F28HS Hardware-Software Interface:
Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

HERIOT
G WAT T

UNIVERSITY

Semester 2 — 2025/26

WAL
°No proprietary software has been used in producing these slides o

Tutorial 2: Programming an LED

@ This tutorial will deal with programming an LED output device.
@ This is the “hello world” program for external devices.

@ |t will deal with programming techniques common to other output
devices.

@ The learning objective of this exercise is to learn how to directly
control an external device through C and Assembler programs.
@ We will also cover easier ways of external control, however these

should only be used to test your hardware/software configuration
and don’t replace the programming component.

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Tutorial 2: Prging an LED 3/21

Outline

0 Tutorial 1: Using Python and the Linux FS for GPIO Control
© Tutorial 2: Programming an LED

e Tutorial 3: Programming a Button input device

e Tutorial 4: Inline Assembler with gcc

e Tutorial 5: Programming an LCD Display

e Tutorial 6: Performance Counters on the RPi 2

Hans-Wolfgang Loidl (Heriot-Watt Univ) 2025/26 2/21
The high-level picture
RPi 2
~ on/off
‘\;/ ~1
@ From the main chip of the RPi2 we want to control an (external)
device, here an LED.
@ We use one of the GPIO pins to connect the device.
@ Logically we want to send 1 bit to this device to turn it on/off. ~ ~
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 2: Prging an LED 4/21

The low-level picture BCM2835 GPIO Peripherals

Base adress: 0x3F200000

0 Pins 0-9
GPFSEL (3-bits per pin)
5 Pins 50-53
i 7 Pins 0-31 (1-bit per pin)
Rpi 2 8 A Pins 32-53 pere
1o GPCLR LD (1-bit per pin)
Memory 11 Pins 32-53
13 Pins 0-31
— 14 GPLEV Pins 32-53 (1-bit per pin)

The meaning of the registers is (see p90ff of BCM2835 ARM
peripherals):

Programmatically we achieve that, by @ GPFSEL: function select registers (3 bits per pin); set it to 0 for

@ memory-mapping the address space of the GPIOs into user-space input, 1 for output; 6 more alternate functions available
@ now, we can directly access the device via memory read/writes @ GPSET: set the corresponding pin
@ we need to pick-up the meaning of the peripheral registers from @ GPCLR: clear the corresponding pin
the BCM2835 peripherals sheet O @ GPLEV: return the value of the corresponding pin uEoT
GPIO Register Assignment GPIO Register Assignment
GPIO registers (Base address: 0x3F200000)
Address | Field Name Description sice | e/ GPFSELO 0:31[30[29]28[27|26]25/24|23]22]21|20[19]18[17]16]15[14]13
0<TE00000 | GpEsELO | GPIO Function Select 0 2 | rw GPFSEL1 1:/31|30[29|28|27|26|25|24|23|22(21|20(19(18|17|16(15[14(|13
E :zzm GPFSELO ff‘PlO Function Select 0 32 R/W GPFSEL2 2:131|30(29(28|27|26|25|24(23(22|21|20({19|18(17(16|15|14|13
e ‘;‘:::tl ‘;:z ::E: ::iil : ‘;”: GPFSEL3 3:/31|30[29|28|27|26|25|24(23|22(21|20(19(18|17|16(15[14(|13
GTEBOE | aprsprs | OPIO Famcion Seeets o Tow GPFSEL4 4:31[30[29]28|27|26]25/24]23|22/21(20[19|18]17]16[15]14]13
Ox 7E20 0010 GPFSEL4 | GPIO Function Select 4 32 RIW GPFSEL5 5:|31/30(29(28(27(26|25(24|23|22|21|20|19|18|17|16{15({14(13
Z ﬁizﬂ: GPFSELS | GPIO Function Select S 12 R/W — 6:131/30]|29(28|27|26|25|24/23|22|21(20|19|18({17|16|15|14(13
S5 ooic e zm:“‘ P " - GPFSETO 7:31|30[29|28(27|26(25|24/23|2221|20(19|18[17|16[15|14[13
5702 | apsert | om0 P Ovput s P GPFSET1 8:(31/30[29]28|27|26]25|24|23|22]21|20[19]18[17]16]15]14]13
0x 7E20 0024 - Reserved - - - 9:131/30]|29(28|27|26|25|24/23|22|21(20|19|18({17|16|15|14(13
O TEMOMS | GRCLRO | GPIO Pin Oupur Clear 0 2| W GPFCLRO 10331|30[29|28|27|26(25|24(23[22|21|20(19|18|17|16|15|14(13
0x 7E20 002C GPCLRI | GPIO Pin Output Clear 1 32 W
o660 - GPFCLR1 11{31]30[29]28]27]26[25/24]23]22|21/20]19[18[17]16]15[14]13
— 12131|30(29|28|27|26|25(24(23|22(21|20({19(18|17|{16(15|14(13

