
Data Structures and Algorithms

Compression Methods

Goodrich & Tamassia Section 12.4

• Introduction

• Run-length encoding

• Variable length (Huffman) encoding

• Substitutional Compression

• Lossy compression methods: JPEG,

MPEG, MP3, ...

1



File Compression

Compression

File ----------------------> Smaller file

<----------------------

Expansion

e.g., zip/unzip; compress/uncompress

Motivation:

• Reduce file space needed (e.g., for video

clips)

• Often built into disk controllers/Database

Management Systems

• Reduce time to copy files over network

(e.g., WWW)

DVDs would only hold seconds of video if

compression methods were NOT used.

2



File Compression

Most methods exploit either:

• Repeated patterns in files, e.g.,

1010101010101010 (grey colour?)

the dog and the cat (repeated “the ”).

Similar successive frames in video.

• Frequency information: e.g.,

“e” occurs frequently, so better have short

code to store it.

3



Run-length Encoding

Simplest file compression method simply looks

for “runs” of repeated characters, e.g.,

aaaaaaabbbbbbbbbcccc

and replaces with count + relevant character:

7a8b4c

For binary files don’t even need to specify the

character; assume files always start with a zero.

111111110000111111

coded as 0846

Easy to code; simple loop reads in single

character and increments counter until different

character read in.

4



Compression Ratio

How much smaller will the compressed file be?

Comp. ratio = Size of orig. / Size of compressed

Depends on how much repetition in input file;

generally most useful for graphics files,

produced using some drawing tool, where large

areas of uniform “colour”.

But note that for binary files, must take into

account size of the number used (e.g. int is 32

bits in Java):

1111000011111000 4453

16 bits 32 bits

Compression ratio = 16/32 = 0.5 = bad!

Typical compression ratios from production

compression software like zip on text files are

around 3.

5



Variable Length Encoding

(Huffman encoding)

Based on principle that:

• Some characters are more common than

others.

• So use special short codes for them.

• Normally 1 byte required for each

character (using ASCII codes). Variable

length encoding finds codes for common

characters less than 1 byte, but codes for

rare characters more than 1 byte.

• In binary, ASCII code for ’e’ is 01100101.

But as it’s so common can we just use a

single bit? or 2 bits e.g., 1 or 01.

• How can we find an optimal set of codes

given information on how frequently

different characters occur.

6



Variable Length Encoding

Rather than 8 bits of each char, now chars will

have variable length, e.g.:

z: 16 bits

e: 2 bits

But how can we tell where one character ends

and another begins?

1011001000

Is that:

10 followed by 11001000

1011 followed by 001000

or what?

7



Variable length encoding

Avoid this problem by ensuring that you never

have two codes such that one code starts with

another code (e.g., 1010 and 10).

Can find suitable set of codes from a binary

tree:

/\

0 / \ 1

/ \

/\ E

0 / \ 1

/ \

T /\

0 / \ 1

/ \

H A

Codes read off by taking 0/1 value, depending

on whether left or right hand branch, as

descend tree.

T=00 (ie, left, left) E=1 H=010 A=011

8



Decoding easy: Descend left/right branch

according to whether next bit is 0 or 1; when

at leaf branch output character and return to

root e.g. 000101

9



Exercise: What do the following strings

correspond to?

• 01001100

• 0001001100

• 001011

Exercise: Use the tree above to encode the

following strings

• TAT

• HATE

• HEAT

• HEATH

10



Huffman Encoding

Huffman encoding is method of constructing

optimal code tree given frequency information

on characters.

Build tree from bottom up.

• Start by creating leaf nodes corresponding

to all the characters. Score of node is

number of occurences of that character.

• Repeat:

– Combine two nodes with lowest score,

creating parent node with these two as

its children.

– Score of this node is sum of scores of

children.

Until all nodes combined and have single

root.

11



Huffman Encoding

Example:

41

0 / \ 1

23 \

0 / \ 1 \

11 \ 18

0 / \ 1 \ 0/ \ 1

a:5 b:6 e:12 c:8 d:10

Rare characters A and B get longer codes than

common characters.

• Result of all this is coding scheme where

common characters have short codes.

• Good for text files (20-30% reduction).

12



Exercise: Produce a Huffman encoding for

characters with the following frequencies:

P:3 Q:2 R:8 S:10 T:12

13



Substitutional Compression

• Finds repeated sequences, not just runs.

e.g., the cat and the dog.

• Replaces later sequences with a reference

to earlier one. Either:

– Stores character sequences in a

dictionary. Replaces sequence with a

dictionary index.

– Keeps track of (say) last N bytes in

string, and replaces repeated sequence

with reference back to last occurence.

• Method used widely for text files; gzip, zip

etc use it. May get 50% compression.

14



LZW Compression

Lempel, Ziv and Welch suggested a clever method

to decide what to put in dictionary, avoiding

storing every possible sequence:

Initial dictionary contains all individual characters,

e.g. ASCII, UNICODE, or

0 1 2 3

b e t w

Go through the text file (say, d[]), character by

character:

• at each character find the longest prefix of d

that is already in the dictionary

• output the code for the prefix

• Add the prefix plus the next character to the

dictionary

15



LZW Example

d = ‘‘wewetweb’’

Code produced:

Result is that long common strings are added;

long rare ones are not.

Question: Do we need to send the dictionary

along with the encoded file?

16



Lossy Compression

• All methods so far are lossless - can restore

exact copy of original.

• For images/video lossy methods are OK,

where some fine detail lost:

– JPEG: Lossy compression for images.

– MPEG: Video compression.

• Lossy compression obviously useless for

text

17



JPEG

JPEG is an ISO standard named after the Joint

Photographic Experts Group. There are several

standards, e.g. baseline JPEG and lossless

JPEG. Lots more info available on WWW.

Roughly:

• Transform image to obtain spatial

frequencies (similar to fourier transform).

• High spatial frequencies = fine detail. So

throw them away.

• Now if restore image by doing reverse

transform, fine detail lost.. but may be

invisible to human eye.

• Can vary degree of lossiness depending on

quality/compression criteria.

• Can reduce size by factor of 5 without

perceptible loss in quality.

18



MPEG: Video Compression

MPEG produced by an ISO working party: the

Moving Picture Expert Group. Several

standards:

• MPEG-1: poor video quality

• MPEG-2: higher quality DVDROM/TV

quality

• No MPEG-3!

• MPEG-4: interactivity, mobile devices

• watch this space!

Roughly:

• Uses JPEG compression for frame.

• Looks at differences between frames, rather

than recording every one (successive frames

will be very similar).

19



Audio Compression

The widely-used MP3 audio standard is the

audio layer (Layer III) of MPEG-1.

It uses both

• lossy techniques, e.g. minimal audition

threshold, masking effect

• lossless techniques, e.g. Huffman encoding

New formats will appear, e.g. audio-only

MPEG-4 (.m4a) is an emerging standard

Lots more info on web, e.g. in wikipedia, or

http://www.mp3-tech.org/

20



Summary

Have looked at:

• Run-length

• Variable length

• Substitutional

• Lossy (image/video)

Use information on:

• Repetition (e.g., run-length, substitutional,

MPEG)

• Frequency (Variable length)

Methods are often combined, as in most

production compression software

21


