F21SC Industrial Programming:
Python Advanced Language Features

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

HERIOT
PWALT

Semester 1 — 2018/19

HERIOT
GwarT

°No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 1/30

Overloading

@ Operators such as +, <= and functions such as abs, str and
repr can be defined for your own types and classes.

Example

class Vector (object) :
constructor
def _ _init__ (self, coord):
self.coord = coord
turns the object into string
def _ _str_ (self):
return str(self.coord)

vl = Vector ([1l,2,3])
performs conversion to string as above
print (vl)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 2/30

Overloading

Example

class Vector (object) :
constructor
def _ init_ (self, coord):
self.coord = coord
turns the object into string:
def _ str__ (self):
s = "<"
if len(self.coord)==0:
return s+">"

else:

s = s+str(self.coord[0])
for x in self.coord[1l:]:

s = s+";"+str(x);

return s+">"

vl = Vector([1,2,3]); print (vl)

use <> as brackets,

and

v

Hans-Wolfgang Loidl (Heriot-Watt Univ)

F20SC/F21SC — 2018/19

3/30

Overloading arithmetic operations

Example

import math # sqrt
import operator # operators as functions

class Vector (object) :

def _ _abs__ (self):

"'’Vector length (Euclidean norm) .’’’

return math.sqgrt (sum(x*x for x in self.coord))
def _ _add__ (self, other):

"7’Vector addition.’’’

return map (operator.add, self.coord, other.coord)

print (abs (vl))
print (vl + vl)

V.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 4/30

Overloading of non-symmetric operations

@ Scalar multiplication for vectors can be written either v1 5 or
5 % vl.
Example

class Vector (object) :

def _ mul__ (self, scalar):
"Multiplication with a scalar from the right.’
return map (lambda x: xxscalar, self.coord)

def _ rmul__ (self, scalar):
"Multiplication with a scalar from the left.’
return map (lambda x: scalar*x, self.coord)

@ vl x 5callsvl.__mul(5). -
@5 x vicallsvl.__rmul(5). UWAu

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 5/30

Overloading of indexing

@ Indexing and segment-notation can be overloaded as well:

Example

class Vector (object) :

def _ getitem (self, index):
"7 !'Return the coordinate with number index.’’’
return self.coord[index]

def _ getslice_ (self, left, right):
"’ TReturn a subvector.’’’
return Vector (self.coord[left:right])

print v1[2]
print v1[0:2]

v

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 6/30

Exercise (optional)

@ Define a class Matrix and overload the operations + und « to
perform addition and multiplication on matrices.

@ Define further operations on matrices, such as m.transpose (),
str(m), repr (m).

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 7130

Types

@ type (v) yields the type of v.

@ Type-membership can be tested like this
isinstance (val, typ). E.gQ.
>>> isinstance (5, float)
False
>>> isinstance (5., float)
True

@ This check observes type-membership in the parent class. E.g.
>>> isinstance (NameError (), Exception)
True

@ issubclass checks the class-hierarchy.
>>> issubclass (NameError, Exception)

True

>>> issubclass (int, object) HERIOT
WALT

True :

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 8/30

Manual Class Generation

@ type (name, superclasses, attributes) creates a class
object with name name, parent classes superclasses, and
attributes attributes.

@ C = type(’C’, (), {}) correspondsto class C: pass.
@ Methods can be passed as attributes:

Example

def £ (self, coord):
self.coord = coord

Vec = type(’'Vec, (object,), {’'_init__ ' : f})

@ Manual class generation is useful for meta-programming, i.e.

programs that generate other programs. LT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 9/30

Properties

@ Properties are attributes for which read, write and delete

operations are defined.
@ Construction:

property (fget=None, fset=None, fdel=None, doc=None,

Example

class Rectangle (object) :

def _ init_ (self, width, height):

self.width = width
self.height = height

this generates a read only property

area = property (

lambda self: self.width % self.height,

doc="Rectangle area

print ("Area of a 5x2 rectange: ", Rectangle(5,2).are§

Hans-Wolfgang Loidl (Heriot-Watt Univ)

(read only) .")

anonymag

F20SC/F21SC — 2018/19

10/30

)

Controlling Attribute Access

@ Access to an attribute can be completely re-defined.
@ This can be achieved as follows:

__getattribute_ (self, attr)
_ _setattr_ (self, attr, wvalue)
__delattr_ (self, attr)

@ Example: Lists without append

Example

class listNoAppend(list) :
def _ getattribute_ (self, name) :
if name == ’'append’: raise AttributeError
return list._ getattribute_ (self, name)

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 11/30

Static Methods

@ A class can define methods, that don’t use the current instance
(self).
» Class methods can access class attributes, as usual.
» Static methods can’t do that!.

