Outline

F28HS Hardware-Software Interface:

_ @ Lecture 1: Introduction to Systems Programming
Systems Programming

9 Lecture 2: Systems Programming with the Raspberry Pi

e Lecture 3: Memory Hierarchy

Hans-Wolfgang Loidl @ Memory Hierarchy
9ang @ Principles of Caches

School of Mathematical and Computer Sciences, e Lecture 4: Programming external devices
Heriot-Watt University, Edinburgh @ Basics of device-level programming
Or i Lecture 5: Exceptional Control Flow and Signals
HERI . l Lecture 6: Computer Architecture
%‘éﬁs VVAI l @ Processor Architectures Overview
~ UNIVERSITY

@ Pipelining
Semester 2 — 2025/26 Lecture 8: Interrupt Handling

Lecture 9: Miscellaneous Topics

HERIOT Lecture 10: Revision HERIOT
%No proprietary software has been used in producing these slides o b
2025/26 1/38 Hans-Wolfgang Loid! (Heriot-Watt Univ) 2025/26 2/38
Introduction to Systems Programming
LeCtu e 1 @ This course focuses on how hardware and systems software

work together to perform a task.

I ntrOd UC“ O n to SySte mS @ We take a programmer-oriented view and focus on software and

hardware issues that are relevant for developing fast, secure,

P rog ram m | n g and portable code.

@ Performance is a recurring theme in this course.
@ You need to grasp a lot of low-level technical issues in this course.
@ In doing so, you become a “power programmer”.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 3/38 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 4/38

Why is this important? Questions to be addressed

For each of these issues we will address several common questions
on the hardware/software interface:
@ Optimizing program performance:

» |s a switch statement always more efficient than a sequence of
if-else statements?

How much overhead is incurred by a function call?

Is a while loop more efficient than a for loop?

You need to understand issues at the hardware/software interface, in
order to

@ understand and improve performance and resource consumption
of your programs, e.g. by developing cache-friendly code;

@ avoid progamming pitfalls, e.g. numerical overflows;
Are pointer references more efficient than array indexes?

@ avoid security holes, e.g. buffer overflows; Wh . .
y does our loop run so much faster if we sum into a local
@ understand details of the compilation and linking process. variable instead of an argument that is passed by reference?
» How can a function run faster when we simply rearrange the
parentheses in an arithmetic expression?

vV YyVvyy

HERIOT HERIOT
GWALT WAL
Questions to be addressed Compilation of hello world
. . . printf.o
@ Understanding link-time errors: o, _ L
; . i hello.c processor hello.i | Compiler | hello.s |Assembler| hello.o Linker hello
» What does it mean when the linker reports that it cannot resolve a sooee | 0 | ooy | Y Sl (aa)
refe rence? _ . . et program ol pograms o
» What is the difference between a static variable and a global =y (hinay) foinery)
variable? @ We have seen individual phases in the compilation chain so far
» What happens if you define two global variables in different C files (e.g. assembly)

with the same name?

» What is the difference between a static library and a dynamic ® Using gcc on top level picks the starting point, depending on the

file extension, and generates binary code

library?
» Why does it matter what order we list libraries on the command @ You can view the intermediate files of the compilation using the
line? gcc flag -save-temps

» Why do some linker-related errors not appear until run time?
@ Avoiding security holes:
» How can an attacker exploit a buffer overflow vulnerability?

@ This is useful in checking, e.g. which assembler code is generated
by the compiler
@ We will be using -D flags to control the behaviour of the
HERIOT HERIOT
GWALT pre-processor on the front end GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 7/38 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 8/38

The Shell Hardware organisation of a typical system

CPU
Register le
)
. q q q 0 -PC ALU
Your window to the system is the shell, which is an interpreter for 1 Systembus Memory bus
commands issued to the system: JC g
I3 v

. /0 Mai
host> echo "Hello world" <: ﬁ memory
Hello world ﬁ
host> 1s D:D:Dj\>

< |
{} 4} /O bus Expansion slots for
other devices such
usB ‘ Graphics Disk as network adapters
controller adapter controller

The Linux Introduction in F27PX-Praxis gave you an overview of what
you can do in a shell. In this course, we make heavy usage of the
shell. Check the later sections in the on-line Linux Introduction, which
explain some of the more advanced concepts.

