
Data Structures and Algorithms

Background

Queues and Stacks

Goodrich & Tamassia, Chapter 5

As pre-requisite for Graph Search, we revise

two basic data structures

• Queues (FIFO)

• Stacks (LIFO)

1



Queues

The goal of a queue data structure, is to store

items in such a way that the least recent

(oldest) item is found first.

It only provides access only to the front of the

queue, retrieving the oldes element, while

always adding to the rear of the queue.

Thus, items are processed in first-in, first-out

(FIFO) order.

Examples: supermarket queue

Applications: reversing an array

2



Queues

A typical API for a queue data structure is:

enqueue(e) insert element e at the rear of the

queue

dequeue() remove and return from the

queue the element at the front

size() return the number of elements in

the queue

isEmpty() return a boolean indicating if the

queue is empty

front() return the front element in the

queue, without removing it

3



Stacks

The goal of a stack data structure, is to store

items in such a way that the most recent item

is found first.

It only provides access to the top element in

the stack (the most recent element).

Thus, items are processed in last-in, first-out

(LIFO) order.

Examples: matching parentheses

Applications: reversing an array

4



Stack

A typically API for a stack data structure is

push(e) insert element e, to the top of the

stack

pop() remove from the stack and return

the top element on the stack

size() return the number of elements on

the stack

isEmpty() return a boolean indicating if the

stack is empty

top() return the top element on the

stack, without removing it

Trying to remove an element from an empty

stack should throw an exception.

5



Iteration vs Recursion

Repetition of sequences of operations can be

achieved in two ways

• by iteration, using a loop, or

• by recursion, using function/method calls.

6



Example of Iteration

Problem: Compute the sum over all elements

of an array A of length n.

IterativeSum(A,n)

Input: An integer array A and an integer n ≥ 1,

such that A has at least n elements

Output: The sum of the first n integers in A

for (i=0, s=0; i<n; i++)

s = s + A[i]

return s

7



Example of Iteration vs Recursion

Problem: Compute the sum over all elements

of an array A of length n.

LinearSum(A,n)

Input: An integer array A and an integer n ≥ 1,

such that A has at least n elements

Output: The sum of the first n integers in A

if n=1 then

return A[0]

else

return LinearSum(A,n-1) + A[n-1]

8



Recursive Algorithms over

Recursive Data Structures

Some data structures are defined in a recursive

fashion: e.g. a List is either a null pointer, or a

value followed by another List .

For such data structures, it is natural to use

recursive algorithms: e.g. the length of a List,

is either 0 (if the List is null), or 1 plus the

length of the remaining List.

Exercise: Solve the Huffman tree decryption

exercise both using iteration and recursion.

9


