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Overloading

@ Operators such as +, <= and functions such as abs, str and
repr can be defined for your own types and classes.

Example

class Vector (object) :
# constructor
def _ _init__ (self, coord):
self.coord = coord
# turns the object into string
def _ _str_ (self):
return str(self.coord)

vl = Vector ([1l,2,3])
# performs conversion to string as above
print (vl)
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Overloading

Example

class Vector (object) :
# constructor
def _ init_ (self, coord):
self.coord = coord
# turns the object into string:
def _ str__ (self):
s = "<"
if len(self.coord)==0:
return s+">"

else:

s = s+str(self.coord[0])
for x in self.coord[1l:]:

s = s+";"+str(x);

return s+">"

vl = Vector([1,2,3]); print (vl)

use <> as brackets,

and

v
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Overloading arithmetic operations

Example

import math # sqrt
import operator # operators as functions

class Vector (object) :

def _ _abs__ (self):

"'’Vector length (Euclidean norm) .’’’

return math.sqgrt (sum(x*x for x in self.coord))
def _ _add__ (self, other):

"7’Vector addition.’’’

return map (operator.add, self.coord, other.coord)

print (abs (vl))
print (vl + vl)

V.
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Overloading of non-symmetric operations

@ Scalar multiplication for vectors can be written either v1 5 or
5 % vl.
Example

class Vector (object) :

def _ mul__ (self, scalar):
"Multiplication with a scalar from the right.’
return map (lambda x: xxscalar, self.coord)

def _ rmul__ (self, scalar):
"Multiplication with a scalar from the left.’
return map (lambda x: scalar*x, self.coord)

@ vl x 5callsvl.__mul(5). -
@5 x vicallsvl.__rmul(5). UWAu
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Overloading of indexing

@ Indexing and segment-notation can be overloaded as well:

Example

class Vector (object) :

def _ getitem (self, index):
"7 !'Return the coordinate with number index.’’’
return self.coord[index]

def _ getslice_ (self, left, right):
"’ TReturn a subvector.’’’
return Vector (self.coord[left:right])

print v1[2]
print v1[0:2]

v
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Exercise (optional)

@ Define a class Matrix and overload the operations + und « to
perform addition and multiplication on matrices.

@ Define further operations on matrices, such as m.transpose (),
str(m), repr (m).
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Types

@ type (v) yields the type of v.

@ Type-membership can be tested like this
isinstance (val, typ). E.gQ.
>>> isinstance (5, float)
False
>>> isinstance (5., float)
True

@ This check observes type-membership in the parent class. E.g.
>>> isinstance (NameError (), Exception)
True

@ issubclass checks the class-hierarchy.
>>> issubclass (NameError, Exception)

True

>>> issubclass (int, object) HERIOT
WALT

True :
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Manual Class Generation

@ type (name, superclasses, attributes) creates a class
object with name name, parent classes superclasses, and
attributes attributes.

@ C = type(’C’, (), {}) correspondsto class C: pass.
@ Methods can be passed as attributes:

Example

def £ (self, coord):
self.coord = coord

Vec = type(’'Vec, (object,), {’'_init__ ' : f})

@ Manual class generation is useful for meta-programming, i.e.

programs that generate other programs. LT
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Properties

@ Properties are attributes for which read, write and delete

operations are defined.
@ Construction:

property (fget=None, fset=None, fdel=None, doc=None,

Example

class Rectangle (object) :

def _ init_ (self, width, height):

self.width = width
self.height = height

# this generates a read only property

area = property (

lambda self: self.width % self.height,

doc="Rectangle area

print ("Area of a 5x2 rectange: ", Rectangle(5,2).are§
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Controlling Attribute Access

@ Access to an attribute can be completely re-defined.
@ This can be achieved as follows:

__getattribute_ (self, attr)
_ _setattr_ (self, attr, wvalue)
__delattr_ (self, attr)

@ Example: Lists without append

Example

class listNoAppend(list) :
def _ getattribute_ (self, name) :
if name == ’'append’: raise AttributeError
return list._ getattribute_ (self, name)
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Static Methods

@ A class can define methods, that don’t use the current instance
(self).
» Class methods can access class attributes, as usual.
» Static methods can’t do that!.

