
F28HS Hardware-Software Interface:
Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

Semester 2 — 2022/23

0No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2022/23 1 / 14

Outline

1 Tutorial 1: Using Python and the Linux FS for GPIO Control

2 Tutorial 2: Programming an LED

3 Tutorial 3: Programming a Button input device

4 Tutorial 4: Inline Assembler with gcc

5 Tutorial 5: Programming an LCD Display

6 Tutorial 6: Performance Counters on the RPi 2

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2022/23 2 / 14

Tutorial 4: Inline Assembler with gcc

So far we have developed either C or Assembler programs
separately.
Linking the compiled code of both C and Assembler sources
together we can call one from the other.
This is ok, but sometimes inconvenient because

▶ errors occur only at link time, and carry little information
▶ we can’t easily parameterise the Assembler code (e.g. with the
gpio base address)

In this tutorial we will cover how to embed assembler code into
a C program, using the gcc and the GNU toolchain

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 3 / 14

Basic ARM Assembler Instructions

MOV R0, R1 move the value from register R1 into regis-
ter R0

LDR R0, [R1] load the value from the location stored in
register R1 into register R0

STR R0, [R1] store the value in register R0 into the loca-
tion stored in register R1

ADD R0, R1, R2 add the values in registers R1 and R2, and
store the result in register R0

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 4 / 14

A Simple Example

Look-up the value in val and copy it to val3:

static volatile int val = 1024, val3;
asm(/* multi-line example of value look-up and return

*/
"\tMOV R0, %[value]\n" /* load the address

into R0 */
"\tLDR %[result], [R0, #0]\n" /* get and return

the value at that address */
: [result] "=r" (val3) /* output parameter */
: [value] "r" (&val) /* input parameter */
: "r0", "cc"); /* registers used */

fprintf(stderr, "Value lookup at address %x (expect %d)
: %d\n", &val, val, val3);

0Sample source in sample0.c; see also ARM inline assembly blog
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 5 / 14

Essentials

val provides the input
asm code returns its value
val3 receives the output

Example explained

The asm command defines a block of assembler code that is put
at that location into the C code (embedded).
The assembler code itself is written as a sequence of strings,
each starting with a TAB (\t) and ending with a newline (\n) to
match usual assembler code formatting.
Inside the strings, the code can refer to arguments provided in the
“output parameter” and “input parameter” sections.
These sections define a name (e.g. result) that can be used in
the assembler code (e.g. %[result]), and which is bound to a
concrete variable or value (e.g. val3).
Think of these in the same way as formatting strings in printf
statements.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 6 / 14

Example explained (cont’d)

For example the line
: [result] "=r" (val3)
says “the name result, which is referred to in the assembler
code as %[result], is bound to the C variable val3; moreover,
it should be represented as a register ("r")”
So, what this example code does is to load the address of the C
variable val into the register R0, and then to load the value at this
address, i.e. the contents of the C variable val, into the C variable
val3, which should be kept in a register ("r")
The last section of the asm block defines which registers are
modified by this assembler block. This information is needed by
the compiler when doing register allocation.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 7 / 14

GCC Extended Assembler Commands
Using gcc you can embed assembler code into your C programs, i.e.
write “inline assembler” code in C.
The format for the inline assembler code is

asm [volatile] (AssemblerTemplate
: OutputOperands

[: InputOperands
[: Clobbers]])

AssemblerTemplate: This is a literal string that is the template for
the assembler code. It is a combination of fixed text and tokens that
refer to the input, output, and goto parameters. OutputOperands: A
comma-separated list of the C variables modified by the instructions in
the AssemblerTemplate. An empty list is permitted.
InputOperands: A comma-separated list of C expressions read by
the instructions in the AssemblerTemplate. An empty list is permitted.
Clobbers: A comma-separated list of registers or other values
changed by the AssemblerTemplate, beyond those listed as outputs.
An empty list is permitted.

0See GCC Manual, Section “Extended Asm”
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 8 / 14

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/sample0.c
http://www.ethernut.de/en/documents/arm-inline-asm.html
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

Another Example
Using a pair data structure, the function below computes the sum of
both fields.

typedef struct {
ulong min; ulong max;

} pair_t;

ulong sumpair_asm(pair_t *pair) {
ulong res;
asm volatile(/* sum over int values */

"\tLDR R0, [%[inp], #0]\n"
"\tLDR R1, [%[inp], #4]\n"
"\tADD R0, R0, R1\n"
"\tMOV %[result], R0\n"
: [result] "=r" (res)
: [inp] "r" (pair)
: "r0", "r1", "cc");

return res;
}Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 9 / 14

Essentials

C variable pair is passed as inp
"r": keep in register
"=r": the register is written to

Modifiers and constraints to the input/output operands

When mapping names to C variables or expressions, the following
constraints and modifiers can be specified:
Constraint Specification

f Floating point registers f0 . . . f7
r General register r0 . . . r15
m Memory address
I Immediate value

Modifier Specification
= Write-only operand, usually used for all output operands
+ Read-write operand, must be listed as an output operand
& A register that should be used for output only

E.g. : [result] "=r" (res)
means that the name result should be a register in the assembler
code, and that it will be written to, by the assembler code.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 10 / 14

Extended inline assembler: Example
Using a pair data structure, the function below puts the smaller value
into the min and the larger value into the max field:

typedef struct {
ulong min; ulong max;

} pair_t;

void minmax_c(pair_t *pair) {
ulong t;
if (pair->min > pair->max) {

t = pair->min;
pair->min = pair->max;
pair->max = t;

}
}

0Sample source: sumav1 asm.c
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 11 / 14

Extended inline assembler: Example

void minmax_asm(pair_t *pair) {
pair_t *res;
asm volatile("\tLDR R0, [%[inp], #0]\n"

"\tLDR R1, [%[inp], #4]\n"
"\tCMP R0, R1\n"
"\tBLE done\n"
"\tMOV R3, R0\n"
"\tMOV R0, R1\n"
"\tMOV R1, R3\n"
"done: STR R0, [%[inp], #0]\n"
"\tSTR R1, [%[inp], #4]\n"
: [result] "=r" (res)
: [inp] "r" (pair)
: "r0", "r1", "r3", "cc");

}

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 12 / 14

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/sumav1_asm.c

Discussion

inp needs to be in a register, because it contains the base
address in a load operation (LDR)
we don’t use res in this case, but it usually needs the "=r"
modifier and constraint
the clobber list must name all registers that are modified in the
code: r0, r1, r3

we could pass in an immediate value sizeof(ulong) and use it
instead of the literal #4 to make the code less
hardware-dependent

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 13 / 14

Summary

With gcc’s in-line assembler commands (asm) you can embed
assembler code into C code.
This avoids having to write code in separate files and then link
them together.
The assembler code can be parameterised over C variables and
expressions, to simplify passing arguments.
Care needs to be taken to define constraints and modifiers
(keep data in registers or memory)
Registers that are modified need to be explicitly identified in the
“clobber list”.
It is recommended to use such in-line assembler code for CW2,
where you need to develop an applicaion in C and assembler.

Sample sources: sample0.c, and sumav1 asm.c and Gitlab repo Inline
Assembler

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 14 / 14

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/sample0.c
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/sumav1_asm.c
https://gitlab-student.macs.hw.ac.uk/f28hs-2022-23/f28hs-2022-23-students/f28hs-2022-23-sysprg-tut4-inline-asm
https://gitlab-student.macs.hw.ac.uk/f28hs-2022-23/f28hs-2022-23-students/f28hs-2022-23-sysprg-tut4-inline-asm

	Tutorial 4: Inline Assembler with gcc