Mouse Keyboard Display hello executable
e o

stored on disk

9From Bryant and O’Hallaron, Ch 1

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 9/38 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg

Components The Hello World Program

The picture on the previous slide, mentions several important

concepts:

@ Processor: the Central Processing Unit (CPU) is the engine that
executes instructions; modern CPUs are complicated in order to L e T
provide additional performance (multi-core, pipelining, caches
etc); int main ()

@ Main Memory: temporary storage for both program and data; {
arranged as a sequence of dynamic random access memory printf ("hello, _world\n");
(DRAM) chips; }

© Buses transmit information, as byte streams, between _ What happens when we compile and execute this hello world
components of the hardware; the Universal Serial Bus (USB) is program?

the most common connection for external devices;

@ /O devices are in charge of input/output and represent the
interface of the hardware to the external world HERIOT

2 ovivensit

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 11/38 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg

http://www.macs.hw.ac.uk/~hwloidl/Courses/LinuxIntro/t1.html
http://www.macs.hw.ac.uk/~hwloidl/Courses/LinuxIntro/t1.html

Compiling Hello World

When we compile the program by calling

gcc —o hello hello.c

the compilation chain is executed. Note:
@ The source code of Hello World is represented in ASCII

characters and stored in a file.
@ The contents of the file is just a sequence of bytes
@ The context determines whether these bytes are interpreted as

text or as graphics etc.
When we execute the resulting binary, the next slides show what’s

happening

./hello

13/38

Lec 1: Intro to Sys Prg

Hans-Wolfgang Loidl (Heriot-Watt Univ)

2. Reading the executable from disk to main memory

CcPU

Register le
AL
System bus Memqry bus

. Main "hello,world\n"

it —)
] 1/
Bus interface <::
Bl ge memery hellocode
/0 bus 4 Expansion slots for
other devices such

as network adapters

usB Graphics Digk
controller adapter contipller
Mouse Keyboard Display
pitk hello executable
stored on disk

USIIIg direct memory access (DMA) the data travels from disk directly
HERIOT
T

to memaory

9From Bryant and O’Hallaron, Ch 1

15/38

1. Reading the he1 1o program from the keyboard

CPU
Register le
) aw
j L System bus Memory bus
§ = ’/’Kl—l/] v N
"hello"
Bus interlacam 1o 17 Main
N L memory

as network adapters

4 /0 bus {; Expansmn slots for
other devices such

‘ us! | Graphics ‘
controlNr adapter
Mouse Keyboard Display
User
types
"hello”
The shell reads . /hello from the keyboard, stores it in memory;
HERIOT
%}\l—\’["l'

then, initiates to load the executable file from disk to memory.
9From Bryant and O’Hallaron, Ch 1
Lec 1: Intro to Sys Prg 14/38

Hans-Wolfgang Loidl (Heriot-Watt Univ)

3. Writing the output string from memory to display

CPU

Register le
i
= System bus Memory bus

)
¥

Main |"hello,world\n"

]] /‘—’—’\ T D .
Bus ir I\
N 7 LPrige | N v Y| he11o code
< HH=>
4; /0 bus Expansion slots for
other devices such
Disk as network adapters
controller

UsB Graghics
controller adapter
Display
hello executable

Mouse Keyboard
stored on disk

"hello,world\n"

Once the code and data in the hello object file are loaded into memory,
the processor beglns executlng the machine-language instructions in
tine. BB WALT

9From Bryant and O’Hallaron, Ch 1

16/38

Caches

@ Copying data from memory to the CPU is slow compared to
performing an arithmetic or logic operation.

