35
19.9. max(): What is the largest element of a sequence? .. 35
19.10. min(): What is the smallest element of a sequence? .. 35
19.11. open(): Open a file .. 35
19.12. ord(): What is the code point of this character? ... 35
19.13. repr(): Printable representation ... 36
19.14. str(): Convert to str type ... 36

20. Advanced functions .. 36
21. Simple statements ... 36

21.1. The expression statement .. 37
21.2. The assignment statement: name = expression ... 37
21.3. The assert statement .. 37
21.4. The del statement .. 37
21.5. The import statement .. 37
21.6. The global statement .. 37
21.7. The nonlocal statement .. 37
21.8. The pass statement .. 37
21.9. The raise statement .. 37
21.10. The return statement .. 37

22. Compound statements .. 37
22.1. Python's block structure .. 37
22.2. The break statement: Exit a for or while loop .. 39
22.3. The continue statement: Jump to the next cycle of a for or while 39
22.4. The for statement: Iteration over a sequence ... 40
22.5. The if statement ... 41
22.6. The try…except construct ... 41
22.7. The with statement .. 41
22.8. The yield statement: Generate one result of a generator .. 41

23. def(): Defining your own functions ... 41
23.1. Calling a function ... 44
23.2. A function's local namespace .. 46
23.3. Iterators: Values that can produce a sequence of values ... 47
23.4. Generators: Functions that can produce a sequence of values .. 48
23.5. Decorators ... 49

24. Exceptions .. 50
25. Classes: invent your own types .. 50

25.1. Defining a class .. 50
25.2. Special methods ... 50
25.3. Static methods ... 50

26. The conversion path from 2.x to 3.x .. 50

New Mexico Tech Computer CenterPython 3.2 quick reference2

1. Python 3.2: A fine general-purpose programming language
The Python programming language is a recent, general-purpose, higher-level programming language.
It is available for free and runs on pretty much every current platform.

This document is a reference guide, not a tutorial. If you are new to Python programming, see the tu-
torial written by Guido van Rossum3, the inventor of Python.

Not every feature of Python is covered here. If you are interested in exploring some of the more remote
corners of the language, refer to the official standard library4 and language reference5 documents.
Bookmark the standard library right away if you haven't already; you will find it most useful. The lan-
guage reference is formal and technical and will be of interest mainly to specialists.

1.1. Python 2.x and 3.x
Since the language's inception in the early 1990s, the maintainers have been careful to add new features
in a way that minimized the number of cases where old code would not function under the new release.

The 3.0 version was the first to violate this rule. A number of language features that were compatible
through the 2.7 release have been taken out in the 3.x versions. However, this is unlikely to happen
again; it is mainly a one-time cleanup and simplification of the language.

Since 3.0, the Python language is actually smaller and more elegant. Furthermore, the upgrade path
from 2.7 (the last major 2.x release) to the 3.x versions is straightforward and to a large extent automated.

Important
There is no hurry to convert old 2.x programs to 3.x! The 2.7 release will certainly be maintained for
many years. Your decision about when to convert may depend on the porting of any third-party library
modules you use.

In any case, the conversion process is discussed in Section 26, “The conversion path from 2.x to
3.x” (p. 50).

2. Starting Python
You can use Python in two different ways:

• In “calculator” or “conversational mode”, Python will prompt you for input with three greater-than
signs (>>>). Type a line and Python will print the result. Here's an example:

>>> 2+2
4
>>> 1.0 / 7.0
0.14285714285714285

• You can also use Python to write a program, sometimes called a script.

How you start Python depends on your platform.

3 http://docs.python.org/py3k/tutorial/
4 http://docs.python.org/py3k/library/
5 http://docs.python.org/py3k/reference/

3Python 3.2 quick referenceNew Mexico Tech Computer Center

http://docs.python.org/py3k/tutorial/
http://docs.python.org/py3k/tutorial/
http://docs.python.org/py3k/library/
http://docs.python.org/py3k/reference/
http://docs.python.org/py3k/tutorial/
http://docs.python.org/py3k/library/
http://docs.python.org/py3k/reference/

• To install Python on your own workstation, refer to the Python downloads page6.
• On a Tech Computer Center Windows workstation, see Section 2.1, “Using Python in Windows” (p. 4).
• On a TCC Linux workstation, see Section 2.2, “Using Python in Linux” (p. 4).

2.1. Using Python in Windows
Under Windows, we recommend the IDLE integrated development environment for Python work.

If you are using Python at the NM Tech Computer Center (TCC), you can get conversational mode from
Start → All Programs → Python 3.2 → IDLE (Python GUI).

You will see the usual “>>>” interactive prompt. You can use conversational mode in this window.

To construct a Python script, use File → New Window. Write your script in this window, then save it
with File → Save As...; make sure your file name ends with .py. Then use Run → Run Module (or F5)
to run your script. The output will appear in the conversational-mode window.

You may also run a Python script by double-clicking on it, provided that its name ends with “.py”.

2.2. Using Python in Linux
To enter conversational mode on a Linux system, type this command:

python3

Type Control-D to terminate the session.

If you write a Python script named filename.py, you can execute it using the command

python3 filename.py arguments...

Under Unix, you can also make a script self-executing by placing this line at the top:

#!/usr/bin/env python3

You must also tell Linux that the file is executable by using the command “chmod +x filename”.
For example, if your script is called hello.py, you would type this command:

chmod +x hello.py

3. Line syntax
The comment character is “#”; comments are terminated by end of line.

Long lines may be continued by ending the line with a backslash (\), but this is not necessary if there
is at least one open “(”, “[”, or “{”.

4. Names and keywords
Python names (also called identifiers) can be any length and follow these rules:

• The first or only character must be a letter (uppercase or lowercase) or the underbar character, “_”.
• Any additional characters may be letters, underbars, or digits.

6 http://python.org/download/

New Mexico Tech Computer CenterPython 3.2 quick reference4

http://python.org/download/
http://python.org/download/

Examples: coconuts, sirRobin, blanche_hickey_869, __secretWord.

Case is significant in Python. The name Robin is not the same name as robin.

You can use non-ASCII Unicode characters as Python names. For details, see the the reference docu-
mentation7.

The names below are keywords, also known as reserved words. They have special meaning in Python
and cannot be used as names or identifiers.

False assert del for in or while
None break elif from is pass with
True class else global lambda raise yield
and continue except if nonlocal return
as def finally import not try

Certain names starting with the underbar character (“_”) are reserved.

• The name “_” is available during conversational mode to refer to the result of the previous computa-
tion. In a script, it has no special meaning and is not defined.

• Many names starting and ending with two underbars (“__...__”) have special meaning in Python.
It is best not to use such names for your own code.

• Names starting with one underbar are not imported by the import statement.

• Names starting with two underbars are private to the class in which they are declared. This is useful
for distinguishing names in a class from names in its parent classes.

Such names are not actually hidden; they are mangled in a prescribed way. The mangling prevents
conflicts with names in parent classes, while still making them visible to introspective applications
such as the Python debugger.

5. Python types
All the data you manipulate in Python consists of objects and names.

• An object represents some value. It may be a simple value like the number 17, or a very complex
value, like an object that describes the results of every cricket game ever played between England
and Australia.

Every object has a type. Python has a rich set of built-in types. You can also invent your own types
using Python's object-oriented programming features.

The type of an object determines what operations can be performed on it. For example, an object of
Python's int (integer) type holds a whole number, and you can use operators like “+” and “-” to
add and subtract objects of that type.

• A Python name is like a luggage tag: it is a handle you use to manipulate the values contained in an
object.

For the rules Python uses for names, see Section 4, “Names and keywords” (p. 4).

7 http://docs.python.org/py3k/reference/lexical_analysis.html#identifiers

5Python 3.2 quick referenceNew Mexico Tech Computer Center

http://docs.python.org/py3k/reference/lexical_analysis.html#identifiers
http://docs.python.org/py3k/reference/lexical_analysis.html#identifiers
http://docs.python.org/py3k/reference/lexical_analysis.html#identifiers

Important
Unlike many current languages such as C and C++, a Python name is not associated with a type. A
name is associated with an object, and that object has a type.

The association between a name and an object is called a binding. For example, after executing this
statement,

x = 17

we say that the name x is bound to the object 17, which has type int.

There is no reason that name x can't be associated with an integer at one point and a completely different
type later in the execution of a script. (It is, however, bad practice. Programs are more clear when each
name is used for only one purpose.)

Here is a list of Python's built-in primitive types. To learn how to invent your own types, see Section 25,
“Classes: invent your own types” (p. 50). For a discussion of the distinction between mutable and im-
mutable types, see Section 8.2, “Mutability and immutability” (p. 12).

New Mexico Tech Computer CenterPython 3.2 quick reference6

Table 1. Python's built-in types

ExamplesValuesType name

True, FalseThe two Boolean values True and False. See Sec-
tion 6, “The bool type: Truth values” (p. 8).

bool

Section 7, “Numeric types” (p. 8)

42, -3,
12345678901234567890123456789

Integers of any size, limited only by the available
memory. See Section 7.1, “Type int: Whole num-
bers” (p. 8).

int

3.14159, -1.0, 6.0235e23Floating-point numbers; see Section 7.2, “Typefloat:
Approximated real numbers” (p. 9).

float

(3.2+4.9j), (0+3.42e-3j)Complex numbers. If the idea of computing with the
square root of -1 bothers you, just ignore this type,
otherwise see Section 7.3, “Type complex: Imaginary
numbers” (p. 10).

complex

Section 8, “Sequence types (ordered sets)” (p. 10)

'Sir Robin',"xyz","I'd've",
"\u262e\u262f"

Strings (sequences of zero or more Unicode charac-
ters); see Section 9, “Type str: Strings of text charac-
ters” (p. 15). Strings can be empty: write these as
“""” or “''”.

str

b'git',bytes([14, 202, 6])Immutable sequences of zero or more positive in-
tegers in the range [0, 255]. See Section 10, “Type
bytes: Immutable sequences of 8-bit in-
tegers” (p. 30).

bytes

bytearray(), byte-
array(b'Bletchley')

Mutable sequences of zero or more positive integers
in the range [0, 255]. See Section 11, “Type byte-
array: Mutable sequences of 8-bit integers” (p. 30).

bytearray

['dot', 'dash']; []A mutable sequence of values; see Section 12, “Type
list: Mutable sequences of arbitrary objects” (p. 30).

list

('dot', 'dash'); ();
("singleton",)

An immutable sequence of values; see Section 13,
“Type tuple: Immutable sequences of arbitrary ob-
jects” (p. 30).

tuple

Section 15, “The set types: set and frozenset” (p. 30)

set(),set('red', 'yellow',
'green')

An unordered, immutable set of zero or more distinct
values.

set

frozenset([3, 5, 7]),
frozenset()

An unordered, mutable set of zero or more distinct
values.

frozenset

{'go':1, 'stop':0}, {}Use dict values (dictionaries) to structure data as
look-up tables; see Section 16, “Type dict: Map-
pings” (p. 30).

dict

NoneA special, unique value that may be used where a
value is required but there is no obvious value. See
Section 17, “Type None: The special placeholder
value” (p. 30).