Example

class Static:
static method
def _ bla(): print ("Hello, world!")
hello = staticmethod(___bla)

@ The static method hello can be called like this:

Static.hello ()
Static () .hello () HERIOT
BWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 12/30

Class/Instance Methods

@ A class or instance method takes as first argument a reference to
an instance of this class.

Example

class Static:
val = 5
class method

def sgr(c): return c.val x c.val
sgr = classmethod (sgr)

Static.sqgr ()
Static () .sqgr ()

@ It is common practice to overwrite the original definition of the
method, in this case sqr.
@ Question: What happens if we omit the line with classmeth%@?{%ﬁfii?
above?
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 13/30

Function Decoration

@ The pattern
def f (args):
f = modifier (f)
has the following special syntax:
@modifier
def f (args):
@ We can rewrite the previous example to:
Example
class Static:
val = 5
class method
@classmethod
def sqgr(c): return c.val x c.val

o 8

oL
@ More examples of using modifiers: Memoisation, Type-checking:"*"*

vH

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 14 /30

Memoisation with Function Decorators

@ We want a version of Fibonacci (below), that remembers previous
results (“memoisation”).

Example
def fib(n):
"""Compute Fibonacci number of @n@."""
if n==0 or n==1:
return 1

else:
return fib (n-1)+fib (n-2))

@ NB: This version performs an exponential number of function
calls!
HERIOT
GWALL

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 15/30

Memoisation with Function Decorators

@ To visualise the function calls, we define a decorator for tracing:
Example
def trace(f):

"""Perform tracing on function @func@."""

def trace_func(n):

print ("++ computing”, f._ name_ ," with ",
return f (n)

str(n)

return trace_func

@ and we attach this decorator to our £ib function:
Example

Qtrace
def fib(n):

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 16/30

Memoisation with Function Decorators

@ Now, we implement memoisation as a decorator.
@ ldea:
» Whenever we call £ib, we remember input and output.
» Before calling a fib, we check whether we already have an output.
» We use a dictionary memo_dict, to store these values.
@ This way, we never compute a Fibonacci value twice, and runtime
becomes linear, rather than exponential!

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 17/30

Memoisation with Function Decorators

Here is the implementation of the decorator:
Example

def memoise (f) :
"""Perform memoisation on function @func@."""
def memo_func (n, memo_dict=dict ()) :
if n in memo_dict.keys () :
return memo_dict [n]

else:
print ("++ computing", f._ _name_ ," with ", str
x = f(n)
memo_dict[n] = X
print (".. keys in memo_dict: ", str (memo_dict.K

return X

return memo_func

v

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19

18/30

Memoisation with Function Decorators

@ We attach this decorator to the £ib function like this:
Example

@memoise
def fib(n) :

@ Nothing else in the code changes!
@ See online sample memofib.py

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 19/30

Interpretation

@ Strings can be evaluated using the function eval, which
evaluates string arguments as Python expressions.
>>> x = 5
>>> eval ("x")
5
>>> f = lambda x: eval("x * x")
>>> f(4)
16

@ The command exec executes its string argument:

>>> exec ("print (x+1)")
5

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 20/30

Compilation
@ This performs compilation of strings to byte-code:

>>> ¢ = compile ("map (lambda x:x*2,range (10))", # c
"pseudo-file.py’, # filename for error msg
"eval’) # or ’'exec’ (module) or ’single’ (stm)

>>> eval (c)
<map object at 0x7£2e990e3d30>

>>> for 1 in eval(c): print (i)
0 ...
@ Beware of indentation in the string that you are composing!
>>> ¢c2 = compile(’’’
def bla(x):

print xxx
return x

bla (5)
. rrr, "pseudo’, ’'exec’)
>>> exec c2 ERIOT

HWATT
25 '

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 21/30

New features in Python 3.5

Python 3.5 brings several new features, especially:
@ Coroutines with async and await syntax
@ A dedicated infix operator for matrix multiplication
@ Type Hints
@ Additional Unpacking Generalizations
@ % formatting support for bytes and bytearray
@ Pre-3.5 but important:
Several built-in functions now return iterators, rather than lists, e.g
dict.keys () and dict.values ()
builtin higher-order functions such as map, filter, reduce

operators such as range
if in doubt, try it in the python shell, e.g.

