Outline
F28HS Hardware_SOftware Interface: 0 Lecture 1: Introduction to Systems Programming

SyStemS Programming 9 Lecture 2: Systems Programming with the Raspberry Pi
© Lecture 3: Memory Hierarchy

_ @ Memory Hierarchy
Hans-Wolfgang Loidl @ Principles of Caches

e Lecture 4: Programming external devices

School of Mathematical and Computer Sciences, @ Basics of device-level programming

Heriot-Watt University, Edinburgh

HERIOT
EWAT 1

UNIVERSITY

Lecture 5: Exceptional Control Flow

Lecture 6: Computer Architecture
@ Processor Architectures Overview
@ Pipelining
Lecture 7: Code Security: Buffer Overflow Attacks

Semester 2 — 2025/26 Lecture 8: Interrupt Handling

Lecture 9: Miscellaneous Topics

. _ _ _ Lecture 10: Revision B WALT
°No proprietary software has been used in producing these slides o

Hans-Wolfgang Loidl (Heriot-Watt Univ) 2025/26 1/31 Hans-Wolfgang Loidl (Heriot-Watt Univ) 2025/26 2/31

Memory Hierarchy: Introduction

@ Some fundamental and enduring properties of hardware and

Lecture 3: Software:

» Fast storage technologies cost more per byte, have less capacity,
M H 0 h and require more power (heat!).
e m O ry |e ra rC y » The gap between CPU and main memory speed is widening.
» Well-written programs tend to exhibit good locality.
@ These fundamental properties complement each other beautifully.

@ They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

OLecture based on Bryant & O’Hallaron, 3rd edition, Chapter 6 \
Lec 3: Memory Hierarchy 3/31 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 4/31

Memory Hierarchy

@ Our view of the main memory so far has been a flat one, ie.
@ access time to all memory locations is constant.
@ In modern architecture this is not the case.

@ In practice, a memory system is a hierarchy of storage devices
with different capacities, costs, and access times.

@ CPU registers hold the most frequently used data.

@ Small, fast cache memories nearby the CPU act as staging areas
for a subset of the data and instructions stored in the relatively
slow main memory.

@ The main memory stages data stored on large, slow disks, which
in turn often serve as staging areas for data stored on the disks or
tapes of other machines connected by networks

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Lec 3: Memory Hierarchy 5/31

Discussion

As we move from the top of the hierarchy to the bottom, the devices
become slower, larger, and less costly per byte.

The main idea of a memory hierarchy is that storage at one level
serves as a cache for storage at the next lower level.

Using the different levels of the memory hierarchy efficiently is crucial
to achieving high performance.

Access to levels in the hierarchy can be explicit (for example when
using OpenCL to program a graphics card), or implicit (in most other
cases).

Lec 3: Memory Hierarchy 7/31

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Caches and Memory Hierarchy

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3:

LO:

cache memory.

L1: / L1cache
(SRAM)

L2 cache
(SRAM)

Regs } CPU registers hold words retrieved from

L1 cache holds cache lines retrieved

] from the L2 cache.

L3 cache
(SRAM)

retrieved from L3 cache

Larger,
slower, .
and L4:
cheaper
(per byte)
storage

Main memory
(DRAM)

} L2 cache holds cache lines

retrieved from memory.

devices

L5:

Local secondary storage
(local disks)

|

} L3 cache holds cache lines

Main memory holds disk
blocks retrieved from local
disks.

retrieved from disks on

L6:

Remote secondary storage

(distributed le systems, Web servers)

Local disks hold les
remote network servers.

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Lec 3: Memory Hierarchy

The importance of the memory hierarchy

are very different:

» Register: 0 cycles
» Cache: 1-30 cycles
» Main memory: 50—200 cycles

Hans-Wolfgang Loidl (Heriot-Watt Univ)

@ We want to store data that is frequently accessed high in the
memory hierarchy

Lec 3: Memory Hierarchy

@ For the programmer this is important because data access times

8/31

Locality

@ Principle of Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used recently

@ Temporal locality: Recently referenced items are likely to be
referenced again in the near future.

@ Spatial locality: ltems with nearby addresses tend to be
referenced close together in time

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 9/31

Importance of Locality

Being able to look at code and get a qualitative sense of its locality is a
key skill for a professional programmer!