None

7Python 3.2 quick referenceNew Mexico Tech Computer Center

6. The bool type: Truth values
A value of bool type represents a Boolean (true or false) value. There are only two values, written in
Python as “True” and “False”.

Internally, True is represented as 1 and False as 0, and they can be used in numeric expressions as
those values.

Here's an example. In Python, the expression “a < b” compares two values a and b, and returns True
if a is less than b, False is a is greater than or equal to b.

>>> 2 < 3
True
>>> 3 < 2
False
>>> True+4
5
>>> False * False
0

These values are considered Falsewherever true/false values are expected, such as in an if statement:

• The bool value False.
• Any numeric zero: the int value 0, the float value 0.0, the long value 0L, or the complex value
0.0j.

• Any empty sequence: the str value '', the unicode value u'', the empty list value [], or the
empty tuple value ().

• Any empty mapping, such as the empty dict (dictionary) value {}.
• The special value None.

All other values are considered True. To convert any value to a Boolean, see Section 19.3, “bool():
Convert to bool type” (p. 34).

7. Numeric types
Python has three built-in types for representing numbers.

• Section 7.1, “Type int: Whole numbers” (p. 8).
• Section 7.2, “Type float: Approximated real numbers” (p. 9).
• Section 7.3, “Type complex: Imaginary numbers” (p. 10).

7.1. Type int: Whole numbers
A Python object of type int represents an integer, that is, a signed whole number. The range of int
values is limited only by the available memory.

To write an int constant, you may use several different formats.

• A zero is written as just 0.

• To write an integer in decimal (base 10), the first digit must not be zero. Examples: 17,
100000000000000.

• To write an integer in octal (base 8), precede it with “0o”. Examples: 0o177, 0o37.

New Mexico Tech Computer CenterPython 3.2 quick reference8

Note
In Python 2.x versions, any number starting with a 0 followed by other digits was considered octal.
This convention is no longer allowed in Python 3.x.

>>> 0o37
31
>>> 0o177
127
>>> 00004
File "<stdin>", line 1
00004

^
SyntaxError: invalid token

• To write an integer in hexadecimal (base 16), precede it with “0x” or “0X”. Examples: 0x7f, 0X1000.

• To write an integer in binary (base 12), precede it with “0b” or “0B”. Examples: 0b1001,
0B111110011101.

To produce a negative number, use the unary “-” operator before the number. Note that this is an op-
erator and not part of the constant.

>>> 100 - -5
105
>>> 100 - (-5)
105

To convert a string value to an int, see Section 19.6, “int(): Convert to int type” (p. 34).

7.2. Type float: Approximated real numbers
Values of this type represent real numbers, with the usual limitations of IEEE-754 floating point type:
it cannot represent very large or very small numbers, and the precision is limited to only about 15 digits.
For complete details on the IEEE-754 standard and its limitations, see the Wikipedia article8.

To write a float constant, use at least one digit, plus either a decimal point or an exponent or both.

• The decimal point, if present, must be preceded or followed by one or more digits. Examples:

3.14
0.0
1.
.1

Just for the sake of legibility, we recommend that you use at least one digit on both sides of the
decimal point. Depending on the context, a reader might wonder whether a number such as “.1” is
one-tenth, or the number one preceded by an errant particle of pepper on the paper or monitor.

• The exponent, if present, consists of either “e” or “E”, optionally followed by a “+” or “-” sign, fol-
lowed by at least one digit. The resulting value is equal to the part before the exponent, times ten to
the power of the exponent, that is, scientific notation9.

8 http://en.wikipedia.org/wiki/IEEE_754-2008
9 http://en.wikipedia.org/wiki/Scientific_notation

9Python 3.2 quick referenceNew Mexico Tech Computer Center

http://en.wikipedia.org/wiki/IEEE_754-2008
http://en.wikipedia.org/wiki/Scientific_notation
http://en.wikipedia.org/wiki/IEEE_754-2008
http://en.wikipedia.org/wiki/Scientific_notation

For example, Avogadro's Number gives the number of atoms of carbon in 12 grams of carbon12, and
is written as 6.0221418×1023. In Python that would be “6.0221418e23”.

7.3. Type complex: Imaginary numbers
Mathematically, a complex number is a number of the form A+Bi where i is the imaginary number,
equal to the square root of -1.

Complex numbers are quite commonly used in electrical engineering. In that field, however, because
the symbol i is used to represent current, they use the symbol j for the square root of -1. Python adheres
to this convention: a number followed by “j” is treated as an imaginary number. Python displays
complex numbers in parentheses when they have a nonzero real part.

>>> 5j
5j
>>> 1+2.56j
(1+2.56j)
>>> (1+2.56j)*(-1-3.44j)
(7.8064-6j)

Unlike Python's other numeric types, complex numbers are a composite quantity made of two parts:
the real part and the imaginary part, both of which are represented internally as float values. You can
retrieve the two components using attribute references. For a complex number C:

• C.real is the real part.
• C.imag is the imaginary part as a float, not as a complex value.

>>> a=(1+2.56j)*(-1-3.44j)
>>> a
(7.8064-6j)
>>> a.real
7.8064
>>> a.imag
-6.0

To construct a complex value from two float values, see Section 19.4, “complex(): Convert to
complex type” (p. 34).

8. Sequence types (ordered sets)
Python's sequence types – str, bytes, bytearray, list, tuple and range – share a number of
common operations (see Section 8.3, “Common operations on sequence types” (p. 13)).

Objects of each of these types share a common algebraic abstraction: the ordered set. Among the properties
of an ordered set are:

• An ordered set may be empty, or it may contain one or more objects.
• The contained objects don't all have to be different. For example, the list [1, 2, 2, 2] contains

three copies of the int value 2.
• If an ordered set has more than object, they can be numbered: there is a first one, a second one, and

so on.

Here are the sections describing Python's sequence types.

• Section 8.1, “It's a Unicode world now” (p. 11).

New Mexico Tech Computer CenterPython 3.2 quick reference10

• Section 9, “Type str: Strings of text characters” (p. 15).
• Section 10, “Type bytes: Immutable sequences of 8-bit integers” (p. 30).
• Section 11, “Type bytearray: Mutable sequences of 8-bit integers” (p. 30).
• Section 12, “Type list: Mutable sequences of arbitrary objects” (p. 30).
• Section 13, “Type tuple: Immutable sequences of arbitrary objects” (p. 30).
• Section 14, “Type range: A range of values” (p. 30).
• Section 8.3, “Common operations on sequence types” (p. 13).

8.1. It's a Unicode world now
For the first several decades of software history, the processing of text in the USA almost everywhere
used the 7-bit ASCII10 code or various 8-bit codes. To this day, input and output to storage devices uses
streams of 8-bit bytes.

However, for so many reasons, but especially for internationalization of interfaces, it is time to abandon
this tiny character set and join the wider world. The 32-bit characters of the Unicode standard11 provide
enough characters to last us for many years into the future.

In all the Python 3.x versions, there is a strict separation of 32-bit character data and sequences of 8-bit
bytes.

• All character data is represented as type str. An object of this type represents an ordered set of 32-
bit Unicode characters.

• Ordered sets of 8-bit types may use either type bytes (for immutable values) or type bytearray
(for mutable values; see Section 8.2, “Mutability and immutability” (p. 12)).

• To convert from one to the other, you must specify an encoding, that is, a system for converting between
8-bit and 32-bit representations. There are many encoding systems, but in most cases the UTF-812

encoding is a reasonable default, compatible with most current Web practice.

To encode data:

• The str.encode() method allows you to specify the encoding; see Section 9.1, “Methods on class
str” (p. 16).

• The built-in bytes() and bytearray() functions allow you to specify an encoding; see Section 10,
“Type bytes: Immutable sequences of 8-bit integers” (p. 30) and Section 11, “Type bytearray:
Mutable sequences of 8-bit integers” (p. 30).

• When you open a file, you can specify an encoding, and this encoding will be used to translate any
32-bit data that gets written to that file. See Section 19.11, “open(): Open a file” (p. 35).

To decode data:

• The str() built-in function allows you to specify an encoding that will be used to decode 8-bit data
as Unicode. See Section 9, “Type str: Strings of text characters” (p. 15).

10 http://en.wikipedia.org/wiki/ASCII
11 http://en.wikipedia.org/wiki/Unicode
12 http://en.wikipedia.org/wiki/UTF-8

11Python 3.2 quick referenceNew Mexico Tech Computer Center

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-8

• The bytes.decode() and bytearray.decode() functions allow you to specify an encoding; see
Section 10, “Type bytes: Immutable sequences of 8-bit integers” (p. 30) and Section 11, “Type
bytearray: Mutable sequences of 8-bit integers” (p. 30).

• What happens when you read data from a file depends on how the file was opened. If it is character
data, you may specify an encoding in the call to the open() function, or use the local site default
encoding.

If you are handling byte data, you may include "b" in the mode argument to the open() function,
and you will get back data of type bytes.

8.2. Mutability and immutability
One important quality of a Python type is whether it is considered mutable or immutable. An object is
considered mutable if part of its contained value can be changed.

