F21SC Industrial Programming:
Python Classes & Exceptions

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

HERIOT
GWATT

UNIVERSITY

Semester 1 — 2019/20

HERIOT
5 , . . . BWATT
No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 1/30

Class attributes

@ The following example generates a class with 2 attributes, one is a
variable classvarl and one is a method methodl.

Example
class C:
"Purpose—-free demo class."
classVarl = 42
def methodl (self):
"Just a random method."

print ("classVarl = %$d" % C.classVarl)
X = C # alias the class object
x = X{() # create an instance of C
X.methodl (x) # call method (class view)
x.methodl () # call method (instance view)
YAV
@ NB: dir (C) lists all attributes of a class. PwAll

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 3/30

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Example

class D: pass

def method(self) :

Class definition

@ Class definition uses familiar syntax:

class ClassName (SuperClass_1, ..., SuperClass_n):
statement_1

statement_m
@ Executing the class definition generates a class object, which can
be referenced as ClassName.

@ The expression statement_1i generates class attributes (fields).

@ Additionally, attributes of parent classes SuperClass_i are
inherited,

@ Class objects can be called just like functions (they are callable).
@ Calling a class-object generates an instance of this object (no
new necessary!). EEALT

F20SC/F21SC — 2019/20 2/30

Post-facto setting of class attributes

@ A class is just a dictionary containing its attributes.

@ Attributes can be added or modified after having created the
instance (post-facto).

@ NB: this is usually considered bad style!

empty class object
just a function

not-yet existing attribute
same effect

print (D.classVar)
print (D.__dict__ [’"classVar’])

print (self.classVar) # ditto
d = D) # create an instance
D.method = method # add new class attributes
D.classVar = 42
d.method () # prints 42 (thrice)

Instance variables Instance attributes

@ The following example defines a binary search tree:

Example @ Instance attributes can be set post-facto:
class BinTree: Example
"Binary trees." x = C()
def _ init_ (self, label, left=None, right=None) : -1
1f.left = left x.counter =
sert. while x.counter < 10:
self.label = label
15 wichi = ciehi x.counter = x.counter % 2
Se. -9 - g print (x.counter)
def inorder (self) :
. , del x.counter
if self.left != None: self.left.inorder () ’
if self.label != None: print (self.label) @ x.__class__ refersto the class-object of x.
if self.right != None: self.right.inorder ()) @ x. dict__ lists all attributes in x.
@ _ init__is a constructor that initialises its instance attributes. @ dir (x) lists the namespace of x.
s . . HERIOT HERIOT
@ Within a method always use a qualified access as in self.at&pall EWALT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 5/30 Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 6/30
Method objects Inheritance
@ Single inheritance:
@ Bound methods know the instances they are working on. Example
>>> ¢ = C() class EmptyTree (BinTree) :
>>> c.methodl def __init_ (self):
<bound method C.methodl of <__main__ .C instance at Oxb76aeea BinTree.__init__ (self, None)

>>> c.methodl ()

@ Unbound methods need the instance as an additional, first class Leaf (BinTree):

argument. def _ _init_ (self, label):
BinTree._ _init_ (self, label)

>>> C.methodl

<unbound method C.methodl> 11 = Leaf (6)

>>> C.methodl (c)

11l.printinorder ()

V.

BEWALT @ The constructor of the parent class has to be called explicitly. {7}

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 7/30 Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 8/30

Inheritance Overloading

@ Sub-classes can add attributes. @ Attributes in sub-classes can be over-loaded.

Example @ In this example, if the tree is sorted, search is possible in

. logarithmic time:
class MemberTree (BinTree) :

def member (self, x): Example

return bool (self.label == x or class SearchTree (MemberTree) :

(self.left and self.left.member(x)) or "nnordered binary tree. """
(self.right and self.right.member (x))) def member (self, x):
return bool (self.label == x or

@ The constructor __init__ isinherited.

@ Multiple inheritance is possible in Python: Using
class C(Cl,C2,...,Cn) class attributes are first searched for
in C itself, then recursively in C1,...,Cn doing a deep search.