Example

class Static:
# static method
def _ bla(): print ("Hello, world!")
hello = staticmethod(___bla)

@ The static method hello can be called like this:

Static.hello ()
Static () .hello () HERIOT
BWATT
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Class/Instance Methods

@ A class or instance method takes as first argument a reference to
an instance of this class.

Example

class Static:
val = 5
# class method

def sgr(c): return c.val x c.val
sgr = classmethod (sgr)

Static.sqgr ()
Static () .sqgr ()

@ It is common practice to overwrite the original definition of the
method, in this case sqr.
@ Question: What happens if we omit the line with classmeth%@?{%ﬁfii?
above?
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Function Decoration

@ The pattern
def f (args):
f = modifier (f)
has the following special syntax:
@modifier
def f (args):
@ We can rewrite the previous example to:
Example
class Static:
val = 5
# class method
@classmethod
def sqgr(c): return c.val x c.val

o 8

oL
@ More examples of using modifiers: Memoisation, Type-checking:"*"*

vH
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Memoisation with Function Decorators

@ We want a version of Fibonacci (below), that remembers previous
results (“memoisation”).

Example
def fib(n):
"""Compute Fibonacci number of @n@."""
if n==0 or n==1:
return 1

else:
return fib (n-1)+fib (n-2) )

@ NB: This version performs an exponential number of function
calls!
HERIOT
GWALL
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Memoisation with Function Decorators

@ To visualise the function calls, we define a decorator for tracing:
Example
def trace(f):

"""Perform tracing on function @func@."""

def trace_func(n):

print ("++ computing”, f._ name_ ," with ",
return f (n)

str(n)

return trace_func

@ and we attach this decorator to our £ib function:
Example

Qtrace
def fib(n):
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Memoisation with Function Decorators

@ Now, we implement memoisation as a decorator.
@ ldea:
» Whenever we call £ib, we remember input and output.
» Before calling a fib, we check whether we already have an output.
» We use a dictionary memo_dict, to store these values.
@ This way, we never compute a Fibonacci value twice, and runtime
becomes linear, rather than exponential!

HERIOT
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Memoisation with Function Decorators

Here is the implementation of the decorator:
Example

def memoise (f) :
"""Perform memoisation on function @func@."""
def memo_func (n, memo_dict=dict ()) :
if n in memo_dict.keys () :
return memo_dict [n]

else:
print ("++ computing", f._ _name_ ," with ", str
x = f(n)
memo_dict[n] = X
print (".. keys in memo_dict: ", str (memo_dict.K

return X

return memo_func

v

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19

18/30



Memoisation with Function Decorators

@ We attach this decorator to the £ib function like this:
Example

@memoise
def fib(n) :

@ Nothing else in the code changes!
@ See online sample memofib.py

HERIOT
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Interpretation

@ Strings can be evaluated using the function eval, which
evaluates string arguments as Python expressions.
>>> x = 5
>>> eval ("x")
5
>>> f = lambda x: eval("x * x")
>>> f(4)
16

@ The command exec executes its string argument:

>>> exec ("print (x+1)")
5

HERIOT
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Compilation
@ This performs compilation of strings to byte-code:

>>> ¢ = compile ("map (lambda x:x*2,range (10))", # c
"pseudo-file.py’, # filename for error msg
"eval’) # or ’'exec’ (module) or ’single’ (stm)

>>> eval (c)
<map object at 0x7£2e990e3d30>

>>> for 1 in eval(c): print (i)
0 ...
@ Beware of indentation in the string that you are composing!
>>> ¢c2 = compile(’’’
def bla(x):

print xxx
return x

bla (5)
. rrr, "pseudo’, ’'exec’)
>>> exec c2 ERIOT

HWATT
25 '
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New features in Python 3.5