-bi isters (RPi2; 41 for RPi1). G G
9See BCM Peripherals Manual, Chapter 6, Table 6.1 T 9See BCM Peripherals, Chapter 6, Table 6.1

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 2: Prging an LED 7/21 Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 2: Prging an LED 8/21

https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

Locating the GPFSEL register for pin 47 (ACT)

Bit(s) |Field Name |Description Type |Reset
31-30 — Reserved R 0
29-27 FSEL49 FSEL49 - Function Select 49 RW 0

000 = GPIO Pin 49 is an input

001 = GPIO Pin 49 is an output

100 = GPIO Pin 49 takes alternate function 0
101 = GPIO Pin 49 takes alternate function 1
110 = GPIO Pin 49 takes alternate function 2
111 = GPIO Pin 49 takes alternate function 3
011 = GPIO Pin 49 takes alternate function 4
010 = GPIO Pin 49 takes alternate function 5

26-24 FSEL48 FSEL48 - Function Select 48 RW o
23-21 FSEL47 FSEL47 - Function Select 47 RW o
20-18 FSEL46 FSEL46 - Function Select 46 RW o
17156 FSEL45 FSEL45 - Function Select 45 RW o
14-12 FSEL44 FSEL44 - Function Select 44 RW 0
11-9 FSEL43 FSEL43 - Function Select 43 RW o
86 FSEL42 FSEL42 - Function Select 42 RW 0
5-3 FSEL41 FSEL41 - Function Select 41 RW o
20 FSEL40 FSEL40 - Function Select 40 RW o

Table 6-6 — GPIO Alternate function select register 4

ister GPFSFI 4
Tutorial 2: Prging an LED 9/21

Accessing GPIO Pin 47

@ We want to construct C code to write the value 0x01 into bits
21-23 of register 4
@ What'’s the address of register 4 relative to the base address in
gpio? Answer: gpio+4
@ How do we read the current value from this register?
Answer: x (gpio+4)
@ How do we blank out bits 21-23 from this register?
Answer: x (gpio + 4) & "~ (7 << 21)
C code: 7

\O|0|O|0|01 11
28 24 20 16 12 0

Ccode: 7 << 21

[0]0T0T0[0[0]0[0 1 1 1 [0T0[0[0[0]0T0[0[0[0[0T0[0[0[0[0[0[00]0T0]

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorlal 2: Prglng an LED 11 /21

HERIOT
L1l

Accessing a GPIO Pin

@ Now we want to control the on-chip LED, called ACT, that normally
indicates activity.

@ The pin number of this device on the RPi2 is: 47

@ We need to calculate registers and bits corresponding to this pin

@ The GPFSEL register for pin 47 is 4 (per docu, this register covers
pins 40-49 (Tab 6-6, p. 94)

@ For each register 3 bits are used to select the function of that pin:
bits 02 for register 40 etc

@ Thus, bits 21-23 cover register 47 (7 x 3)

@ The function that we need to select is OUTPUT, which is encoded
as the value 1

@ We need to write the value 0x01 into bits 21-23 of register 4

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 2: Prging an LED 10/21

C Code: constants and memory mapping

// constants for RPi2
gpiobase = 0x3F200000 ;

// memory mapping
// Open the master /dev/memory device, and map it to address
gpio

if ((fd = open("/dev/mem", O_RDWR | O_SYNC | O_CLOEXEC))< 0)
return failure (FALSE, "Unable to,_open_/dev/mem: %$s\n",
strerror (errno)) ;

// gpio is the mmap’ed device memory
gpio = (uint32_t «*)mmap (0, BLOCK_SIZE, PROT_READ|PROT_WRITE,
MAP_SHARED, fd, gpiobase) ;
if ((int32_t)gpio == -1)
return failure (FALSE, " _mmap, (GPIO) failed: %s\n",
strerror (errno)) ;