Which of the following two version of sum-over-matrix has better
locality (and performance):

Traversal by rows: Traversal by columns:

int i1, j; ulong sum; int i, j; ulong sum;
for (1 = 0; i<n; i++) for (j = 0; j<n; Jj++)
for (j = 0; j<n; Jj++) for (1 = 0; i<n; i++)

sum += arr[i][j]; sum += arr[i][j];

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 11/31

Locality Example: sum-over-array

ulong count; ulong sum;
for (count = 0, sum = 0; count<n; count++)
sum += arr[count];

resl->count = count;
resl->sum = sum;
resl->avg = sum/count;

}
@ Data references

» Reference array elements in succession (stride-1 reference

pattern). spatial locality
» Reference variable sum each iteration. temporal locality
@ Instruction references
» Reference instructions in sequence. spatial locality
» Cycle through loop repeatedly. spatial locality
HERIOT
BWATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 10/31
Caches

@ Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.
@ Fundamental idea of a memory hierarchy:
» For each k, the faster, smaller device at level k serves as a cache
for the larger, slower device at level k + 1.
@ Why do memory hierarchies work?

» Because of locality, programs tend to access the data at level k
more often than they access the data at level k + 1.

» Thus, the storage at level k + 1 can be slower, and thus larger and
cheaper per bit.

@ Big Idea: The memory hierarchy creates a large pool of storage
that costs as much as the cheap storage near the bottom, but that
serves data to programs at the rate of the fast storage near the
top.

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 12/31

General Cache Concepts General Cache Concepts: Hit

ller, faster, more expensive Request: 14 Data in block b is needed
Cache I 4 ” 9 ” 10 ” 3 I memory caches a subset of
the blocks
Block b is il he:
cache |[&][o Jma][5]| eckbisincache
Data is copied in block-sized :
transfer units
Larger, slower, cheaper memory
Memory I 0 || 1 ” 2 ” 3 I viewed as partitioned into “blocks”
I L s Il s J[7 | Memory [[o [2 |[2 |[s]
I Lo |l 20 |[11 | La [s J[e [7]
L2 |[13 [24 J[35 | [Lo [20 |[1 |
s0s0cssssssssnssce I 12 ” 13 ” 14 ” 15 I
00000 OOOOSIOIOGOOIOINOSOITODS

°From Bryant and O'Hallaron, Ch 6 °From Bryant and O’Hallaron, Ch 6
Lec 3: Memory Hierarchy 13/31 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 14/31

General Cache Concepts: Miss General Cache Concepts: Miss
Request: 12 Data in block b is needed Request: 12 Data in block b is needed
Block b is not il he: Block b is not il he:
Cache |[E s J[ma][5]| Slckbisnotincache Cache |[E][z J[3]| Sleckbisnotincache
) Block b is fetched from) Block b is fetched from
Izl Request: 12 memory Izl Request: 12 memory
Block b is stored in cache
Memory |0 || 1 |[2 |[3 | Memory ([0 J[2 J[2 |l 3 || o iement policy:
I 4 ” 5 ” 6 II 7 I I 4 ” 5 ” 6 II 7 I determines where b goes
* Replacement policy:
8 T 2 ::1_0::L: t 8 T+ 2 ::1—0::L determines which block
12 13 14 15 12 13 14 15 gets evicted (victim)
000 sSOOROIOORTOIOIRONORNDS 000 ROOOOOORTOIOIRNONDONDS

9From Bryant and O’Hallaron, Ch 6 9From Bryant and O’Hallaron, Ch 6

Types of Cache Misses

Examples of Caching in the Memory Hierarchy

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By
° COId (compl'"sory) miss: Registers 4-8 bytes words CPU core 0 | Compiler
» Cold misses occur because the cache is empty. LB Address translations | On-Chip TLB 0| Hardware
@ Conflict miss:
L. . L1 cache 64-bytes block On-Chip L1 1 | Hardware
» Most caches limit blocks at level k+1 to a small subset (sometimes 12 cache 64 bytes block on/Off-Chip 12 10| Hardware
a smgleton) Of the bIOCk pOSItIOﬂS at Ievell k. . Virtual Memory 4-KB page Main memory 100 | Hardware + 0S
* E.g. Block i at level k+1 must be placed in block (i mod 4) at level k. Buffer cache parts of files Main memory 100 0%