@ This difference is called processor-memory gap and it is
increasing with newer generations of processors.

@ Copying data from disk is even slower.
@ On the other hand, these slower devices provide more capacity.

@ To speed up the computation, smaller faster storage devices
called cache memories are used.

@ These cache memories (or just caches) serve as temporary
staging areas for information that the processor is likely to need in
the near future.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 17/38

Caches and Memory Hierarchy

Lo:
Smaller, Regs CPU registers hold words retrieved from
faster, cache memory.
and L1: / L1cache
cosgie{r (SRAM) L1 cache holds cache lines retrieved
(ggrag:) from the L2 cache.
devices L2: L2 cache
(SRAM)
L2 cache holds cache lines
retrieved from L3 cache
L3: L3 cache
(SRAM)
L3 cache holds cache lines
Larger, retrieved from memory.
slower, . R
and L4: Main memory
cheaper (DRAM) . X
(per byte) Main memory holds disk
storage blocks retrieved from local
devices disks.
L5: Local secondary storage
(local disks)
Local disks hold les
retrieved from disks on
remote network servers.
L6: Remote secondary storage

(distributed le systems, Web servers)

HERIOT

WAL

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 19/38

Cache memories

CPU chip
Register le
1 —)
Cache W= h—— a1y
memories —-
I — System bus Memory bus
ir) |
N [l{e] Main
Bus interface bridge memory

@ An L1 cache on the processor chip holds tens of thousands of
bytes and can be accessed nearly as fast as the register file.

@ A larger L2 cache with hundreds of thousands to millions of bytes
is connected to the processor by a special bus.

@ It might take 5 times longer for the process to access the L2 cache
than the L1 cache, but this is still 5 to 10 times faster than
accessing the main memory.

@ The L1 and L2 caches are implemented with a hardware
technology known as static random access memory (SRAM). ror
Newer systems even have three levels of cache: L1, L2, and L3¢

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 18/38

The Role of the Operating System

Application programs } Software
Operating system
Processor Main memory 1/0O devices } Hardware

@ We can think of the operating system as a layer of software
interposed between the application program and the hardware.

@ All attempts by an application program to manipulate the hardware
must go through the operating system.

@ This enhances the security of the system, but also generates
some overhead.

@ In this course we are mainly interested in the interface between
the Software and Hardware layers in the picture above. Hmor

9From Bryant and O’Hallaron, Ch 1

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 20/38

Goals of the Operating System

The operating system has two primary purposes:
@ to protect the hardware from misuse by runaway applications, and
@ to provide applications with simple and uniform mechanisms for
manipulating complicated and often wildly different low-level
hardware devices.
The operating system achieves both goals via three fundamental
abstractions: processes, virtual memory, and files.

Processes

/
Virtual memory
/
Files
Processor Main memory I 1/0 devices
HERIOT
GWAL
Processes
@ A process is the operating system’s abstraction for a running
program.
@ |t provides the illusion of having exclusive access to the entire
machine.
@ Multiple processes can run concurrently.
@ The OS mediates the access to the hardware, and prevents
processes from overwriting each other's memory.
HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 23/38

Basic Concepts

In this overview we will cover the following basic concepts:

@ Processes

@ Threads

@ Virtual memory
@ Files

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 22/38

Concurrency vs Parallelism vs Threads

@ Concurrent execution means that the instructions of one
process are interleaved with the instructions of another process.

@ The operating system performs this interleaving with a mechanism
known as context switching.

@ The context of a process consists of: the program counter (PC),
the register file, and the contents of main memory.

@ They appear to run simultaneously, but in reality at each point the
CPU is executing just one process’ operation.

@ On multi-core systems, where a CPU contains several
independent processors, the two processes can be executed in
parallel, running on separate cores.

@ In this case, both processes are genuinely running simultaneously.

@ The main goal of parallelism is to make programs run faster.

HERIOT

@ A process can itself consist of multiple threads. GWAIT

Example of Context Switching

This example shows the context switching that is happening between
the shell process and the hel 1o process, when running our hello
world example.

