
SCHOOL OF MATHEMATICAL AND COMPUTER SCIENCES

Computer Science

F28HS

HARDWARE-SOFTWARE INTERFACE

MOCK EXAM

Duration: Two Hours

ANSWER THREE QUESTIONS

Answer each question in a separate script book.



Q1–Q2 GJM, Q3–Q4 HWL 2 F28HS

1. In the course we discussed the importance of an architecture’s memory hierar-
chy for the performance of a program.

(a) When a modern processor performs a load instruction, e.g. an LDR on the
ARM processor, the system goes through several steps in order to retrieve
the data from the appropriate level in the memory hierarchy. Discuss the
main steps. (6)

(b) Modern architectures arrange the available memory in a “memory hierar-
chy” to profit from fast access time on-chip and large memory space off-
chip. Answer the following questions:

• Is the hardware-cache directly addressable from the user program?
• Does the hardware-cache represent a local copy of the data in (parts of)

the main memory?
• What’s roughly the difference in access time between cache and main

memory: 1×, 5×, 10×

(6)

(c) When a program loads the data of a memory location, does it load exactly
one word? Explain your answer. What’s the impact of this data loading on
data access of neighbouring memory locations. (4)

(d) The following function takes two points as input and performs a (vector)
addition on two input points, producing a new point as a result, if both
input points are represented as cartesian coordinates. The representation of
a point is specified in the type location t: it can be either in cartesian
form, with x and y coordinates, or in polar form, with magnitude r and
angle p. Assume that both arguments of the function are in succeeding
memory locations.



Q1–Q2 GJM, Q3–Q4 HWL 3 F28HS

typedef struct cart_ {int x; int y;} cart_coord_t;
typedef struct polar_ {int r; int p;} polar_coord_t;
typedef union node {cart_coord_t c; polar_coord_t p; } either_t;

typedef struct {
either_t val;
coordinate_t ty;

} location_t;

static inline location_t *add_points_cart(location_t *pt1,
location_t *pt2) {

location_t *pt;
if ((pt1->ty == pt2->ty) && (pt1->ty == cartesian)) {

pt = (location_t *)malloc(sizeof(location_t));
pt->val.c.x = pt1->val.c.x + pt2->val.c.x;
pt->val.c.y = pt1->val.c.y + pt2->val.c.y;
pt->ty = pt1->ty;
return pt;

} else {
fprintf(stderr, "Illegal type of coordinates; should be cartesian\n");
return NULL;

}
}

Answer the following questions:

1. What is the size (in bytes) of the location t structure?
2. The RPi2 has a cache-line size of 64 bytes. How many memory lookups,

as opposed to cache lookups, have to be taken when executing the func-
tion for two points?

(4)

(e) What’s the title and the artist of the theme song for the course? (0)



Q1–Q2 GJM, Q3–Q4 HWL 4 F28HS

2. In the course we discussed in detail how the GPIO pins on a Raspberry Pi 2 can
be used to program external devices.

(a) You want to compose a simple C program, running under Raspbian on the
RPi2, to turn on an LED that is attached to GPIO pin pin. From the techni-
cal manual of the ARM Cortex-A7 processor, you pick-up the base address
of the GPIO registers and you correctly pick up the register and bit position.
You correctly compose a a C program that writes into the correct register
and bit position, however the program stops with an ’Illegal instruction’
message. Explain what’s going wrong. (6)

(b) You have a running application of an button-controlled-LED, as in the sam-
ple code from the tutorials, that uses pin 24 for the LED output and pin 23
for the button input. You are asked to change the program, so that the LED
is connect through pin 16 instead. Assume that the wiring of the RPi2 does
have an LED connected to pin 16. Answer the following questions.

To set the mode of the pin, you need to:

1. Change both the register and the bit position that is written to.
2. Change only register that is written to.
3. Change only the bit position that is written to.
4. Change nothing.

To turn on the LED on the new pin 16, you need to:

1. Change both the register and the bit position that is written to.
2. Change only register that is written to.
3. Change only the bit position that is written to.
4. Change nothing.

Having made the above changes, the modified program should work in us-
ing pin 16 instead:

1. True
2. False

(6)

(c) The following C code snippet aims to set the mode of GPIO pin 23 to 1
(output), so that it can be used to control an LED.

// setting the mode for PIN 23
fSel = 1 ; // register for setting mode of GPIO 23



Q1–Q2 GJM, Q3–Q4 HWL 5 F28HS

shift = 2 ; // bits in the register, corresponding to
GPIO 23
// C version of setting LED
(gpio + fSel) = 3 ;// Sets bits to one = output

Fill in the blank sections to select the register to access 1 , the shift value 2 ,
and the code to compose the new value for the register 3 (see the attached
DATA SHEET). (8)

END OF PAPER



Q1–Q2 GJM, Q3–Q4 HWL 6 F28HS

REGISTER TABLE