Python 3.5 brings several new features, especially:
@ Coroutines with async and await syntax
@ A dedicated infix operator for matrix multiplication
@ Type Hints
@ Additional Unpacking Generalizations
@ % formatting support for bytes and bytearray
@ Pre-3.5 but important:
Several built-in functions now return iterators, rather than lists, e.g
dict.keys () and dict.values ()
builtin higher-order functions such as map, filter, reduce

operators such as range
if in doubt, try it in the python shell, e.g.

v

v vy VvYy

Example

>>> map (lambda x: x*%x2 , range(0,10))
<map object at 0x7£8a87cl7978>
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Coroutines with async and await syntax

@ async and await are supported, as in C#:
import asyncio
async def http_get (domain) :
reader, writer = await asyncio.open_connection (doma
writer.write (b’ \r\n’.Jjoin ([
b’GET / HTTP/1.1',
b’Host: %$b’ % domain.encode(’latin-1"),
b’ Connection: close’,
b’’, b"’
1))
async for line in reader:
print ('>>>', line)
writer.close ()
loop = asyncio.get_event_loop ()
try:
loop.run_until_complete(http_get(’example.com’mﬂuoT
finally: WATT
loop.close ()
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A dedicated infix operator for matrix multiplication

@ You can use the @ operator for infix matrix mutiplication:

Example
res = ml @ m2

@ NumPy 1.10 supports this syntax as well:
Example

ones = np.ones (3)
# builds:# array([ 1., 1., 1.])

m = np.eye (3)
# builds the unit matrix

res = ones @ m
print (res)
# builds: array([ 1., 1., 1.])
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Type Hints

@ Type information can be added as hints to function arguments and
return values.

@ The semantics of these annotations is undefined.
@ You can’t rely on types being checked statically!

@ The type Any stands for an unknown type.

@ Example:

Example

def greeting(name: str) -> str:
return "Hello ’ + name

ERIOT
'WAI T
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New features in Python 3.6

Python 3.6 brings several new features, especially:
@ asynchronous generators
@ asynchronous comprehensions
@ syntax for variable annotations
@ formatted string literals

HERIOT
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°See https://docs.python.org/3/whatsnew/3.6.html
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https://docs.python.org/3/whatsnew/3.6.html

Asynchronous generators

@ Python 3.6 adds support for native coroutines and async / await
syntax to Python 3.5

@ This removes a Python 3.5 limitation: not possible to use await
and yield in the same function body;

HERIOT
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Asynchronous generators

@ Python 3.6 adds support for native coroutines and async / await
syntax to Python 3.5

@ This removes a Python 3.5 limitation: not possible to use await
and yield in the same function body;

Example

async def ticker (delay, to):
"""Yield numbers from 0 to xtox every xdelayx seadc
for i in range (to):
yield i
await asyncio.sleep (delay)

v
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Asynchronous comprehensions

@ Python 3.6 adds support for using async forin 1ist, set, dict
comprehensions and generator expressions

HERIOT
GwarT
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Asynchronous comprehensions

@ Python 3.6 adds support for using async forin 1ist, set, dict
comprehensions and generator expressions

Example J

result = [1 async for i in aiter () if i % 2]

HERIOT
WALT
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Syntax for variable annotations

Example

primes: List[int] = []
captain: str # Note: no initial wvalue!

class Starship:
stats: Dict[str, int] = {}

HERIOT
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Formatted string literals

@ formatted string literals are similar to the format strings accepted
by str.format();

@ formatted string literals are prefixed with 'f” and are similar to the
format strings accepted by str.format().

@ they contain replacement fields surrounded by curly braces
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Formatted string literals

@ formatted string literals are similar to the format strings accepted
by str.format();

@ formatted string literals are prefixed with 'f” and are similar to the
format strings accepted by str.format().

@ they contain replacement fields surrounded by curly braces

Example

>>> name = "Fred"

>>> f"He said his name is {name}."

"He said his name is Fred.’

>>> width = 10

>>> precision = 4

>>> value = decimal.Decimal ("12.34567")

>>> f"result: {value:{width}.{precision}}" # nested
"result: 12.35"

v
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