For example, of Python's two universal container types, list objects are mutable, but tuple objects
are not.

>>> some_list = [2, 3, 5, 7, 11]
>>> some_list[2] = 888
>>> some_list
[2, 3, 888, 7, 11]
>>> some_tuple = (2, 3, 5, 7, 11)
>>> some_tuple[2] = 888
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

For another example, str values are immutable. You cannot change one character within a string of
three characters:

>>> s = "abc"
>>> s[1] = "x"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

Of Python's two types that represent strings of 8-bit bytes, objects of the bytes type are immutable,
but bytearray objects are mutable.

>>> v1
b'aeiou'
>>> v2=bytearray(v1)
>>> print(v1, v2)
b'aeiou' bytearray(b'aeiou')
>>> v2.append(ord('y'))
>>> v2
bytearray(b'aeiouy')
>>> v1.append(ord('y'))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'bytes' object has no attribute 'append'

New Mexico Tech Computer CenterPython 3.2 quick reference12

8.3. Common operations on sequence types
A number of Python operators, functions, and methods operate on all of the sequence types: str, bytes,
bytearray, list, tuple, and range.

Functions include:

• Section 19.7, “iter(): Return an iterator for a given sequence” (p. 35).
• Section 19.8, “len(): How many elements in a sequence?” (p. 35).
• Section 19.10, “min(): What is the smallest element of a sequence?” (p. 35).
• Section 19.9, “max(): What is the largest element of a sequence?” (p. 35).

Additionally, these methods are supported on any value s that is one of the sequence types.

s.count(k)
Returns the number of elements of s that are equal to k.

>>> [0, 1, 0, 0, 0, 5].count(0)
[0, 1, 0, 0, 0, 5].count(0)
4
>>> b'abracadabra'.count(b'a')
b'abracadabra'.count(b'a')
5

s.index(k)
Returns the position of the first element of s that is equal to k. If no element matches, this function
raises a ValueError exception.

>>> "abcde".index('d')
3
>>> "abcde".index('x')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: substring not found
>>> range(18).index(14)
14

These operators apply to sequences.

S1+S2
Concatenation—for two sequences S1 and S2 of the same type, a new sequence containing all the
elements from S1 followed by all the elements of S2.

>>> "vi" + "car"
'vicar'
>>> [1,2,3]+[5,7,11,13]+[15]
[1, 2, 3, 5, 7, 11, 13, 15]
>>> ('roy', 'g')+('biv',)
('roy', 'g', 'biv')

S*n
For a sequence S and a positive integer n, the result is a new sequence containing all the elements
of S repeated n times.

>>> 'worra'*8
'worraworraworraworraworraworraworraworra'

13Python 3.2 quick referenceNew Mexico Tech Computer Center

>>> [0]*4
[0, 0, 0, 0]
>>> (True, False)*5
(True, False, True, False, True, False, True, False, True, False)

x in S
Is any element of a sequence S equal to x?

For convenience in searching for substrings, if the sequence to be searched is a string, the x operand
can be a multi-character string. In that case, the operation returns True if x is found anywhere in
S.

>>> 1 in [2,4,6,0,8,0]
False
>>> 0 in [2,4,6,0,8,0]
True
>>> 'a' in 'banana'
True
>>> 3.0 in (2.5, 3.0, 3.5)
True
>>> "baz" in "rowrbazzle"
True

x not in S
Are all the elements of a sequence S not equal to x?

>>> 'a' not in 'banana'
False
>>> 'x' not in 'banana'
True

S[i]
Subscripting: retrieve the ith element of s, counting from zero. If i is greater than or equal to the
number of elements of S, an IndexError exception is raised.

>>> 'Perth'[0]
'P'
>>> 'Perth'[1]
'e'
>>> 'Perth'[4]
'h'
>>> 'Perth'[5]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: string index out of range
>>> ('red', 'yellow', 'green')[2]
'green'

S[i:j]
Slicing: For a sequence S and two integers i and j, return a new sequence with copies of the elements
of S between positions i and j.

The values used in slicing refer to the positions between elements, where position zero is the position
before the first element; position 1 is between the first and second element; and so on.

New Mexico Tech Computer CenterPython 3.2 quick reference14

You can also specify positions relative to the end of a sequence. Position -1 is the position before
the last element; -2 is the position before the second-to-last element; and so on.

You can omit the starting position to obtain a slice starting at the beginning. You can omit the ending
position to get all the elements through the last.

For example, here is a diagram showing three slices of the string 'abcdef'.

>>> 'abcdef'[2:5]
'cde'
>>> 'abcdef'[:3]
'abc'
>>> 'abcdef'[3:]
'def'
>>> (90, 91, 92, 93, 94, 95)[2:5]
(92, 93, 94)

S[i:j:k]
You can use a slice expression like this to select every kth element. Examples:

>>> teens = range(13,20)
>>> teens
[13, 14, 15, 16, 17, 18, 19]
>>> teens[::2]
[13, 15, 17, 19]
>>> teens[1::2]
[14, 16, 18]
>>> teens[1:5]
[14, 15, 16, 17]
>>> teens[1:5:2]
[14, 16]

9. Type str: Strings of text characters
A value of Python's str type is a sequence of zero or more 32-bit Unicode characters (see Section 8.1,
“It's a Unicode world now” (p. 11)).

In addition to the functions described in Section 8.3, “Common operations on sequence types” (p. 13),
these built-in functions apply to strings:

• Section 19.5, “input(): Read a string from standard input” (p. 34).
• Section 19.12, “ord(): What is the code point of this character?” (p. 35).
• Section 19.14, “str(): Convert to str type” (p. 36).

15Python 3.2 quick referenceNew Mexico Tech Computer Center

9.1. Methods on class str
All string values S (instances of type str) support the methods enumerated below.

9.1.1. S.capitalize()
Return S with its first character capitalized (if a letter).

>>> 'e e cummings'.capitalize()
'E e cummings'
>>> '---abc---'.capitalize()
'---abc---'

9.1.2. S.center(w[, fill])

Return S centered in a string of width w, padded with spaces. If w<=len(S), the result is a copy of S.
If the number of spaces of padding is odd, the extra space will placed after the centered value. Example:

>>> 'x'.center(4)
' x '

If you would like to use some specific character to pad the result, pass that character as the optional
second argument:

>>> "x".center(11, '/')
'/////x/////'

9.1.3. S.count(t[,start[,end]])
Return the number of times string t occurs in S. To search only a slice S[start:end] of S, supply
start and end arguments.

>>> 'banana'.count('a')
3
>>> 'bananana'.count('na')
3
>>> 'banana'.count('a', 3)
2
>>> 'banana'.count('a', 3, 5)
1
>>> 'banana'.count('ana')
1

Note in the last example above how this function counts only the number of non-overlapping occurrences
of the string.

9.1.4. S.encode([encoding[, errors]])

Encodes a Unicode string and returns the encoded form as a value of type bytes. See Section 10, “Type
bytes: Immutable sequences of 8-bit integers” (p. 30), and also be sure you familiarize yourself with
Section 8.1, “It's a Unicode world now” (p. 11), especially if you are familiar with the very different
character handling in Python 2.x versions.

New Mexico Tech Computer CenterPython 3.2 quick reference16

The default encoding is "utf-8". Many encodings are supported; for a full list, see the standard library
documentation13 for a current list. Here are some popular values:

The standard UTF-8 encoding. This is the default encoding."utf-8"

The standard UTF-16 encoding."utf-16"

The standard UTF-32 encoding."utf-32"

ASCII14, for the American Standard Code for Information Interchange."ascii"

In the examples below, '\xa0' is the Unicode character , non-breaking space, which has no
ASCII equivalent.

>>> s='(\xa0)'
s='(\xa0)'
>>> s.encode()
s.encode()
b'(\xc2\xa0)'
>>> s.encode('utf-8')
s.encode('utf-8')
b'(\xc2\xa0)'
>>> s.encode('utf-16')
s.encode('utf-16')
b'\xff\xfe(\x00\xa0\x00)\x00'
>>> s.encode('utf-32')
s.encode('utf-32')
b'\xff\xfe\x00\x00(\x00\x00\x00\xa0\x00\x00\x00)\x00\x00\x00'

The optional errors second argument specifies what to do when a character cannot be encoded.

"strict"
Raise aUnicodeEncodeError exception if any of the characters can't be encoded using the specified
encoding. This is the default value of the errors argument.

>>> s = "(\xa0)"
>>> s.encode('ascii')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

UnicodeEncodeError: 'ascii' codec can't encode character '\xa0' in
position 1: ordinal not in range(128)

"ignore"
Omit from the result any characters that can't be encoded.

>>> s = "(\xa0)"
>>> s.encode('ascii', 'ignore')
b'()'

"replace"
In the result, display as “?” any character that can't be encoded.

>>> "(\xa0)".encode('ascii', 'replace')
b'(?)'

13 http://docs.python.org/py3k/library/codecs.html#standard-encodings
14 http://en.wikipedia.org/wiki/ASCII

17Python 3.2 quick referenceNew Mexico Tech Computer Center

http://docs.python.org/py3k/library/codecs.html#standard-encodings
http://docs.python.org/py3k/library/codecs.html#standard-encodings
http://en.wikipedia.org/wiki/ASCII
http://docs.python.org/py3k/library/codecs.html#standard-encodings
http://en.wikipedia.org/wiki/ASCII

"xmlcharrefreplace"
For each character that can't be encoded, substitute an XML character entity reference of the form
“&#N;”, where N is the decimal value of the Unicode code point of the character. This rendering is
a good choice for displaying Unicode characters in HTML.

>>> "(\xa0)".encode('ascii', 'xmlcharrefreplace')
b'()'

"backslashreplace"
In the result, render characters that cannot be encoded using Python's backslash escape convention:
'\xNN' for 8-bit code points, '\uNNNN' for 16-bit code points, and 'UNNNNNNNN' for 32-bit code
points.