» Conflict misses occur when the level k cache is large enough, but

. : Disk cache Disk sectors Disk controller 100,000 | Disk firmware
multlple data ObjeCtS a” map tO the same Ievel k blOCk' Network buffer Parts of files Local disk 10,000,000 | AFS/NFS client
* E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time. cache
Y Capacity miss. Browser cache Web pages Local disk 10,000,000 | Web browser
» Occurs when the set of active cache blocks (working set) is larger Web cache Web pages Remote server disks 1,000,000,000 | Web proxy
than the cache. server
HERIOT HERIOT
GWALT PWaAll
%From Bryant and O’Hallaron, Ch 6
Lec 3: Memory Hierarchy 17/31 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 18/31
Summary Principles of Caches
@ Cache memories are small, fast SRAM-based memories
managed automatically in hardware.
» Hold frequently accessed blocks of main memory
@ CPU looks first for data in caches (e.g., L1, L2, and L3), then in
@ The speed gap between CPU, memory and mass storage main memory.
continues to widen. @ Typical system structure:
@ Well-written programs exhibit a property called locality. CPU chip
. . . . Register le
@ Memory hierarchies based on caching close the gap by exploiting Cj
Ioca“tY' mles System bus Memt]ry bus
e R,
HERIOT HERIOT
SWATT SWATT
Lec 3: Memory Hierarchy 19/31 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 20/31

ARM Cortex A7 Cache Hierarchy ARMv7-A Memory Hierarchy

Cora
Intemal cache Virtual o
{L1 Cacha) Main memory addness Address Physical address
t translation
Extemal cache CP15 configuration
HEzD), and control
t c r y
Level 1 Level 2
| Bus Processor . o Cache Cacl Level 3
R15 Instruction | - " DRAM
Figure 8-1 A basic cache arrangement Tetch SRAM
= = Lm Flﬁh 4
A cache is a small, fast block of memory that sits between the core and main memory. It holds RO Store | +—* 1 el o ROM e forexampie,
copies of items in main memory. Accesses to the cache memory happen significantly faster than CF card, disk

those to main memory. Because the cache holds only a subset of the contents of main memory,
it must store both the address of the item in main memory and the associated data. Whenever Figure A3-6 Multiple levels of cache in a memory hierarchy
the core wants to read or write a particular address, it will first look for it in the cache. If it finds

the address in the cache, it will use the data in the cache, rather than having to perform an

access to main memory. This significantly increases the potential performance of the system, by See ARM Architcture Reference, Ch A3, Fig A3.6, p.157

reducing the effect of slow external memory access times. It also reduces the power

consumption of the system. NB: In many ARM-based systems, access to external memory will; HERIOT
take 10s or 100s of cycles. e e
Caching policies: direct mapping Direct mapped cache
@ The caching policy determines how to map addresses (and their
contents) in main memory to locations in the chache. Main memory Cache
- : - ox0000.0000 [T+ | - 1 1 1]
@ Since the cache is much smaller, several main memory addresses oxonco.gamn | 1T 1 1 N
i 1 - i i i ——— 7 i i i
will be mapped to the same cache location. ox0000.0020 |+ 1 1 -—f{r_p .
@ The role of the caching policy is to avoid such clashes as much as oxoooo.0030 [T b LA T T
possible, so that the cache can be used for most memory 0x0000.0040 || ¢ | /
read/write operations. 0x0000.0050 | | | /
. . . . -] i 1 F
@ The simplest caching policy is a direct mapped cache: Ox0000.0060 | : & ! /
» each location in main memory always maps to a single location in 0x0000.0070) | { | s
the cache 0x0000. 0080 o
» this policy is simple to implement, and therefore requires little 0x0000.0090 | | | |
hardware o
» a weakness of the policy is, that if two frequently used memory Figure 8-4 Direct mapped cache operation
addresses map to the same cache address, this results in a lot of
cache misses (“cache thrashing”) EEWATT BT

9See ARM Programmer’s Guide, Ch 8, Fig 8.4, p 113

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 23/31 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 24/31

NB: The ARM Cortex A7 uses a 4-way set associative data cache,

Caching policies: set-associative

To eliminate the weakness of the direct-mapped caches, a more
flexible set-associative cache can be used.

With this policy, one memory location can map to one of several
ways in the cache.

