
F21SC Industrial Programming:
Functional Programming in Python

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

Semester 1 — 2021/22

0No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 1 / 21

Outline

1 Python Overview
2 Getting started with Python
3 Control structures
4 Functions
5 Classes
6 Exceptions
7 Iterators and Generators
8 Overloading
9 More about Types and Classes
10 Decorating Functions
11 Interpretation and Compilation
12 Functional Programming in Python
13 Libraries

Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 2 / 21

What is a functional language?

The distinctive feature of pure functional languages is their referential
transparency.

Definition (Stoy, 1977)
The only thing that matters about an expression is its value, and any
subexpression can be replaced by any other equal in value.
Moreover, the value of an expression is, within certain limits, the same
wherever it occurs.

Implications:
Two expressions are equal if they have the same value, e.g.
sin(6) = sin(1+5).
Value-based equality enables equational reasoning, where one
expression is substituted by another of equal value, e.g.
f(x) + f(x) = 2*f(x)
Scope matters: if x = 6, then sin(x) = sin(6) = sin(1+5)

Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 3 / 21

Properties of functional languages

Computations in functional languages are free of side effects.
See above: these languages are referentially transparent.
Computations in functional languages are state-less. This
excludes the almost ubiquitous pattern in imperative languages of
assigning first one, then another value to the same variable to
track the program state.
Functions are first class (objects). Everything you can do with
“data” can be done with functions themselves (such as passing a
function to another function).
Recursion is used as a primary control structure. In some
languages, no other “loop” construct exists.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 4 / 21

Properties of functional languages (cont’d)

There is a focus on list processing. Lists are often used with
recursion on sublists as a substitute for loops.
Functional programming either discourages or outright disallows
statements, and instead works with the evaluation of expressions
(in other words, functions plus arguments). In the pure case, one
program is one expression (plus supporting definitions).
Functional programming focusses on what is to be computed
rather than how it is to be computed.
Much functional programming utilises “higher order” functions (in
other words, functions that operate on functions that operate on
functions).

Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 5 / 21

Functional languages are free of state

Goal: Create a list of all square values of some integer numbers.
Imperative solution1:

Example
def square(x):

return x*x

input = [1, 2, 3, 4]
output = []
for v in input:

output.append(square(v))

NB: the contents of the list output changes as you iterate over
input; to understand the program, you have to follow the control-flow

1From https://marcobonzanini.com/2015/06/08/functional-programming-in-python/
Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 6 / 21

https://marcobonzanini.com/2015/06/08/functional-programming-in-python/

Functional languages are free of state (cont’d)

Functional solution2:

Example
def square(x):

return x*x

input = [1, 2, 3, 4]
output = map(square, input)

NB: in this version, there is no internal state; the result list is defined
in one go (bulk operation); you only need to understand the operation
on each element.

2From https://marcobonzanini.com/2015/06/08/functional-programming-in-python/
Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 7 / 21

https://marcobonzanini.com/2015/06/08/functional-programming-in-python/

Functionally inspired constructs in Python

1 List comprehensions
2 Set and dictionary comprehensions
3 Libraries of higher-order functions (map, reduce, zip)
4 Iterators (also called “lazy data structures”)

Material from Functional Programming in Python, by David Mertz,
O’Reilly Media, 2015.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 8 / 21

Functionally inspired constructs in Python

1 List comprehensions
2 Set and dictionary comprehensions
3 Libraries of higher-order functions (map, reduce, zip)
4 Iterators (also called “lazy data structures”)

Material from Functional Programming in Python, by David Mertz,
O’Reilly Media, 2015.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 8 / 21

List comprehensions

These change the way how you think about the data-structure: focus
on what the collection is, rather than how it is constructed.

Example
combs = [(x, y) for x in [1,2,3] for y in [1,2,3] if x != y]

This is equivalent to this more verbose code

Example
combs = []
for x in [1,2,3]:

for y in [1,2,3]:
if x != y:

combs.append((x, y))

Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 9 / 21

List comprehensions

These change the way how you think about the data-structure: focus
on what the collection is, rather than how it is constructed.

Example
combs = [(x, y) for x in [1,2,3] for y in [1,2,3] if x != y]

This is equivalent to this more verbose code

Example
combs = []
for x in [1,2,3]:

for y in [1,2,3]:
if x != y:

combs.append((x, y))

Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 9 / 21

Generator comprehensions

These describe “how to get the data”, that is not realised until one
explicitly asks for it. They implement lazy data structures.