>>> zoot='\xa0\u1234\U00012345';print(len(zoot))
3
>>> zoot.encode('ascii', 'backslashreplace')
b'\\xa0\\u1234\\U00012345'

9.1.5. S.endswith(t[,start[,end]])
Predicate to test whether S ends with string t. If you supply the optional start and end arguments,
it tests whether the slice S[start:end] ends with t.

>>> 'bishop'.endswith('shop')
True
>>> 'bishop'.endswith('bath and wells')
False
>>> 'bishop'[3:5]
'ho'
>>> 'bishop'.endswith('o', 3, 5)
True

9.1.6. S.expandtabs([tabsize])
Returns a copy of S with all tabs replaced by one or more spaces. Each tab is interpreted as a request to
move to the next “tab stop”. The optional tabsize argument specifies the number of spaces between
tab stops; the default is 8.

Here is how the function actually works. The characters of S are copied to a new string T one at a time.
If the character is a tab, it is replaced by enough tabs so the new length of T is a multiple of the tab size
(but always at least one space).

>>> 'X\tY\tZ'.expandtabs()
'X Y Z'
>>> 'X\tY\tZ'.expandtabs(4)
'X Y Z'
>>> print('+...'*8, '\n', 'a\tbb\tccc\tdddd\teeeee\tf'.expandtabs(4),
... sep='')
+...+...+...+...+...+...+...+...
a bb ccc dddd eeeee f

New Mexico Tech Computer CenterPython 3.2 quick reference18

9.1.7. S.find(t[,start[,end]])
If string t is not found in S, return -1; otherwise return the index of the first position in S that matches
t.

The optional start and end arguments restrict the search to slice S[start:end].

>>> 'banana'.find('an')
1
>>> 'banana'.find('ape')
-1
>>> 'banana'.find('n', 3)
4
>>> 'council'.find('c', 1, 4)
-1

If you are testing whether a certain substring is found within a larger string, but you don't care exactly
where it starts, see the “in” and “not in” operators in Section 8.3, “Common operations on sequence
types” (p. 13).

9.1.8. S.format(*p, **kw)

See Section 9.2, “The string .format() method” (p. 21).

9.1.9. S.index(t[,start[,end]])
Works like .find(), but if t is not found, it raises a ValueError exception.

>>> 'council'.index('un')
2
>>> 'council'.index('phd')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: substring not found

9.1.10. S.isalnum()
This method is a predicate that tests whether S is nonempty and all its characters are alphanumeric.

>>> ''.isalnum()
False
>>> 'abc123'.isalnum()
True
>>> '&*$#&*()abc123'.isalnum()
False

9.1.11. S.isalpha()
Predicate that tests whether S is nonempty and all its characters are letters.

>>> 'abc123'.isalpha()
False
>>> 'MaryRecruiting'.isalpha()

19Python 3.2 quick referenceNew Mexico Tech Computer Center

True
>>> ''.isalpha()
False

9.1.12. S.isdecimal()
Similar to Section 9.1.13, “S.isdigit()” (p. 20), but considers characters in the Unicode category Nd
to be digits as well as the usual 0 through 9.

9.1.13. S.isdigit()
Predicate that tests whether S is nonempty and all its characters are digits.

>>> 'abc123'.isdigit()
False
>>> ''.isdigit()
False
>>> '2415'.isdigit()
True

9.1.14. S.isidentifier()
A predicate that tests whether a S is a valid Python identifier.

>>> "lionTamer".isidentifier()
True
>>> "spiny_norman".isidentifier()
True
>>> "_42".isidentifier()
True
>>> "9_a".isidentifier()
False

9.1.15. S.islower()
Predicate that tests whether S is nonempty and all its letters are lowercase (non-letter characters are
ignored).

>>> ''.islower()
False
>>> 'abc123'.islower()
True
>>> 'ABC123'.islower()
False

9.1.16. S.isnumeric()
This method is a predicate that tests whether S is nonempty and contains only characters that are con-
sidered numeric characters in Unicode.

New Mexico Tech Computer CenterPython 3.2 quick reference20

>>> '123'.isnumeric()
True
>>> ''.isnumeric()
False

9.1.17. S.isprintable()
A predicate that tests whether S is either empty or contains only printable characters. In the Unicode
specification, a character is considered printable if it is not in classes Other or Separator, except for
the space character which is a Separator but is considered printable.

>>> '\xa0'.isprintable()
False
>>> 'abc def $*^'.isprintable()
True
>>> ''.isprintable()
''.isprintable()
True

9.1.18. S.isspace()
Predicate that tests whether S is nonempty and all its characters are whitespace characters. In the example
below, '\xa0' is a Unicode non-breaking space, which is considered a space character.

>>> ''.isspace()
False
>>> ' \t\r\n\xa0'.isspace()
True
>>> 'killer \t \n rabbit'.isspace()
False

9.1.19. S.istitle()
A predicate that tests whether S is nonempty and contains only words in “title case.” In a title-cased
string, uppercase characters may appear only at the beginning of the string or after some character that
is not a letter. Lowercase characters may appear only after an uppercase letter.

>>> 'abc def GHI'.istitle()
False
>>> "Abc Def G Hij".istitle()
True
>>> ''.istitle()
False

9.2. The string .format() method
The .format() method of the str type is a convenient way to format text the way you want it.

Quite often, we want to embed data values in some explanatory text. For example, if we are displaying
the number of nematodes in a hectare, it is a lot more meaningful to display it as "There were 37.9

21Python 3.2 quick referenceNew Mexico Tech Computer Center

nematodes per hectare" than just "37.9". So what we need is a way to mix constant text like
"nematodes per hectare" with values from elsewhere in your program.

Here is the general form:

template.format(p0, p1, ..., k0=v0, k1=v1, ...)

Thetemplate is a string with one or more replacement fields embedded in constant text. Each replacement
field is enclosed in single braces {...}, and specifies that a value is to be substituted at that position
in the format string. The values to be substituted are passed as arguments to the .format() method.

The arguments to the .format() method are of two types. The list starts with zero or more positional
arguments pi, followed by zero or more keyword arguments of the form ki=vi, where each ki is a
name with an associated value vi.

Just to give you the general flavor of how this works, here's a simple conversational example. In this
example, the replacement field “{0}” is replaced by the first positional argument (49), and “{1}” is
replaced by the second positional argument, the string "okra".

>>> "We have {0} hectares planted to {1}!".format(49, "okra")
'We have 49 hectares planted to okra!'
>>>

In the next example, we supply the values using keyword arguments. The arguments may be supplied
in any order. The keyword names must be valid Python names (see Section 4, “Names and
keywords” (p. 4)).

>>> "{monster} has now eaten {city}".format(
... city='Tokyo', monster='Mothra')
'Mothra has now eaten Tokyo'

You may mix references to positional and keyword arguments:

>>> "The {structure} sank {0} times in {1} years.".format(
... 3, 2, structure='castle')
'The castle sank 3 times in 2 years.'

If you need to include actual “{” and “}” characters in the result, double them, like this:

>>> "There are {0} members in set {{a}}.".format(15)
'There are 15 members in set {a}.'

9.2.1. General form of a replacement field
Here is the general form of a replacement field.

A replacement_field starts with an optional field name or number, optionally followed by a “!”
and conversion specification, optionally followed by “:” and a format_spec that specifies the format.

• Section 9.2.2, “The field_name part” (p. 23).

New Mexico Tech Computer CenterPython 3.2 quick reference22

• Section 9.2.3, “The conversion part” (p. 24).
• Section 9.2.4, “The spec part” (p. 24).
• Section 9.2.5, “Formatting a field of variable length” (p. 29): This is the trick necessary to format a

field whose width is computed during program execution.

9.2.2. The field_name part
Here is the syntax for the field_name part of a replacement field, which specifies the source of the
value to be formatted.

A field_name must start with either a number or a name.

• Numbers (integer in the diagram) refer to positional arguments passed to the .format()method,
starting at 0 for the first argument.

• Names (identifier in the diagram) refer to keyword arguments to .format().

Following this you can append any number of expressions that retrieve parts of the referenced value.

• If the associated argument has attributes, you can refer to them by using a period (“.”) followed by
the attribute name. For example:

>>> import string
>>> string.digits
'0123456789'
>>> "Our digits are '{s.digits}'.".format(s=string)
"Our digits are '0123456789'."

• If the associated argument is an iterable, you may extract an element from it by using an integer in
square brackets [...].

For example:

>>> signal=['red', 'yellow', 'green']
>>> signal[2]
'green'
>>> "The light is {0[2]}!".format(signal)
'The light is green!'

• To extract an element from a mapping, use an expression of the form “[k]” where k is a key value,
which may contain any character except “]”.

23Python 3.2 quick referenceNew Mexico Tech Computer Center

>>> paintMap = {'M': 'blue', 'F': 'pink'}
>>> "Paint it {map[M]}.".format(map=paintMap)
'Paint it blue.'

In general, you can use any combination of these features. For example:

>>> "The sixth digit is '{s.digits[5]}'".format(s=string)
"The sixth digit is '5'"

You may omit all of the numbers that refer to positional arguments, and they will be used in the sequence
they occur. For example:

>>> "The date is {}-{}-{}.".format(2012, 5, 1)
'The date is 2012-5-1.'

If you use this convention, you must omit all those numbers. You can, however, omit all the numbers
and still use the keyword names feature:

>>> "Can I have {} pounds to {excuse}?".format(
... 50, excuse='mend the shed')
'Can I have 50 pounds to mend the shed?'

9.2.3. The conversion part
Following the name part of a replacement field, you can use one of these forms to force the value to be
converted by a standard function:

Section 19.2, “ascii(): Convert to 8-bit ASCII” (p. 34).!a

Section 19.13, “repr(): Printable representation” (p. 36).!r

Section 19.14, “str(): Convert to str type” (p. 36). This is the default for values of types other
than str.

!s

Here's an example:

>>> "{}".format('Don\'t')
"Don't"
>>> "{!r}".format('Don\'t')
'"Don\'t"'

9.2.4. The spec part
After the name and conversion parts of a replacement field, you may use a colon (“:”) and a format
specifier to supply more details about how to format the related value. Here is the general form.