Process A Process B
Time l U P

read =% sercoce Context
— Kernel code } switch

Disk int ’ J User code
ISK_interrupt ===+ —— Context
Return ___, — Kernel code } switch

from read l User code

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 25/38

Categorizing different processor configurations

All processors

Multiprocessors

Uniprocessors

@ Uniprocessors, with only one CPU, need to context-switch in
order to run several processes seemingly at the same time
@ Multiprocessors replicate certain components of the hardware to
genuinely run processes at the same time:
» Muticores replicate the entire CPU, as several “cores”, each of can
run a process.
» Hyperthreaded machines replicate hardware to store the context
of several processes to speed-up context-switching.

WAL

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 27/38

HERIOT

Different Forms of Concurrency

Concurrency can be exploited at different levels:

@ Thread-level concurrency: A program explicitly creates several
threads with independent control flows. Each thread typically
represents a large piece of computation. Shared memory, or
message passing can be used to exchange data.

@ Instruction-Level Parallelism: The components of the CPU can
be arranged in a way so that the CPU executes several
instructions at the same time. For example, while one instruction
is performing an ALU operation, the data for the next instruction
can be loaded from memory (“pipelining”).

@ Single-Instruction, Multiple-Data (SIMD) Parallelism: Modern
processor architectures provide vector-operations, that allow to
execute an operation such as addition, over a sequence of values
(“vectors”), rather than just two values. Graphic cards make heavy
use of this form of parallelism to speed-up graphics operations. AT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 26/38

Virtual Memory

Virtual memory is an abstraction that provides each process with the
illusion that it has exclusive use of the main memory. Each process
has the same uniform view of memory, which is known as its virtual
address space.

Memory
invisible to
user code

Kernel virtual memory [

User stack
(created at runtime)

1

Memory mapped region for
shared libraries

printf function

I

Run-time heap
(created by malloc)

Read/write data
Loaded from the
hello executable le

Read-only code and data

0x08048000 (32)
0x00400000 (64)

HERIOT
GWALT

avarad for tha NQ | lecar
Lec 1: Intro to Sys Prg 28/38

Virtual Memory i
The lower region holds the data for the user. Virtual Memory

The user space is separated into several areas, with different roles:
@ The code and data area: contains the progam code and
initialised data, starting at a fixed address. The program code is
read only, the data is read/write.
@ The heap contains dynamically allocated data during the
execution of the program. In high-level languages, such as Java,

@ Virtual memory gives the illusion of a continuous address space,
exceeding main memory, with exclusive access.

any new will allocate in the heap. In low-level languages, such as @ |t abstracts over the limitations of physical main memory and
C, you can use the library function mz11oc to dynamically allocate allows for several parallel threads to access the same address
data in the heap. space.

@ The shared data section holds dynamically allocated data, @ We will discuss this aspect in more detail in the Lecture on
managed by shared libraries. “Memory Hierarchy”.

@ The stack is a dynamic area at the top of the memory, growing
downwards. It is used to hold the local data of functions whenever
a function is called during program execution.

@ The topmost section of the virtual memory is allocated to kernel

HERIOT HERIOT
virtual memory, and only accessible to the OS kernel. G L Ah
Aside The Linux project F|IeS

In August 1991, a Finnish graduate student named Linus Torvalds modestly announced a new Unix-like
operating system kernel:

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Hewsgroups: comp.os.minix
Subject: What would you like to see most in minix?

Summary: small poll for my new operating system @ Afileisa sequence of byteS-

Date: 25 Aug 51 20:57:08 GMT . . i
@ A file can be used to model any I/O device: disk, keyboard,
mouse, network connections etc.