Example
with open(file,"r") as f:

xs = (line for line in f
if re.search(’"event_type":"read"’, line))

NB: in this example, f is a generator, iterating over the file; you can’t
directly ask for its length

2See this sample source code
Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 10 / 21

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/test_gen_compr.py

Generator comprehensions (cont’d)

A traditional, more verbose, version:

Example
def proc_file(file):

"""Find read events in an issuu log file."""
f = open(file,"r")
for line in f:

if re.search(’"event_type":"read"’, line):
yield line

f.close()

Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 11 / 21

Set and dictionary comprehensions

In the same way that list comprehensions are used to define a list in a
bulk operation, set or dictionary comprehensions can be used to define
sets or dictionaries in one construct.

Example
{ i:chr(48+i) for i in range(10) }

This defines a dictionary, mapping digits (0–9) to their character codes.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 12 / 21

Libraries of higher-order functions

The most common higher-order functions are3:
map: perform the same operation over every element of a list
filter: selects elements from a list, to form a new list
reduce (in module functools): do a pair-wise combination over
all elements of a list
zip: takes one element from each iterable and returns them in a
tuple
any: checks whether any element of a list fulfills a given predicate
all: checks whether all elements of a list fulfills a given predicate
takewhile: returns elements for as long as the predicate is true
dropwhile: discards elements while the predicate is true
groupby: collects all the consecutive elements from the
underlying iterable that have the same key value

NB: in Python 3.x, all these functions are iterators; therefore, usage is
different from Python 2.x (see the examples on the next slides)

3See https://docs.python.org/3.4/howto/functional.html
Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 13 / 21

Libraries of higher-order functions

filter(test, sequence) returns a sequence, whose
elements are those of sequence that fulfill the predicate test.
E.g.
filter(lambda x: x % 2 == 0, range(10))

map(f, sequence) applies the function f to every element of
sequence and returns it as a new sequence.
map(lambda x: x*x*x, range(10))
map(lambda x,y: x+y, range(1,51), range(100,50,-1))

reduce(f, [a1,a2,a3,...,an]) computes
f(...f(f(a1,a2),a3),...,an)

reduce(lambda x,y:x*y, range(1,11))

reduce(f, [a1,a2,...,an], e) computes
f(...f(f(e,a1),a2),...,an)

Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 14 / 21

More higher-order examples

Demo

3See this sample source code
Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 15 / 21

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/cities.py

Recursion vs. Iteration

The following two versions of factorial are equivalent:

Example
def factorialR(n):
"Recursive factorial function"
assert (isinstance(n, int) and n >= 1)
return 1 if n <= 1 else n * factorialR(n-1)

def factorialI(n):
"Iterative factorial function"
assert (isinstance(n, int) and n >= 1)
product = 1
while n >= 1:
product *= n
n -= 1

return product

Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 16 / 21

Recursion vs. Iteration

As a footnote, the fastest version I know of for factorial() in
Python is in a functional programming style, and also ex-
presses the “what” of the algorithm well once some higher-
order functions are familiar:

Example
from functools import reduce
from operator import mul

def factorialHOF(n):
return reduce(mul, range(1, n+1), 1)

Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 17 / 21

Recursion vs. Iteration

For example, the quicksort algorithm is very elegantly expressed
without any state variables or loops, but wholly through recursion:

Example
def quicksort(lst):
"Quicksort over a list-like sequence"
if len(lst) == 0:
return lst

pivot = lst[0]
pivots = [x for x in lst if x == pivot]
small = quicksort([x for x in lst if x < pivot])
large = quicksort([x for x in lst if x > pivot])
return small + pivots + large

Some names are used in the function body to hold convenient values,
but they are never mutated

Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 18 / 21

The concept of “lazy data structures”

We typically think of a data structure as fully expanded data
In most cases, this matches the representation of data in memory
However, sometimes we do not want fully expanded data, but
still use it as a normal data structure
E.g. when working with large data sets, we just want to iterate
over the data
A data structure that is only expanded if and when it is used, is a
lazy data structure
Python’s generators (and to some degree iterators) allow to use
lazy data structures
In Python 3, iterators are the preferred mechanism for
constructing data structures

Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 19 / 21

Simple lazy Sieve of Eratosthenes

Example
def get_primes():

"Simple lazy Sieve of Eratosthenes"
candidate = 2
found = []
while True:

if all(candidate % prime != 0 for prime in found):
yield candidate
found.append(candidate)

candidate += 1

primes = get_primes()
#
print(next(primes), next(primes), next(primes))
(2, 3, 5)
for _, prime in zip(range(10), primes):

print(prime, end=" ")

Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 20 / 21

Summary

Python borrows many of its advanced language features from
functional languages
List and generator comprehensions, for concise, bulk operations
on data structures
Higher-order functions to encode commonly occuring compute
structures
Generators (and iterators) to get the benefits of “lazy data
structures”

Hans-Wolfgang Loidl (Heriot-Watt Univ) Python Functional F20SC/F21SC — 2021/22 21 / 21

	Functional Programming in Python