New Mexico Tech Computer CenterPython 3.2 quick reference24

fill
You may specify any fill character except “}”. This character is used to pad a short value to the
specified length. It may be specified only in combination with an align character.

align
Specifies how to align values that are not long enough to occupy the specified length. There are
four values:

Left-justify the value. This is the default alignment for string values.<

Right-justify the value. This is the default alignment for numbers.>

Center the value.^

For numbers using a sign specifier, add the padding between the sign and the rest of the value.=

Here are some examples of the use of fill and align.

>>> "{:>8}".format(13)
' 13'
>>> "{:>8}".format('abc')
' abc'
>>> "{:*>8}".format('abc')
'*****abc'
>>> "{:*<8}".format('abc')
'abc*****'
>>> "{:>5d}".format(14)
' 14'
>>> "{:#>5d}".format(14)
'###14'
>>> "{:<6}".format('Git')
'Git '
>>> "{:*<6}".format('Git')
'Git***'
>>> "{:=^8}".format('Git')
'==Git==='
>>> "{:*=-9d}".format(-3)
'-*******3'

sign
This option controls whether an arithmetic sign is displayed. There are three possible values:

Always display a sign: + for positive, - for negative.+

Display - only for negative values.-

Display one space for positive values, - for negative.(one space)

Here are some examples of use of the sign options.

25Python 3.2 quick referenceNew Mexico Tech Computer Center

>>> '{} {}'.format(17, -17)
'17 -17'
>>> '{:5} {:5}'.format(17, -17)
' 17 -17'
>>> '{:<5} {:<5}'.format(17, -17)
'17 -17 '
>>> '{:@<5} {:@<5}'.format(17, -17)
'17@@@ -17@@'
>>> '{:@>5} {:@>5}'.format(17, -17)
'@@@17 @@-17'
>>> '{:@^5} {:@^5}'.format(17, -17)
'@17@@ @-17@'
>>> '{:@^+5} {:@^+5}'.format(17, -17)
'@+17@ @-17@'
>>> '{:@^-5} {:@^-5}'.format(17, -17)
'@17@@ @-17@'
>>> '{:@^ 5} {:@^ 5}'.format(17, -17)
'@ 17@ @-17@'

#
This option selects the “alternate form” of output for some types.
• When formatting integers as binary, octal, or hexadecimal, the alternate form adds “0b”, “0o”,

or “0x” before the value, to show the radix explicitly.

>>> "{:4x}".format(255)
' ff'
>>> "{:#4x}".format(255)
'0xff'
>>> "{:9b}".format(62)
' 111110'
>>> "{:#9b}".format(62)
' 0b111110'
>>> "{:<#9b}".format(62)
'0b111110 '

• When formatting float, complex, or Decimal values, the “#” option forces the result to contain
a decimal point, even if it is a whole number.

>>>
"{:5.0f}".format(36)
' 36'
>>> "{:#5.0f}".format(36)
' 36.'
>>> from decimal import Decimal
>>> w=Decimal(36)
>>> "{:g}".format(w)
'36'
>>> "{:#g}".format(w)
'36.'

0
To fill the field with left zeroes, place a “0” at this position in your replacement field.

New Mexico Tech Computer CenterPython 3.2 quick reference26

>>> "{:5d}".format(36)
' 36'
>>> "{:05d}".format(36)
'00036'
>>> "{:021.15}".format(1.0/7.0)
'00000.142857142857143'

width
Place a number at this position to specify the total width of the displayed value.

>>> "Beware the {}!".format('Penguin')
'Beware the Penguin!'
>>> "Beware the {:11}!".format('Penguin')
'Beware the Penguin !'
>>> "Beware the {:>11}!".format('Penguin')
'Beware the Penguin!'

,
Place a comma at this position in your replacement field to display commas between groups of
three digits in whole numbers.

>>> "{:,d}".format(12345678901234)
'12,345,678,901,234'
>>> "{:,f}".format(1234567890123.456789)
'1,234,567,890,123.456787'
>>> "{:25,f}".format(98765432.10987)
' 98,765,432.109870'

.precision
Use this part to specify the number of digits after the decimal point.

>>> from math import pi
>>> "{}".format(pi)
'3.141592653589793'
>>> "{:.3}".format(pi)
'3.14'
>>> "{:25,.3f}".format(1234567890123.456789)
' 1,234,567,890,123.457'

type
This code specifies the general type of format used. The default is to convert the value of a string
as if using the str() function. Refer to the table below for allowed values.

Format an integer in binary.b

Given a number, display the character that has that code.c

Display a number in decimal (base 10).d

Display a float value using the exponential format.e

Same as e, but use a capital “E” in the exponent.E

Format a number in fixed-point form.f

General numeric format: use either f or g, whichever is appropriate.g

Same as “g”, but uses a capital “E” in the exponential form.G

27Python 3.2 quick referenceNew Mexico Tech Computer Center

For formatting numbers, this format uses the current local setting to insert separator characters. For
example, a number that Americans would show as “1,234.56”, Europeans would show it as
“1.234,56”.

n

Display an integer in octal format.o

Display an integer in hexadecimal (base 16). Digits greater than 9 are displayed as lowercase charac-
ters.

x

Display an integer in hexadecimal (base 16). Digits greater than 9 are displayed as uppercase charac-
ters.

X

Display a number as a percentage: its value is multiplied by 100, followed by a “%” character.%

Examples:

>>> "{:b}".format(9)
'1001'
>>> "{:08b}".format(9)
'00001001'
>>> "{:c}".format(97)
'a'
>>> "{:d}".format(0xff)
'255'
>>> from math import pi
>>> "{:e}".format(pi*1e10)
'3.141593e+10'
>>> "{:E}".format(pi*1e10)
'3.141593E+10'
>>> "{:f}".format(pi)
'3.141593'
>>> "{:g}".format(pi)
'3.14159'
>>> "{:g}".format(pi*1e37)
'3.14159e+37'
>>> "{:G}".format(pi*1e37)
'3.14159E+37'
>>> "{:o}".format(255)
'377'
>>> "{:#o}".format(255)
'0o377'
>>> "{:x}".format(105199)
'19aef'
>>> "{:X}".format(105199)
'19AEF'
>>> "{:<#9X}".format(105199)
'0X19AEF '
>>> "{:%}".format(0.6789)
'67.890000%'
>>> "{:15.3%}".format(0.6789)
' 67.890%'

New Mexico Tech Computer CenterPython 3.2 quick reference28

9.2.5. Formatting a field of variable length
Sometimes you need to format a field using a length that is available only once the program is running.
To do this, you can use a number or name in {braces} inside a replacement field at the width position.
This item then refers to either a positional or keyword argument to the .format() method as usual.

Here's an example. Suppose you want to format a number n using d digits. Here are examples showing
this with and without left-zero fill:

>>> n = 42
>>> d = 8
>>> "{0:{1}d}".format(42, 8)
' 42'
>>> "{0:0{1}d}".format(42, 8)
'00000042'
>>>

You can, of course, also use keyword arguments to specify the field width. This trick also works for
variable precision.

"{count:0{width}d}".format(width=8, count=42)
'00000042'
>>>

The same technique applies to substituting any of the pieces of a replacement field.

>>> "{:&<14,d}".format(123456)
'123,456&&&&&&&'
>>> "{1:{0}{2}{3},{4}}".format('&', 123456, '<', 14, 'd')
'123,456&&&&&&&'
>>> "{:@^14,d}".format(1234567)
'@@1,234,567@@@'
>>> "{n:{fil}{al}{w},{kind}}".format(
... kind='d', w=14, al='^', fil='@', n=1234567)
'@@1,234,567@@@'

29Python 3.2 quick referenceNew Mexico Tech Computer Center

10. Type bytes: Immutable sequences of 8-bit integers

11. Type bytearray: Mutable sequences of 8-bit integers

12. Type list: Mutable sequences of arbitrary objects

13. Type tuple: Immutable sequences of arbitrary objects

14. Type range: A range of values

15. The set types: set and frozenset

16. Type dict: Mappings

17. Type None: The special placeholder value

18. Operators and expressions
Python's operators are shown here from highest precedence to lowest, with a ruled line separating
groups of operators with equal precedence:

New Mexico Tech Computer CenterPython 3.2 quick reference30

Table 2. Python operator precedence

Parenthesized expression or tuple.(E)

List.[E, ...]

Dictionary or set.{key:value, ...}

Convert to string representation.`...`

Attribute reference.x.attribute

Subscript or slice; see Section 8.3, “Common operations on sequence
types” (p. 13).

x[...]

Call function f.f(...)

x to the y power.x**y

Negation.-x

Bitwise not (one's complement).~x

Multiplication.x*y

Division. The “//” form discards the fraction from the result. For
example, “13.9//5.0” returns the value 2.0.

x/y, x//y

Modulo (remainder of x/y).x%y

Addition, concatenation.x+y

Subtraction.x-y

x shifted left ybits.x<<y

x shifted right ybits.x>>y

Bitwise and.x&y

Bitwise exclusive or.x^y

Bitwise or.x|y

Comparisons. These operators are all predicates; see Section 18.1,
“What is a predicate?” (p. 31).

x<y, x<=y, x>y, x>=y, x!=y,
x==y

Test for membership.x in y, x not in y

Test for identity.x is y, x is not y

Boolean “not.”not x

Boolean “and.”x and y

Boolean “or.”x or y

18.1. What is a predicate?
We use the term predicate to mean any Python function that tests some condition and returns a Boolean
value.

For example, x < y is a predicate that tests whether x is less than y. For example, 5 < 500 returns
True, while 5 >= 500 returns False.

31Python 3.2 quick referenceNew Mexico Tech Computer Center

18.2. What is an iterable?
To iterate over a sequence means to visit each element of the sequence, and do some operation for each
element.

In Python, we say that a value is an iterable when your program can iterate over it. In short, an iterable
is a value that represents a sequence of one more values.

All instances of Python's sequence types are iterables. These types may be referred to as container types:
a unicode string string is a container for 32-bit characters, and lists and tuples are general-purpose
containers that can contain any sequence.