Conceptually, each way represents a slice of the cache.
Therefore, a main memory address can be mapped to any of

these slices in the cache.

Inside one such slice, however, the location is fixed.

If the system uses n such slices (“ways”) it is called an n-way
associative cache.
This avoids cache thrashing in cases where no more than n
frequently used variables (memory locations) occur.

IEI_ERI()'I
. . . . EWAT
with cache size of 32kB, and a cache line size of 8 words e
k)
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 25/31
Table 8-1 Cache features of Cortex-A series processors
Processor
Cortex-A5 Cortex-A7 Cortex-A8 Cortex-A9 Cortex-A12 Cortex-A15
L2 Cache External Integrated Integrated External Integrated Integrated
L2 Cache size 128KB 1o OKB to IMB* 256KB 1o BMB 512KBto 4MB*
IMB2
Cache PIPT PIPT PIPT PIPT PIPT PIPT
Implementation
(Data)
Cache VIPT VIPT VIPT VIPT VIPT PIPT
Implementation
(Instruction)
L1 Cachesize 4K o 64K* BKB 1o 64KB* 16/32KB* I6KBA2KB/64KE* 32KB 32KB
{datay
Cache size 4K o 64K* BKBto64KB* 16/32KB? I6KB32KB/64KB: 32KBor 64KE 32KB
(Instp
L1 Cache Zoway set Z-way sel Away set Soway set Away sel Joway sel
Siructure associalive associalive associative associative (Inst) associative associative
{Inst) {Inst)p Joway set (Inst) {Inst)
4-way set Aoway sel associative (Data} 4-way set Zoway set
associative associative associative associative
{Data} (Data) (Data) (Data)
L2 Cache 8-way set 8-way set 16-way set 16-way
Structure associative associative associative associative
HERIOT
WAL
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 27/31

0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000

.0000
.0010
.0020
L0030
.0040
.0050
.0060
.0070
.0080
.0090

Set-associative cache

Main memory

Cache way 0

Cache way 1

Figure 8-6 A 2-way set-associative cache

9See ARM Programmer’s Guide, Ch 8, Fig 8.5, p 115
Hans-Wolfgang Loidl (Heriot-Watt Univ)

ARM cache features

Lec 3: Memory Hierarchy

Table 8-1 Cache features of Cortex-A series processors (continued)

Processor
Cortex-A5 Cortex-A7 Cortex-A8 Cortex-A9 Cortex-A12 Cortex-A15

Cache line 8 8 16 B 16

(words)

Cache line 32 64 64 3z 64 64

(bytes)

Ertor protection None None L2 ECC None L1 None, L2 Optional for L1

ECC and L2

a Configurable

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Lec 3: Memory Hierarchy

HE

z

O]
I

=
=

26/31

r
T

ARM Cortex A7 Structure

| ARM CoreSight Multicore Debug and Trace |

I Generic Interrupt Controller |

NEON
Data Engine
Cortex-A7 processor
Floating-point
unit
4
Instruction 3
e Data Cache 2
Core 1
‘ sCu | | L2 Cache W/ECC |

’ 128-bit AMBAACE Coherent Bus Interface |

Figure 2-4 Cortex-A7 processor

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 29/31

Summary: Memory Hierarchy

In modern architectures the main memory is arranged in a
hierarchy of levels ("memory hierarchy”).

Levels higher in the hierarchy (close to the processor) have fast
access time but small capacity.

Levels lower in the hierarchy (further from the processor) have
slow access time but large capacity.

Modern systems provide hardware (caches) and software
(paging; configurable caching policies) support for managing the
different levels in the hierarchy.

The simplest caching policy uses direct mapping

Modern ARM architectures use a more sophisticated set
associative cache, that reduces “cache thrashing”.

For a programmer it’s important to be aware of the impact of
spatial and temporal locality on the performance of the program.
Making good use of the cache can reduce runtime by a factor of

HERIOT

ca. 3 as in our example of blocked matrix multiplication. B

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 31/31

Example: Cache friendly code

See the background reading material on the web page:

Web aside on blocking in matrix multiplication

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Lec 3: Memory Hierarchy

30/31

http://csapp.cs.cmu.edu/2e/waside/waside-blocking.pdf

	Lecture 3: Memory Hierarchy
	Memory Hierarchy

