
F28HS Hardware-Software Interface:
Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

Semester 2 — 2025/26

0No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2025/26 1 / 31

Outline

1 Lecture 1: Introduction to Systems Programming

2 Lecture 2: Systems Programming with the Raspberry Pi

3 Lecture 3: Memory Hierarchy
Memory Hierarchy

Principles of Caches

4 Lecture 4: Programming external devices
Basics of device-level programming

5 Lecture 5: Exceptional Control Flow

6 Lecture 6: Computer Architecture
Processor Architectures Overview

Pipelining

7 Lecture 7: Code Security: Buffer Overflow Attacks

8 Lecture 8: Interrupt Handling

9 Lecture 9: Miscellaneous Topics

10 Lecture 10: Revision

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2025/26 2 / 31

Lecture 3:
Memory Hierarchy

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 3 / 31

Memory Hierarchy: Introduction

Some fundamental and enduring properties of hardware and
software:

▶ Fast storage technologies cost more per byte, have less capacity,
and require more power (heat!).

▶ The gap between CPU and main memory speed is widening.
▶ Well-written programs tend to exhibit good locality.

These fundamental properties complement each other beautifully.
They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

0Lecture based on Bryant & O’Hallaron, 3rd edition, Chapter 6
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 4 / 31

Memory Hierarchy

Our view of the main memory so far has been a flat one, ie.
access time to all memory locations is constant.
In modern architecture this is not the case.
In practice, a memory system is a hierarchy of storage devices
with different capacities, costs, and access times.
CPU registers hold the most frequently used data.
Small, fast cache memories nearby the CPU act as staging areas
for a subset of the data and instructions stored in the relatively
slow main memory.
The main memory stages data stored on large, slow disks, which
in turn often serve as staging areas for data stored on the disks or
tapes of other machines connected by networks

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 5 / 31

Caches and Memory Hierarchy

Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,

and
cheaper
(per byte)
storage
devices

Remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers.

Main memory holds disk
blocks retrieved from local
disks.

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved from
cache memory.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and

costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
 retrieved from memory.

L6:

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 6 / 31

Discussion

As we move from the top of the hierarchy to the bottom, the devices
become slower, larger, and less costly per byte.

The main idea of a memory hierarchy is that storage at one level
serves as a cache for storage at the next lower level.

Using the different levels of the memory hierarchy efficiently is crucial
to achieving high performance.

Access to levels in the hierarchy can be explicit (for example when
using OpenCL to program a graphics card), or implicit (in most other
cases).

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 7 / 31

The importance of the memory hierarchy

For the programmer this is important because data access times
are very different:

▶ Register: 0 cycles
▶ Cache: 1–30 cycles
▶ Main memory: 50–200 cycles

We want to store data that is frequently accessed high in the
memory hierarchy

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 8 / 31

Locality

Principle of Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used recently
Temporal locality: Recently referenced items are likely to be
referenced again in the near future.
Spatial locality: Items with nearby addresses tend to be
referenced close together in time

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 9 / 31

Locality Example: sum-over-array

ulong count; ulong sum;
for (count = 0, sum = 0; count<n; count++)

sum += arr[count];
res1->count = count;
res1->sum = sum;
res1->avg = sum/count;

}
Data references

▶ Reference array elements in succession (stride-1 reference
pattern). spatial locality

▶ Reference variable sum each iteration. temporal locality
Instruction references

▶ Reference instructions in sequence. spatial locality
▶ Cycle through loop repeatedly. spatial locality

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 10 / 31

Importance of Locality

Being able to look at code and get a qualitative sense of its locality is a
key skill for a professional programmer!

Which of the following two version of sum-over-matrix has better
locality (and performance):

Traversal by rows: Traversal by columns:
int i, j; ulong sum;
for (i = 0; i<n; i++)
for (j = 0; j<n; j++)

sum += arr[i][j];

int i, j; ulong sum;
for (j = 0; j<n; j++)
for (i = 0; i<n; i++)
sum += arr[i][j];

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 11 / 31

Caches

Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.
Fundamental idea of a memory hierarchy:

▶ For each k , the faster, smaller device at level k serves as a cache
for the larger, slower device at level k + 1.

Why do memory hierarchies work?
▶ Because of locality, programs tend to access the data at level k

more often than they access the data at level k + 1.
▶ Thus, the storage at level k + 1 can be slower, and thus larger and

cheaper per bit.

Big Idea: The memory hierarchy creates a large pool of storage
that costs as much as the cheap storage near the bottom, but that
serves data to programs at the rate of the fast storage near the
top.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 12 / 31

General Cache Concepts

0From Bryant and O’Hallaron, Ch 6
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 13 / 31

General Cache Concepts: Hit

0From Bryant and O’Hallaron, Ch 6
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 14 / 31

General Cache Concepts: Miss

0From Bryant and O’Hallaron, Ch 6
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 15 / 31

General Cache Concepts: Miss

0From Bryant and O’Hallaron, Ch 6
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 16 / 31

Types of Cache Misses

Cold (compulsory) miss:
▶ Cold misses occur because the cache is empty.