One of the most common uses for an iterable is in a for statement, where you want to perform some
operation on a sequence of values. For example, if you have a tuple named celsiuses containing
Celsius temperatures, and you want to print them with their Fahrenheit equivalents, and you have
written a function cToF() that converts Celsius to Fahrenheit, this code does it:

>>> def cToF(c): return c*9.0/5.0 + 32.0
...
>>> celsiuses = (0, 20, 23.6, 100)
>>> for celsius in celsiuses:
... print "{0:.1f} C = {1:.1f} F".format(celsius, cToF(celsius))
...
0.0 C = 32.0 F
20.0 C = 68.0 F
23.6 C = 74.5 F
100.0 C = 212.0 F

However, Python also supports mechanisms for lazy evaluation: a piece of program that acts like a se-
quence, but produces its contained values one at a time.

Keep in mind that the above code works exactly the same if celsiuses is an iterator (see Section 23.3,
“Iterators: Values that can produce a sequence of values” (p. 47)). You may find many uses for iterators
in your programs. For example, celsiuses might be a system that goes off and reads an actual ther-
mometer and returns the readings every ten seconds. In this application, the code above doesn't care
where celsiuses gets the values, it cares only about how to convert and print them.

18.3. Duck typing, or: what is an interface?
When I see a bird that walks like a duck and swims like a duck and quacks like a duck,
I call that bird a duck.

—James Whitcomb Riley

The term duck typing comes from this quote. In programming terms, this means that the important thing
about a value is what it can do, not its type. As the excellent Wikipedia article on duck typing15 says,
“Simply stated: provided you can perform the job, we don't care who your parents are.”

One common example of duck typing is in the Python term “file-like object”. If you open a file for
reading using the open() function, you get back a value of type file:

>>> inFile = open('input')
>>> type(inFile)
<type 'file'>

15 http://en.wikipedia.org/wiki/Duck_typing

New Mexico Tech Computer CenterPython 3.2 quick reference32

http://en.wikipedia.org/wiki/Duck_typing
http://en.wikipedia.org/wiki/Duck_typing

Let's suppose that you write a function called numberIt() that takes a readable file as an argument
and prints the lines from a file preceded by five-digit line numbers. Here's the function and an example
of its use:

>>> def numberIt(f):
... for lineNo, line in enumerate(f):
... print "{0:05d} {1}".format(lineNo, line.rstrip())
...
>>> numberIt(inFile)
00000 Kant
00001 Heidegger
00002 Hume

The way you have written the numberIt() function, it works for files, but it also works for any iterable.

Thus, when you see the statement that some Python feature works with a “file-like object,” that means
that the object must have an interface like that of the file type; Python doesn't care about the type,
just the operations that it supports.

In practice, the enumerate() function works with any iterable, so your function will also work with
any iterable:

>>> numberIt(['Kant', 'Heidegger', 'Hume'])
00000 Kant
00001 Heidegger
00002 Hume

So in Python when we say that we expect some value to have an interface, we mean that it must provide
certain methods or functions, but the actual type of the value is immaterial.

More formally, when we say that a value supports the iterable interface, that value must provide either
of the following features:

• A .__getitem__() method as described in Section 25.2.2, “__getitem__(): Get one item from
a sequence or mapping” (p. 50).

• A .__iter__() method as described in Section 25.2.3, “.__iter__(): Create an iterator” (p. 50).

18.4. What is the locale?
In order to accommodate different character encodings, your system may have a locale setting that
specifies a preferred character set.

In the USA, most systems use the ASCII16 encoding. Good application code should be written in a way
that does not depend on this encoding to deal with cultural issues.

For general information on handling locale issues, see the documentation for the locale module17.

16 http://en.wikipedia.org/wiki/ASCII
17 http://docs.python.org/py3k/library/locale.html

33Python 3.2 quick referenceNew Mexico Tech Computer Center

http://en.wikipedia.org/wiki/ASCII
http://docs.python.org/py3k/library/locale.html
http://en.wikipedia.org/wiki/ASCII
http://docs.python.org/py3k/library/locale.html

18.5. Comprehensions

19. Basic built-in functions
This section describes some common built-in Python functions, ones that you will likely use most of
the time. A number of more exotic functions are discussed in Section 20, “Advanced functions” (p. 36).

19.1. abs(): Absolute value

19.2. ascii(): Convert to 8-bit ASCII

19.3. bool(): Convert to bool type

19.4. complex(): Convert to complex type

19.5. input(): Read a string from standard input
The purpose of this function is to read input from the standard input stream (the keyboard, by default).
Without an argument, it silently awaits input. If you would like to prompt the user for the input, pass
the desired prompt string as the argument. The result is returned as a str (string) value, without a
trailing newline character. In the example shown just below, the second line is typed by the user.

>>> s = input()
This tobacconist is scratched.
>>> s
s
'This tobacconist is scratched.'
>>> yesNo = input("Is this the right room for an argument? ")
Is this the right room for an argument? I've told you once.
>>> yesNo
"I've told you once."

19.6. int(): Convert to int type
To convert a number of a different type to int type, or to convert a string of characters that represents
a number:

int(ns)

where ns is the value to be converted. If ns is a float, the value will be truncated, discarding the
fraction.

If you want to convert a character string s, expressed in a radix (base) other than 10, to an int, use this
form, where b is an integer in the range [2, 36] that specifies the radix.

If the string to be converted obeys the Python prefix conventions (octal values start with 0o, hex values
with 0x, and binary values with 0b), use zero as the second argument.

New Mexico Tech Computer CenterPython 3.2 quick reference34

int(s, b)

Examples:

>>> int(True)
1
>>> int(False)
0
>>> int(43.89)
43
>>> int("43")
43
>>> int('77', 8)
63
>>> int('7ff', 16)
2047
>>> int('10101', 2)
21
>>> int('037')
37
>>> int('037', 8)
31
>>> int('0o37', 0)
31
>>> int('0x1f', 0)
31

19.7. iter(): Return an iterator for a given sequence

19.8. len(): How many elements in a sequence?

19.9. max(): What is the largest element of a sequence?

19.10. min(): What is the smallest element of a sequence?

19.11. open(): Open a file

19.12. ord(): What is the code point of this character?
The function ord(s) operates on a string s that containsy exactly one character. It returns the Unicode
code point of that character as type int.

>>> ord('@')
64
>>> ord('\xa0')
160

35Python 3.2 quick referenceNew Mexico Tech Computer Center

19.13. repr(): Printable representation

19.14. str(): Convert to str type

20. Advanced functions

21. Simple statements
Python statement types are divided into two groups. Simple statements, that are executed sequentially
and do not affect the flow of control, are described first. Compound statements, which may affect the
sequence of execution, are discussed in Section 22, “Compound statements” (p. 37).

Here, for your convenience, is a table of all the Python statement types, and the sections where they are
described. The first one, the assignment statement, does not have an initial keyword: an assignment
statement is a statement of the form “variable = expression”.

Section 21.1, “The expression statement” (p. 37)Expression

Section 21.2, “The assignment statement: name = expression” (p. 37).Assignment

Section 21.3, “The assert statement” (p. 37).assert

Section 22.2, “The break statement: Exit a for or while loop” (p. 39).break

Section 22.3, “The continue statement: Jump to the next cycle of a for or while” (p. 39).continue

Section 21.4, “The del statement” (p. 37).del

Section 22.5, “The if statement” (p. 41) and Section 22.6, “The try…except con-
struct” (p. 41).

elif

Section 22.5, “The if statement” (p. 41) and Section 22.6, “The try…except con-
struct” (p. 41).

else

Section 22.6, “The try…except construct” (p. 41).except

Section 22.6, “The try…except construct” (p. 41).finally

Section 22.4, “The for statement: Iteration over a sequence” (p. 40).for

Section 21.5, “The import statement” (p. 37).from

Section 21.6, “The global statement” (p. 37).global

Section 22.5, “The if statement” (p. 41).if

Section 21.5, “The import statement” (p. 37).import

Section 21.7, “The nonlocal statement” (p. 37).nonlocal

Section 21.8, “The pass statement” (p. 37).pass

Section 21.9, “The raise statement” (p. 37).raise

Section 21.10, “The return statement” (p. 37).return

Section 22.6, “The try…except construct” (p. 41).try

Section 22.7, “The with statement” (p. 41).with

Section 22.8, “The yield statement: Generate one result of a generator” (p. 41).yield

New Mexico Tech Computer CenterPython 3.2 quick reference36

21.1. The expression statement
A statement may consist of just a single Python expression by itself. For example, to call a function
named xParrot with no arguments, this is a valid statement:

xParrot()

21.2. The assignment statement: name = expression

21.3. The assert statement

21.4. The del statement

21.5. The import statement

21.6. The global statement

21.7. The nonlocal statement

21.8. The pass statement

21.9. The raise statement

21.10. The return statement

22. Compound statements
The statements in this section alter the normal sequential execution of a program. They can cause a
statement to be executed only under certain circumstances, or execute it repeatedly.

22.1. Python's block structure
One unusual feature of Python is the way that the indentation of your source program organizes it into
blocks within blocks within blocks. This is contrary to the way languages like C and Perl organize code
blocks by enclosing them in delimiters such as braces { ... }.

Various Python branching statements like if and for control the execution of blocks of lines.

• At the very top level of your program, all statements must be unindented—they must start in column
one.

• Various Python branching statements like if and for control the execution of one or more subsidiary
blocks of lines.

37Python 3.2 quick referenceNew Mexico Tech Computer Center

• A block is defined as a group of adjacent lines that are indented the same amount, but indented further
than the controlling line. The amount of indentation of a block is not critical.

• You can use either spaces or tab characters for indentation. However, mixing the two is perverse and
can make your program hard to maintain. Tab stops are assumed to be every eight columns.

Blocks within blocks are simply indented further. Here is an example of some nested blocks:

if i < 0:
print "i is negative"

else:
print "i is nonnegative"
if i < 10:

print "i has one digit"
else:

print "i has multiple digits"

If you prefer a more horizontal style, you can always place statements after the colon (:) of a compound
statement, and you can place multiple statements on a line by separating them with semicolons (;).
Example:

>>> if 2 > 1: print "Math still works"; print "Yay!"
... else: print "Huh?"
...
Math still works
Yay!