v

v vy VvYy

Example

>>> map (lambda x: x*%x2 , range(0,10))
<map object at 0x7£8a87cl7978>

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 22/30

Coroutines with async and await syntax

@ async and await are supported, as in C#:
import asyncio
async def http_get (domain) :
reader, writer = await asyncio.open_connection (doma
writer.write (b’ \r\n’.Jjoin ([
b’GET / HTTP/1.1',
b’Host: %$b’ % domain.encode(’latin-1"),
b’ Connection: close’,
b’’, b"’
1))
async for line in reader:
print ('>>>', line)
writer.close ()
loop = asyncio.get_event_loop ()
try:
loop.run_until_complete(http_get(’example.com’mﬂuoT
finally: WATT
loop.close ()
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 23/30

A dedicated infix operator for matrix multiplication

@ You can use the @ operator for infix matrix mutiplication:

Example
res = ml @ m2

@ NumPy 1.10 supports this syntax as well:
Example

ones = np.ones (3)
builds:# array([1., 1., 1.])

m = np.eye (3)
builds the unit matrix

res = ones @ m
print (res)
builds: array([1., 1., 1.])

Hans-Wolfgang Loidl (Heriot-Watt Univ)

F20SC/F21SC — 2018/19

24/30

Type Hints

@ Type information can be added as hints to function arguments and
return values.

@ The semantics of these annotations is undefined.
@ You can’t rely on types being checked statically!

@ The type Any stands for an unknown type.

@ Example:

Example

def greeting(name: str) -> str:
return "Hello ’ + name

ERIOT
'WAI T

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 25/30

New features in Python 3.6

Python 3.6 brings several new features, especially:
@ asynchronous generators
@ asynchronous comprehensions
@ syntax for variable annotations
@ formatted string literals

HERIOT
GwarT

°See https://docs.python.org/3/whatsnew/3.6.html
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 26/30

https://docs.python.org/3/whatsnew/3.6.html

Asynchronous generators

@ Python 3.6 adds support for native coroutines and async / await
syntax to Python 3.5

@ This removes a Python 3.5 limitation: not possible to use await
and yield in the same function body;

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 27/30

Asynchronous generators

@ Python 3.6 adds support for native coroutines and async / await
syntax to Python 3.5

@ This removes a Python 3.5 limitation: not possible to use await
and yield in the same function body;

Example

async def ticker (delay, to):
"""Yield numbers from 0 to xtox every xdelayx seadc
for i in range (to):
yield i
await asyncio.sleep (delay)

v

ERIOT
'WAI T

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 27/30

Asynchronous comprehensions

@ Python 3.6 adds support for using async forin 1ist, set, dict
comprehensions and generator expressions

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 28/30

Asynchronous comprehensions

@ Python 3.6 adds support for using async forin 1ist, set, dict
comprehensions and generator expressions

Example J

result = [1 async for i in aiter () if i % 2]

HERIOT
WALT

WA

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 28/30

Syntax for variable annotations

Example

primes: List[int] = []
captain: str # Note: no initial wvalue!

class Starship:
stats: Dict[str, int] = {}

HERIOT
T

u]
]
I
ul
it

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Formatted string literals

@ formatted string literals are similar to the format strings accepted
by str.format();

@ formatted string literals are prefixed with 'f” and are similar to the
format strings accepted by str.format().

@ they contain replacement fields surrounded by curly braces

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 30/30

Formatted string literals

@ formatted string literals are similar to the format strings accepted
by str.format();

@ formatted string literals are prefixed with 'f” and are similar to the
format strings accepted by str.format().

@ they contain replacement fields surrounded by curly braces

Example

>>> name = "Fred"

>>> f"He said his name is {name}."

"He said his name is Fred.’

>>> width = 10

>>> precision = 4

>>> value = decimal.Decimal ("12.34567")

>>> f"result: {value:{width}.{precision}}" # nested
"result: 12.35"

v

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 30/30

	Overloading
	More about Types and Classes
	Decorating Functions
	Interpretation and Compilation
	New features in Python 3.5
	Coroutines with async and await syntax
	Type Hints

	New features in Python 3.6
	Coroutines with async and await syntax