(self.label > x and
self.left and self.left.member (x)) or
(self.label < x and
self.right and self.right.member (x)))

HERIOT 2
BWATT WWALT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 9/30 Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 10/30
Private Variables Example: Bank Account
@ Attributes of the form __ident are local to the class (private). Example
@ Internally they are renamed into the form _ClassName__ident. class BankAccount:
"Plain bank account."
Example _ latestAccountNo = 1000; # NB: this init is done too late, w
class Bla(): def _ init_ (self, name, accountNo = 0, balance = 0):

_ _privateVar = 4

def Deposit (self, x):
def method(self) :

self.balance += x;

print (self._privateVar) def Withdraw (self, x):
print (self._ class_ ._ dict_ [if self.balance >= x:
" _Bla_ privateVar’]) self.balance —-= x;
else:
b = Bla() raise InsufficientBalance, "Balance too low: %d'"f % sel
b.method () 4 prints 4 (twice) def Sh?wBalance(self):
— print ("Current Balance: ", self.balance); :
PWATT .

N8/ UNIVERSIT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 11/30 Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 12/30

Example: Bank Account Example: Bank Account

Example Example

class ProperBankAccount (BankAccount) :
"""Bank account with overdraft."""
def _ init_ (self, name, accountNo = 0, balance = 0):

class Tester:
"""Tester class."""
def RunTrans (self,acct):
"""Run a sequence of transactions."""
if (isinstance (acct,ProperBankAccount)): # test clags memb
acct.overdraft = 200 # if ProperBankAcco
acct.ShowAccount () ;
acct.ShowBalance () ;

def Withdraw(self, x):
"""Withdrawing money from a ProperBankAccount account."""
if self.balance+self.overdraft >= x:
self.balance —= X;
else:
raise InsufficientBalance, "Balance (incl overdnaft) too los
def ShowAccount (self) :
"""Display details of the BankAccount."""
BankAccount .ShowAccount (self)

try:
acct.Withdraw (y) ;
except InsufficientBalance:

) - print ("InsufficientBalance ", acct.GetBalance(), "l for w
print ("\t with an overdraft of ", self.overdraft)
v %!7‘\\?&::1\'
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 13/30 Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 14/30
Example: Bank Account Exceptions
Example @ Exceptions can be caughtusinga try...except...
main: expression.
if _ _name_ == '__main_ ’': # check whether this module is the main m
t = Tester(); # generate a tester instance Exanuﬂe

while True:
create a basic and a propoer account; NB: no ’'new’ needed try:
mine = BankAccount ("MyAccount") ;

x = int (raw_input ("Please enter a number: "))
mineOvdft = ProperBankAccount ("MyProperAccount") ;

break
put both accounts into a list; NB: polymorphic excePt velvekeco.s i)
accts = [mine, mineOvdft] print ("Not a valid number. Try again...")

iterate over the list
for acct in accts:
run transactions on the current account except (RuntimeError, TypeError, NameError):

t.RunTrans (acct) ‘ pass HERIOT
— gwarr

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 15/30 Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 16/30

@ It is possible to catch several exceptions in one except block:

Exceptions

@ Several exception handling routines

Example

import sys

try:
f = open('myfile.txt’)
s f.readline ()
int (s.strip())
except IOError, (errno, strerror):
print ("I/O error(%s): %s" % (errno, strerror))
except ValueError:
print ("Could not convert data to an integer.")

except:

i

Example

for arg in sys.argv([l:]:

Exceptions: else

@ If no exception was raised, the optional e1se block will be

executed.

try:
f = open(arg, ’'r’)
except IOError:
print (’cannot open’, arg)

print ("Unexpected error:", sys.exc_info () [0])
raise
W
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 17/30

Raising Exceptions

@ raise Ex[, info] triggers an exception.

@ raise triggers the most recently caught exception again and
passes it up the dynamic call hierarchy.
>>> try:
raise NameError, ’'HiThere’
except NameError:
print ("An exception flew by!’)
raise

An exception flew by!

Traceback (most recent call last):
File "<stdin>", line 2, in ?