You can't mix the block style with the horizontal style: the consequence of an if or else must either
be on the same line or in a block, never both.

>>> if 1: print "True"
... print "Unexpected indent error here."
File "<stdin>", line 2
print "Unexpected indent error here."
^

IndentationError: unexpected indent
>>>

Here is a formal definition of Python's block structure. A suite is the sequence of statements that are
executed following the “:” after an if, else, or other compound statement.

New Mexico Tech Computer CenterPython 3.2 quick reference38

In this diagram, INDENT refers to an increase in the amount of indentation, and DEDENT is where the
indentation decreases to its former level.

Note that a trailing “;” is allowed and ignored on any line.

22.2. The break statement: Exit a for or while loop
The purpose of this statement is to jump out of a for or while loop before the loop would terminate
otherwise. Control is transferred to the statement after the last line of the loop. The statement looks like
this:

break

Here's an example.

>>> for i in [1, 71, 13, 2, 81, 15]:
... print(i, end=' ')
... if (i%2) == 0:
... break
...
1 71 13 2

Normally this loop would be executed six times, once for each value in the list, but the break statement
gets executed when i is set to an even value.

22.3. The continue statement: Jump to the next cycle of a for or while
Use a continue statement inside a for or while loop when you want to jump directly back to the
top of the loop and go around again.

• If used inside a while loop, the loop's condition expression is evaluated again. If the condition is
False, the loop is terminated; if the condition is True, the loop is executed again.

• Inside a for loop, a continue statement goes back to the top of the loop. If there are any values re-
maining in the iterable that controls the loop, the loop variable is set to the next value in the iterable,
and the loop body is entered.

If the continue is executed during the last pass through the loop, control goes to the statement after
the end of the loop.

Examples:

>>> i = 0
>>> while i < 10:
... print(i, end=' ')
... i += 1
... if (i%3) != 0:
... continue
... print("num", end=' ')
...
0 1 2 num 3 4 5 num 6 7 8 num 9
>>> for i in range(10):
... print(i, end=' ')
... if (i%4) != 0:
... continue

39Python 3.2 quick referenceNew Mexico Tech Computer Center

... print("whee", end=' ')

...
0 whee 1 2 3 4 whee 5 6 7 8 whee 9

22.4. The for statement: Iteration over a sequence
Use a for statement to execute a block of statements repeatedly. Here is the general form. (For the
definition of a suite, see Section 22.1, “Python's block structure” (p. 37).)

for V in S:
B

• V is a variable called the induction variable.

• S is any iterable; see Section 18.2, “What is an iterable?” (p. 32).

This iterable is called the controlling iterable of the loop.

• B is a block of statements.

The block is executed once for each value in S. During each execution of the block, V is set to the corres-
ponding value of S in turn. Example:

>>> for color in ['black', 'blue', 'transparent']:
... print color
...
black
blue
transparent

In general, you can use any number of induction variables. In this case, the members of the controlling
iterable must themselves be iterables, which are unpacked into the induction variables in the same way
as sequence unpacking as described in Section 21.2, “The assignment statement: name = expres-
sion” (p. 37). Here is an example.

>>> fourDays = (('First', 1, 'orangutan librarian'),
... ('Second', 5, 'loaves of dwarf bread'),
... ('Third', 3, 'dried frog pills'),
... ('Fourth', 2, 'sentient luggages'))
>>> for day, number, item in fourDays:
... print ("On the {1} day of Hogswatch, my true love gave "
... "to me".format(day))
... print "{0} {1}".format(number, item)
...
On the First day of Hogswatch, my true love gave to me
1 orangutan librarian
On the Second day of Hogswatch, my true love gave to me
5 loaves of dwarf bread
On the Third day of Hogswatch, my true love gave to me
3 dried frog pills
On the Fourth day of Hogswatch, my true love gave to me
2 sentient luggages

New Mexico Tech Computer CenterPython 3.2 quick reference40

You can change the induction variable inside the loop, but during the next pass through the loop, it will
be set to the next element of the controlling iterable normally. Modifying the controlling iterable itself
won't change anything; Python makes a copy of it before starting the loop.

>>> for i in range(4):
... print "Before:", i,
... i += 1000
... print "After:", i
...
Before: 0 After: 1000
Before: 1 After: 1001
Before: 2 After: 1002
Before: 3 After: 1003
>>> L = [7, 6, 1912]
>>> for n in L:
... L = [44, 55]
... print n
...
7
6
1912

22.5. The if statement

22.6. The try…except construct

22.7. The with statement

22.8. The yield statement: Generate one result of a generator

23. def(): Defining your own functions
Use the def construct to define a functions. Inside a class, use the def construct to define a method.
Each definition has three parts:

• You may supply any number of decorators before the line starting the def. See Section 23.5, “Decorat-
ors” (p. 49).

• A statement starting with the def keyword names the function or method you are defining, and de-
scribes any parameters that are passed in.

• The body of the function or method is an indented block. This block is executed when the function
is called.

Here is a brief interactive example of a function to compute cube roots.

>>> def cubeRoot(x):
... '''Returns the cube root of a number x.
... '''
... return x**(1.0/3.0)

41Python 3.2 quick referenceNew Mexico Tech Computer Center

...
>>> cubeRoot(27.1)
3.00369914061521
>>> cubeRoot.__doc__
'Returns the cube root of a number x.\n '

The above example demonstrates use of a documentation string: if the first indented line after the def is
a string constant, that constant is saved as the documentation string for that function, and is available
as the .__doc__ attribute of the function.

Here is the syntax of the def statement.

• The identifier is the name of the function you are defining.
• The param_list defines the parameters to the function. It is optional.
• The “->” followed by an expression is optional. It may be used to annotate the expected result type,

e.g., “def f(k) -> int: …”.
• For the definition of suite, see Section 22, “Compound statements” (p. 37).

Here is the syntax for param_list.

• Each param consists of an identifier, optionally followed by a colon and an expression that annotates
the expected type. This annotation, if given, is not checked; it is by way of documentation.

For example, “def f(i:int)” declares a parameter “i” and annotates that an int value is expected.

• Each defparam is a param, optionally followed by an “=” and a default value for that parameter.

Warning
The default value expression is evaluated when the function is defined. This value is stored away and
bound to the corresponding name each time the function is called without a corresponding argument.

When the default value expresion is a mutable value, this can lead to undesirable side effects. For example:

>>> def f(x, L=[]):
... L.append(x)
... print(L)

New Mexico Tech Computer CenterPython 3.2 quick reference42

...
>>> f(5)
[5]
>>> f(10)
[5, 10]

When the function is defined, a new empty list is created and saved as the default value of the function.
The first call adds the value 5 to the saved default value, so when it is called the second time, the default
value that is used already has the value 5 in it.

To avoid this behavior, use None as the default value, and then add code that detects this case and
creates the default value anew each time:

>>> def f2(x, L=None):
... if L is None:
... L=[]
... L.append(x)
... print(L)
...
>>> f2(5)
[5]
>>> f2(10)
[10]

• If a single “*” is given, followed by param, that name is bound to a tuple containing any extra posi-
tional arguments. See Section 23.1, “Calling a function” (p. 44).

If a single “*” appears but is not followed by a param, it signifies that all the following arguments
must be specified using the keyword, “name=expr” syntax.

Here is an example. This function has one required positional argument, but it also requires one
keyword argument named b.

>>> def f(a, *, b):
... print(a, b)
...
>>> f(0, b=4)
0 4
>>> f(0, 4)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: f() takes exactly 1 positional argument (2 given)
>>> f(0, 4, b=5)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: f() takes exactly 1 non-keyword positional argument (2 given)

• If the parameter list includes “**” followed by aparam, that name is bound to a dictionary containing
all the extra keyword arguments passed in the function call. For example:

>>> def f(*p, **kw):
... print(p, kw)
...

43Python 3.2 quick referenceNew Mexico Tech Computer Center

>>> f()
() {}
>>> f(4, 88, name='Clem', clan='Bozo')
(4, 88) {'clan': 'Bozo', 'name': 'Clem'}

23.1. Calling a function
Here is the syntax for a function call.

The primary is the name of the thing you are calling. Callable values include:

• Built-in functions and methods of builtin types.
• User-defined functions and methods of user-defined classes.
• Instances of any user-defined class that defines the special method Section 25.2.1, “.__call__():

What to do when someone calls an instance” (p. 50).

The arg_list is the list of arguments you are passing; a trailing comma is ignored if present. You may,
instead of the usual argument list, include one comprehension expression (see Section 18.5, “Compre-
hensions” (p. 34)); in that case, the function will be passed one positional argument, which will be a
generator.

In the above diagram, pos_args refers to a sequence of positional arguments, and key-args is a se-
quence of keyword arguments.

• The sequence “*expr” indicates that the associated name will be bound to a tuple containing all extra
positional arguments. See the rules for evaluation below.

New Mexico Tech Computer CenterPython 3.2 quick reference44

• The sequence “**expr” indicates that the associated name will be bound to a dictionary containing
all extra keyword arguments.

• If you declare additional key-args after the “*expr” item, those arguments may be passed only
as keyword arguments; they may never match a position argument.

This is how the arguments actually passed are matched with the parameters to the function.

1. Python creates a list of unfilled slots, one for each declared parameter.

2. The actual positional arguments (pos_args) are placed into those slots in order.

3. For each keyword argument (key-args), if the slot for that name is empty, it is filled with that argu-
ment. If the slot was already full, Python raises a TypeError.

4. All unfilled slots are filled with the default value. If any unfilled slots do not have a default value,
Python raises a TypeError.

5. If there are more positional arguments than there are slots for them, they are bound to the “*expr”
item is a tuple, if there is one; otherwise Python raises a TypeError.

6. If there are keyword arguments whose names do not match any of the keyword parameters, they
are bound to the “**expr” item as a dictionary, if there is one; otherwise Python raises a TypeError.

When you call a function, the argument values you pass to it must obey these rules:

• There are two kinds of arguments: positional (also called non-default arguments) and keyword (also
called default arguments). A positional argument is simply an expression, whose value is passed to
the argument.