Conflict miss:
▶ Most caches limit blocks at level k+1 to a small subset (sometimes

a singleton) of the block positions at level k.
⋆ E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

▶ Conflict misses occur when the level k cache is large enough, but
multiple data objects all map to the same level k block.

⋆ E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

Capacity miss:
▶ Occurs when the set of active cache blocks (working set) is larger

than the cache.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 17 / 31

Examples of Caching in the Memory Hierarchy

0From Bryant and O’Hallaron, Ch 6
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 18 / 31

Summary

The speed gap between CPU, memory and mass storage
continues to widen.
Well-written programs exhibit a property called locality.
Memory hierarchies based on caching close the gap by exploiting
locality.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 19 / 31

Principles of Caches

Cache memories are small, fast SRAM-based memories
managed automatically in hardware.

▶ Hold frequently accessed blocks of main memory
CPU looks first for data in caches (e.g., L1, L2, and L3), then in
main memory.
Typical system structure:

Main
memory

I/O
bridgeBus interface

ALU

Register file
CPU chip

System bus Memory bus

Cache
memories

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 20 / 31

ARM Cortex A7 Cache Hierarchy

A cache is a small, fast block of memory that sits between the core and main memory. It holds
copies of items in main memory. Accesses to the cache memory happen significantly faster than
those to main memory. Because the cache holds only a subset of the contents of main memory,
it must store both the address of the item in main memory and the associated data. Whenever
the core wants to read or write a particular address, it will first look for it in the cache. If it finds
the address in the cache, it will use the data in the cache, rather than having to perform an
access to main memory. This significantly increases the potential performance of the system, by
reducing the effect of slow external memory access times. It also reduces the power
consumption of the system. NB: In many ARM-based systems, access to external memory will
take 10s or 100s of cycles.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 21 / 31

ARMv7-A Memory Hierarchy

See ARM Architcture Reference, Ch A3, Fig A3.6, p.157

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 22 / 31

Caching policies: direct mapping

The caching policy determines how to map addresses (and their
contents) in main memory to locations in the chache.
Since the cache is much smaller, several main memory addresses
will be mapped to the same cache location.
The role of the caching policy is to avoid such clashes as much as
possible, so that the cache can be used for most memory
read/write operations.
The simplest caching policy is a direct mapped cache:

▶ each location in main memory always maps to a single location in
the cache

▶ this policy is simple to implement, and therefore requires little
hardware

▶ a weakness of the policy is, that if two frequently used memory
addresses map to the same cache address, this results in a lot of
cache misses (“cache thrashing”)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 23 / 31

Direct mapped cache

0See ARM Programmer’s Guide, Ch 8, Fig 8.4, p 113
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 24 / 31

Caching policies: set-associative

To eliminate the weakness of the direct-mapped caches, a more
flexible set-associative cache can be used.
With this policy, one memory location can map to one of several
ways in the cache.
Conceptually, each way represents a slice of the cache.
Therefore, a main memory address can be mapped to any of
these slices in the cache.
Inside one such slice, however, the location is fixed.
If the system uses n such slices (“ways”) it is called an n-way
associative cache.
This avoids cache thrashing in cases where no more than n
frequently used variables (memory locations) occur.

NB: The ARM Cortex A7 uses a 4-way set associative data cache,
with cache size of 32kB, and a cache line size of 8 words

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 25 / 31

Set-associative cache

0See ARM Programmer’s Guide, Ch 8, Fig 8.5, p 115
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 26 / 31

ARM cache features

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 27 / 31

ARM cache features

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 28 / 31

ARM Cortex A7 Structure

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 29 / 31

Example: Cache friendly code

See the background reading material on the web page:
Web aside on blocking in matrix multiplication

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 30 / 31

Summary: Memory Hierarchy

In modern architectures the main memory is arranged in a
hierarchy of levels (“memory hierarchy”).
Levels higher in the hierarchy (close to the processor) have fast
access time but small capacity.
Levels lower in the hierarchy (further from the processor) have
slow access time but large capacity.
Modern systems provide hardware (caches) and software
(paging; configurable caching policies) support for managing the
different levels in the hierarchy.
The simplest caching policy uses direct mapping
Modern ARM architectures use a more sophisticated set
associative cache, that reduces “cache thrashing”.
For a programmer it’s important to be aware of the impact of
spatial and temporal locality on the performance of the program.
Making good use of the cache can reduce runtime by a factor of
ca. 3 as in our example of blocked matrix multiplication.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 31 / 31

http://csapp.cs.cmu.edu/2e/waside/waside-blocking.pdf

	Lecture 3: Memory Hierarchy
	Memory Hierarchy