@ Files can also be used to store data about the hardware (/proc/

Hello everybody out there using minix =

I'm doing a (free) cperating system (just a hobby, won't be big and
professienal like gmu) for 3B6(486) AT clones. This has been brewing
since April, and is starting to get ready. I'd like any feedback on

things people like/dislike in minix, as my OS resembles it somewhat filesyStem), or to control the SyStem, e.g. by ertlng to files.
(same physical layout of the file-system (due to practical reasons) . . .
among other things). @ Thus, the concept of a file is a very powerful abstraction that can

_ be used for many different purposes.
I've currently ported bash{(1.08) and gcc{1.40), and things seem to work.

This implies that I'll get something practical within a few months, and
I'd like to know what features most people would want. Any suggestions
are welcome, but I won't promise I'll implement them :-)

Linus (torvaldsékruumna.helsinki.fi)

HERIOT HERIOT
Gwarr Gwarr

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 31/38 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 32/38

External Devices A network is another I/O device

@ An important task of the OS/code is to interact with external

devices. CPU chip
@ We will see this in detail on the Rpi2 Y
@ From the OS point of view, external devices and network ALY
System bus Memory bus

connections are files that can be written to and read from.

@ When writing to such a special file, the OS sends the data to the < :“ “ Man

corresponding network device
@ When reading from such a special file, the OS reads data from the < ﬁ} EXPT”S‘“ 2ot
corresponding network device {} {} /O bus {}
@ This file abstraction simplifies network communication, but is also USB Graphics Disk ’ Network
a source of additional communication overhead. ‘%°”“°”e} adapter controller d I
@ Therefore, high performance libraries tend to avoid this “software Mouse Keyboard - Monitor
stack” of implementing file read/write in the OS, but rather directly
read to and write from the device (|n the same way that we will t?l?kl()’l‘ The network can be viewed as just another I/O device. ERIOT
using these devices) GWALT BWALT
The Role of Abstraction Some abstractions provided by a computer system
@ In order to tackle system complexity abstraction is a key concept.
@ For example, an application program interface (API), abstracts
from the internals of an implementation, and only describes its Virtual machine
core functionality. —
@ Java class declaration or C prototypes are programming language Processes
e . Instruction set
features to facilitate abstraction. architecture Virtual memory
@ The instruction set architecture abstracts over details of the 4 Files
hardware, so that the same instructions can be used for different
Operating system Processor Main memory l 1/0 devices

realisations of a processor.
@ On the level of the operating system, key abstractions are

» processes (as abstractions of a running program),)) . .
» files (as abstractions of /0), and A major theme in computer systems is to provide abstract

» virtual memory (as an abstraction of main memory). representations at different levels to hide the complexity of the actual

@ A newer form of abstraction is a virtual machine, which abstracts implementations.

HERIOT HERIOT

over an entire computer. BWALL BWALL

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 35/38 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 36/38

Reading List: Systems Programming

¥ David A. Patterson, John L. Hennessy. “Computer Organization
and Design: The Hardware/Software Interface”,
ARM edition, Morgan Kaufmann, Apr 2016. ISBN-13:
978-0128017333.

¥ Randal E. Bryant, David R. O’Hallaron “Computer Systems: A
Programmers Perspective”,
3rd edition, Pearson, 7 Oct 2015. ISBN-13: 978-1292101767.

® Bruce Smith “Raspberry Pi Assembly Language: Raspbian’,
CreateSpace Independent Publishing Platform; 2 edition, 19 Aug
2013. ISBN-13: 978-1492135289.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 37/38

Other Online Resources

@ Gordon Henderson et al “WiringPi library: GPIO Interface library
for the Raspberry Pi”,

® Valvers “Bare Metal Programming in C”,
http://www.valvers.com/open-software/raspberry-pi/step01-bare-
metal-programming-in-cpt1/

¥ Alex Chadwick, Univ of Cambridge “Baking Pi”,
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 38/38

http://www.valvers.com/open-software/raspberry-pi/step01-bare-metal-programming-in-cpt1/
http://www.valvers.com/open-software/raspberry-pi/step01-bare-metal-programming-in-cpt1/
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os

	Lecture 1: Introduction to Systems Programming
	Reading List