A keyword argument has this form:

name=expression

• All positional arguments in the function call (if any) must precede all keyword arguments (if any).

>>> def wrong(f=1, g):
... print f, g
...
File "<stdin>", line 1

SyntaxError: non-default argument follows default argument

• You must supply at least as many positional arguments as the function expects.

>>> def wantThree(a, b, c):
... print a,b,c
...
>>> wantThree('nudge', 'nudge', 'nudge')
nudge nudge nudge
>>> wantThree('nudge')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: wantThree() takes exactly 3 arguments (1 given)

• If you supply more positional arguments than the function expects, the extra arguments are matched
against keyword arguments in the order of their declaration in the def. Any additional keyword ar-
guments are set to their default values.

45Python 3.2 quick referenceNew Mexico Tech Computer Center

>>> def f(a, b, c=1, d='elk'):
... print a,b,c,d
...
>>> f(99, 111)
99 111 1 elk
>>> f(99, 111, 222, 333)
99 111 222 333
>>> f(8, 9, 10, 11, 12, 13)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: f() takes at most 4 arguments (6 given)

• You may supply arguments for keyword parameters in any order by using the form k=v, where k is
the keyword used in the declaration of that parameter and v is your desired argument.

>>> def blackKeys(fish='Eric', dawn='Stafford', attila='Abdul'):
... print fish, dawn, attila
...
>>> blackKeys()
Eric Stafford Abdul
>>> blackKeys(attila='Gamera', fish='Abdul')
Abdul Stafford Gamera

• If you declare a parameter of the form “*name”, the caller can provide any number of additional
keyword arguments, and the name will be bound to a tuple containing those additional arguments.

>>> def posish(i, j, k, *extras):
... print i,j,k,extras
...
>>> posish(38, 40, 42)
38 40 42 ()
>>> posish(44, 46, 48, 51, 57, 88)
44 46 48 (51, 57, 88)

• Similarly, you may declare a final parameter of the form “**name”. If the caller provides any keyword
arguments whose names do not match declared keyword arguments, that name will be bound to a
dictionary containing the additional keyword arguments as key-value pairs.

>>> def extraKeys(a, b=1, *c, **d):
... print a, b, c, d
...
>>> extraKeys(1,2)
1 2 () {}
>>> extraKeys(3,4,6,12, hovercraft='eels', record='scratched')
3 4 (6, 12) {'record': 'scratched', 'hovercraft': 'eels'}

23.2. A function's local namespace
Any name that appears in a function's argument list, or any name that is set to a value anywhere in the
function, is said to be local to the function. If a local name is the same as a name from outside the function
(a so-called global name), references to that name inside the function will refer to the local name, and
the global name will be unaffected. Here is an example:

New Mexico Tech Computer CenterPython 3.2 quick reference46

>>> x = 'lobster'
>>> y = 'Thermidor'
>>> def f(x):
... y = 'crevettes'
... print x, y
...
>>> f('spam')
spam crevettes
>>> print x, y
lobster Thermidor

Keyword parameters have a special characteristic: their names are local to the function, but they are
also used to match keyword arguments when the function is called.

23.3. Iterators: Values that can produce a sequence of values
Closely related to Python's concept of sequences is the concept of an iterator:

For a given sequence S, an iterator I is essentially a set of instructions for producing
the elements of S as a sequence of zero or more values.

To produce an iterator over some sequence S, use this function:

iter(S)

• The result of this function is an “iterator object” that can be used in a for statement.

>>> continents = ('AF', 'AS', 'EU', 'AU', 'AN', 'SA', 'NA')
>>> worldWalker = iter(continents)
>>> type(worldWalker)
<type 'tupleiterator'>
>>> for landMass in worldWalker:
... print "Visit {0}.".format(landMass,)
...
Visit AF. Visit AS. Visit EU. Visit AU. Visit AN. Visit SA. Visit NA.

• All iterators have a .next() method that you can call to get the next element in the sequence. This
method takes no arguments. It returns the next element in the sequence, if any. When there are no
more elements, it raises a StopIteration exception.

>>> trafficSignal = ['green', 'yellow', 'red']
>>> signalCycle = iter(trafficSignal)
>>> type(signalCycle)
<type 'listiterator'>
>>> signalCycle.next()
'green'
>>> signalCycle.next()
'yellow'
>>> signalCycle.next()
'red'
>>> signalCycle.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

47Python 3.2 quick referenceNew Mexico Tech Computer Center

Once an iterator is exhausted, it will continue to raise StopIteration indefinitely.

• You can also use an iterator as the right-hand operand of the “in” operator.

>>> signalCycle = iter(trafficSignal)
>>> 'red' in signalCycle
True

23.4. Generators: Functions that can produce a sequence of values
Unlike conventional functions that return only a single result, a generator is a function that produces a
sequence of zero or more results.

Generators are a special case of iterators (see Section 23.3, “Iterators: Values that can produce a sequence
of values” (p. 47)), so they can be used as the controlling iterable in for statements and the other places
where iterators are allowed.

In a conventional function, the body of the function is executed until it either executes a return state-
ment, or until it runs out of body statements (which is the equivalent of a “return None” statement).

By contrast, when a generator function is called, its body is executed until it either has another value to
produce, or until there are no more values.

• When a function wishes to return the next generated value, it executes a statement of this form:

yield e

where the e is any Python expression.

The difference between yield and return is that when a return is executed, the function is con-
sidered finished with its execution, and all its current state diasppears.

By contrast, when a function executes a yield statement, execution of the function is expected to
resume just after that statement, at the point when the caller of the function needs the next generated
value.

• A generator signals that there are no more values by executing this statement:

raise StopIteration

For an example of a generator, see Section 22.8, “The yield statement: Generate one result of a gener-
ator” (p. 41).

If you are writing a container class (that is, a class whose instances are containers for a set of values),
and you want to define an iterator (see Section 25.2.3, “.__iter__(): Create an iterator” (p. 50)), that
method can be a generator. Here is a small example. The constructor for class Bunch takes a sequence
of values and stores them in instance attribute .__stuffList. The iterator method .__iter__()
generates the elements of the sequence in order, except it wraps each of them in parentheses:

>>> class Bunch(object):
... def __init__(self, stuffList):
... self.__stuffList = stuffList
... def __iter__(self):
... for thing in self.__stuffList:
... yield "({0})".format(thing)
... raise StopIteration
...

New Mexico Tech Computer CenterPython 3.2 quick reference48

>>> mess = Bunch(('lobster Thermidor', 'crevettes', 'Mornay'))
>>> for item in mess:
... print item,
...
(lobster Thermidor) (crevettes) (Mornay)
>>> messWalker = iter(mess)
>>> for thing in messWalker: print thing,
...
(lobster Thermidor) (crevettes) (Mornay)

23.5. Decorators
The purpose of a Python decorator is to replace a function or method with a modified version at the time
it is defined. For example, the original way to declare a static method was like this:

def someMethod(x, y):
...

someMethod = staticmethod(someMethod)

Using Python's decorator syntax, you can get the same effect like this:

@staticmethod
def someMethod(x, y):

...

In general, a function or method may be preceded by any number of decorator expressions, and you
may also provide arguments to the decorators.

• If a function f is preceded by a decorator expression of the form “@d”, it is the equivalent of this code:

def f(...):
...

f = d(f)

• You may provide a parenthesized argument list after the name of your decorator. A decorator expres-
sion d(...) is the equivalent of this code:

def f(...):
...

f = d(...)(f)

First, the decorator is called with the argument list you provided. It must return a callable object. That
callable is then called with one argument, the decorated function. The name of the decorated function
is then bound to the returned value.

• If you provide multiple decorators, they are applied inside out, in sequence from the last to the first.

Here is an example of a function wrapped with two decorators, of which the second has additional ar-
guments:

@f1
@f2('Pewty')
def f0(...):

...

49Python 3.2 quick referenceNew Mexico Tech Computer Center

This is the equivalent code without using decorators:

def f0(...):
...

f0 = f1 (f2('Pewty') (f0))

First function f2 is called with one argument, the string 'Pewty'. The return value, which must be
callable, is then called with f0 as its argument. The return value from that call is then passed to f1.
Name f0 is then bound to the return value from the call to f1.

24. Exceptions

25. Classes: invent your own types

25.1. Defining a class

25.2. Special methods

25.2.1. .__call__(): What to do when someone calls an instance

25.2.2. __getitem__(): Get one item from a sequence or mapping
If a class defines it, this special method is called whenever a value is retrieved from a sequence or
mapping (dictionary-like object) using the syntax “v[i]”, where v is the sequence or mapping and i
is a position in a sequence, or a key in a mapping.

Here is the calling sequence:

def __getitem__(self, i):
...

The method either returns the corresponding item or raises an appropriate exception: IndexError for
sequences or KeyError for mappings.

25.2.3. .__iter__(): Create an iterator

25.3. Static methods

26. The conversion path from 2.x to 3.x
At this writing, both Python 2.7 and Python 3.2 are officially maintained implementations. The 3.0 release
marked the first release in the development of Python that was incompatible with the old one.

If you are using 2.x releases of Python, there is no hurry to convert to the 3.x series. Release 2.7 is guar-
anteed to be around for many years. Furthermore, there are tools to help you automate much of the
conversion process.

New Mexico Tech Computer CenterPython 3.2 quick reference50

• For a discussion of the changes between 2.7 and 3.2, see What's New in Python18.

• To see what changes must be made in your program to allow automatic conversion to Python 3.x,
run Python with this flag:

python -3 yourprogram

• To convert your program to Python 3.x, first make a copy of the original program, then run this
command:

python3-2to3 -w yourprogram

The -w flag replaces yourprogram with the converted 3.x version, and moves the original to
“yourprogram.bak”

18 http://docs.python.org/py3k/whatsnew/

51Python 3.2 quick referenceNew Mexico Tech Computer Center

http://docs.python.org/py3k/whatsnew/
http://docs.python.org/py3k/whatsnew/

New Mexico Tech Computer CenterPython 3.2 quick reference52