NameError: HiThere

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 19/30

HERIOT
PWALT

else:
print (arg, ’'has’, len(f.readlines()), ’lines’)
f.close ()
v
HERIOT
EWATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 18/30

Clean-up

@ The code in the final1ly block will be executed at the end of the

current t ry block, no matter whether execution has finished
successfully or raised an exception.
>>> try:
raise KeyboardInterrupt
finally:
print (’Goodbye, world!’)

Goodbye, world!
Traceback (most recent call last):
File "<stdin>", line 2, in ?

KeyboardInterrupt
HERIOT
PWALT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 20/30

Exceptions: All Elements

@ Here is an example of an try constructs with all features:

Example
def divide(x, vy):
try:
result = x / y
except ZeroDivisionError:

print ("division by zero!")
else:
print ("result is", result)
finally:
print ("executing finally clause")
HERIOT
GWATT

User-defined Exceptions

@ The user can define a hierarchy of exceptions.

@ Exceptions are classes, which inherit (indirectly) from the class
BaseException.

@ By default, the __init__ method stores its arguments to args.

@ To raise an exception, use raise Class, instance
(instance is an instance of (a sub-class of) Class).

@ Oruse raise instance as a short-hand for:
raise instance._ _class_ , instance

@ Depending on context, instance can be interpreted as
instance.args, €.g. print instance.

HERIOT
PWALT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 23/30

Pre-defined clean-up

@ with triggers automatic clean-up if an exception is raised
@ In the example below, the file is automatically closed.

Example
with open("myfile.txt") as f:
for line in f:
print (line)

@ Using with is good style, because it guarantees that there are no
unnecessary, open file handles around.

HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 22/30

User-defined Excpetions

@ The default usage of arguments can be modified.
@ In this example: use the attribute value instead of args.

Example

class MyError (Exception) :
def _ _init__ (self, wvalue):
self.value = value
def _ str (self):
return repr(self.value)

try:
raise MyError (2x2)
except MyError, e:
print ('My exception occurred, value:’, e.value)J

. THWATT
__str__ needs to be modified, too. SRS

@ Together with the constructor, the representation function HERIOT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 24/30

User-defined Exceptions

@ The following code prints B, B, D (because except B also
applies to the sub-class c of B.

Example

class B (BaseException) : pass
class C(B): pass
class D(C): pass

for ¢ in [B, C, D]:
try: raise c{()
except D: print ("D
except B: print ("B")
except C: print ("C

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20

Do-it-yourself lterator

@ To define an iterable class, you have to definean __iter__ ()
method, which returns the next element whenever the next ()

method is called.
Example

class Reverse:

"Iterator for looping over sequence backwards"

def _ init_ (self, data):
self.data = data
self.index = len (data)
def _ _iter (self):
return self
def next (self):
if self.index == 0: raise StoplIteration
self.index = self.index - 1
return self.data[self.index]

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20

lterators in detalil

= iter (obj) returns an iterator for the object obj.

@ it.next () returns the next element
@ orraises a StopIteration exception.

HERIOT
WWATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 26/30
Generators
@ A method, containing a yield expression, is a generator.
def reverse (data) :
for index in range(len(data)-1, -1, -1):
yield data[index]
@ Generators can be iterated like this.
>>> for char in reverse(’golf’): print (char)
flog
HERIOT
PWATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 28/30

Generator Expressions

@ Similar to list-comprehensions:

>>>
285
>>>
>>>
>>>
260
>>>

sum(i*i for i in range (10))

xvec = [10, 20, 30]
yvec = [7, 5, 3]
sum(x*y for x,y in zip(xvec, yvec))

unique_words = set (word
for line in page
for word in line.split{())

HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 29/30

Exercises

@ Go to the Python Online Tutor web page, www.pythontutor.com,
and do the object-oriented programming exercises (OOP1, OOP2,
OOP3).

@ Implement the data structure of binary search trees, using
classes, with operations for inserting and finding an element.

HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2019/20 30/30

www.pythontutor.com

	Classes
	Exceptions
	Iterators and Generators

