Data Structures and Algorithms
Graph Search Algorithms
Goodrich & Tamassia Sections 13.3 & 13.4
Sahni, Sections 17.8

- Breadth first and depth first search
- Search algorithms
- Returning path information

Graph Searching
We often need to find all vertices reachable from a given vertex, e.g. to find a path from one node to another, or to prove that no path exists.

3 \ 6
2 \ / / \
1 ---+ 4 ---+ 5 ---+ 9
2 \ / / \
7 ----> 8

Need methods to systematically explore all possible paths.

Exercise: Is there a path from vertices 3 to 9?
Exercise: Is there a path from vertices 2 to 7?
Exercise: How many paths are there from vertex 1 to vertex 6?
Exercise: List the vertices visited by
- a DFS starting from vertex 1
- a BFS starting from vertex 1

Breadth First vs Depth First Search
Two main search methods:

Depth First (DFS): Continue down current path until no more options. Then backup and try alternatives.
Children of current node explored before siblings.
A backtracking algorithm.

Breadth First (BFS): Explore paths of length M before paths of length M+1.
A greedy algorithm.

Easiest illustrated by considering how they apply to searching trees:

Searching Graphs

1
/ \ \
/ \ \
2 \ 3
\ / \
\ / \
\ v v \
4 ----> 5

BFS Order:
DFS Order:
N.B: BFS and DFS find the same vertices, just in different orders.
Implementing Breadth First Search

For BFS we keep the vertices still to be searched in a queue.

```
bfs(vertex v)
{
    mark v as visited
    initialise Q to be a queue containing only v
    while ( Q isn’t empty )
    {
        delete vertex w from Q
        for each u adjacent to w
            if (u not visited)
            {
                add u to Q;
                mark u as visited
            }
    }
}
```

Example:
```
bfs(1)
```
```
1
Queue:
/ \
/ \
v v
2 3
\ / \
\ / 
v v
4 ----> 5
```

Java BFS of an Adjacency-Matrix Graph

Java 1.4 implementation from Sahni. Sets reach[i] to label for all vertices reachable from vertex v.

```
public void bfs(int v, int [] reach, int label)
{
    ArrayQueue q = new ArrayQueue(10);
    reach[v] = label;
    q.put(new Integer(v));
    while (!q.isEmpty())
    {
        // remove a labeled vertex from the queue
        int w = ((Integer) q.remove()).intValue();
        // mark unreached vertices adjacent from w
        for (int u = 1; u <= n; u++)
            if (a[w][u] && reach[u] == 0)
            {
                q.put(new Integer(u));
                reach[u] = label;
            }
    }
}
```

Java BFS of an Adjacency-List Graph

```
public void bfs(int v, int [] reach, int label)
{
    ArrayQueue q = new ArrayQueue(10);
    reach[v] = label;
    q.put(new Integer(v));
    while (!q.isEmpty())
    {
        // remove a labeled vertex from the queue
        int w = ((Integer) q.remove()).intValue();
        // mark unreached vertices adjacent from w
        for (ChainNode p = aList[w].firstNode; p != null; p = p.next)
            if (a[w][p.element].vertex)
                if (reach[u] == 0)
                {
                    q.put(new Integer(u));
                    reach[u] = label;
                }
    }
}
```
A Generic BFS

Note that the code on the previous slide explicitly uses the list-implementation when traversing the adjacency list: \(p = p.\text{next} \)

Such implementation dependencies are not desirably, since any change in the representation requires a change of the code.

Make the \texttt{bfs} method implementation-independent by writing it as a member of the \texttt{Graph} class, and without reference to the representation.

Use an \texttt{iterator} to visit each adjacent vertex.

```
public void bfs(int v, int [] reach, int label)
{
    ArrayQueue q = new ArrayQueue(10);
    reach[v] = label;
    q.put(new Integer(v));
    while (!q.isEmpty())
    { // remove a labeled vertex from the queue
        int w = ((Integer) q.remove()).intValue();
        // mark all unreached vertices adjacent from w
        Iterator it = aList[w].iterator();
        while (it.hasNext())
        { // visit an adjacent vertex of w
            EdgeNode e = (EdgeNode) it.next();
            int u = e.vertex;
            if (reach[u] == 0)
            { // u is an unreached vertex
                q.put(new Integer(u));
                reach[u] = label; // mark reached
            }
        }
    }
}
```

Costs and Benefits of Generic Code

Advantages of Generic Code:

- Reduces coding effort: write a single \texttt{bfs} method, rather than many, e.g. one for adjacency-list, one for adjacency-matrix, etc.
- If efficiency is important you can always override with a implementation-specific method.

Disadvantages of Generic Code:

- May reduce time or space performance, e.g. 100-vertex graph \texttt{Graph.bfs} 29ms, where \texttt{AdjacencyDigraph.bfs} took 0.9ms

Slogan: Try to write generic code, unless there’s a very good reason.

Depth First Search

For DFS we hold the vertices to be searched in a \texttt{stack}, and can produce an elegant solution using Java’s recursion stack.

```
dfs(Vertex v)
{
    mark v as visited
    for each w adjacent to v
        if (w not visited)
            dfs(w);
}
```

Example:

```
dfs(1)
    1
    / \    dfs(2) dfs(3)
   /   \      
  v    v
  2    3
  \  /   \  /   \v  v
  \ /   \ /
  4 ----> 5
```
Java Generic DFS

Assumes `reach` and `label` are data members of the Graph class. Sets `reach[i]` to `label` for all vertices reachable from vertex `v`.

```java
public void dfs(int v, int[] reach, int label)
{
    Graph.reach = reach;
    Graph.label = label;
    rDfs(v);
}

/** recursive dfs method */
private void rDfs(int v)
{
    reach[v] = label;
    Iterator iv = iterator(v);
    while (iv.hasNext())
    {// visit an adjacent vertex of v
        int u = ((EdgeNode) iv.next()).vertex;
        if (reach[u] == 0)
        {// u is an unreached vertex
            rDfs(u);
        }
    }
}
```

Summary

- Many applications require you to find all nodes reachable from a node.
- Standard systematic methods are BFS and DFS.
- BFS and DFS are very similar but the former uses a queue, and the latter uses a stack.
- Generic programming reduces programming effort.