Now, gpio is the address of the device memory that we can access

RIOT
directly (if run as root!). WALl
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 2: Prging an LED 12/21

Registers for the GPIO peripherals: GPFSEL

Write into these bits (21-23) to set the function for pin 47

0:[31/30[29|28|27|26|25(24/28[22[21]20[19|18|17|16]|15/14|13[12[11]10

1131|30]|29|28(27|26|25|24(23|22|21|20(19(18|17|16[{15[14]|13|12[11[10

1131/30[29|28(27|26|25|24(23]22[21(20/19|18|17|16|15|14(13[12[11[10

31/30[29|28|27|26|25/24[23[22[21|20/19|1817|16(15[14/13[12[11]10

31(30(29|28|27|26|25(24/: pin 47 |20(19(18|17|16(15|14(13|12/11{10

31/30|29|28|27|26|25/24|23|22|21/20{19|18]17|16{15[14{13|12{11|10

31/30|29|28|27|26|25/24(23|22|21/20{19|18]17|16]{15[14{13|12{11|10

31/30|29|28|27|26|25/24(23|22|21|20{19|18]17|16{15[14{13[12{11|10

1131]30[29|28[27|26|25(24/23]22|21|20|19(18|17|16|15[14]|13[12|11|10

D Syl ss 00

1131[30[29|28|27|26|25|24(23[22(21|20[19|18(17|16{15/14[13][12{11|10

10131(30|29(28|27(26|25[24|23[22|21[20{19(18|17|16]{15[14({13[12{11[10

11131(30|29(28|27(26|25[24|23(22|21(20{19(18|17|16]|15[14{13[12|1110

O O|O|O|O|O|O|O|O©|O|O|©

12131(30|29(28|27(26|25[24|23(22|21[20{19(18|17|16{15[14{13[12|11[10

[{e]

Q0|00 |00 (0000|000 |0CO(0O|0O(0O |00 (00|00

HERIOT

Tutorial 2: Prging an LED 13/21
2:31302928272625242322212019181716151413121110 9
R-131130129128127I12RI12K12412312212112011911 K1 7[1RI1K11411211 2111110l 9

GPIO Registers for Turning the LED on/off
Address Field Name Description Size Rea_d/
Write
Ox 7E20 0000 GPFSELO | GPIO Function Select 0 2 RIW
Ox 7E20 0000 GPFSELO | GPIO Function Select 0 2 RIW
Ox 7E20 0004 | GPFSELL _GPI{) Function Select 1 | 32 | RW |
Ox 7E20 0008 GPFSEL2 | GPIO Function Select 2 32 RIW
Ox 7E20 000C GPFSEL3 | GPIO Function Select 3 32 RIW
Ox 7E20 0010 GPFSEL4 | GPIO Function Select 4 32 RIW
Ox 7E20 0014 GPFSELS | GPIO Function Select 5 32 RIW
0x 76200018 Reserved
0x 7E20 001C GPSETO | GPIO Pin Output Set 0 32 W
Ox TE20 0020 GPSET1 | GPIO Pin Output Set 1 32 W
0Ox 7E20 0024 Reserved
Ox TE20 0025 GPCLRO | GPIO Pin Output Clear 0 32 W
0x 7E20 002C GPCLRI | GPIO Pin Output Clear 1 32 W
0x 7E20 0030 Reserved

\vvlvv|vv|vv|vv|vv|vv|vv|vvlao (00} cv

We now need to access the GPSET and GPCLR register for pin 47. Rt

9See BCM Peripherals Manual, Chapter 6, Table 6.1

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Tutorial 2: Prging an LED 15/21

C Code: setting the mode of the pin

Essentials
Register no.: 4
Bits: 21-23
Function: 1 (output)

// setting the mode for GPIO pin 47

fprintf (stderr, "setting pin, %d_to %d_...\n", pinACT, OUTPUT)
’

fSel = 4; // GPIO 47 lives in register 4 (GPFSEL)

shift = 21; // GPIO 47 sits in slot 7 of register 4,
shift by 7«3 (3 bits per pin)

* (gpio + fSel) = (*(gpio + fSel) &
shift) ; // Sets bits to one = output

// *(gpio + fSel) = (*(gpio + fSel) (7 << shift)) ;

&
// Sets bits to zero = input

thus

(7 << shift)) | (1 <<

Now, pin 47 (the on-board ACT LED) is set as an output device.

Tutorial 2: Prging an LED 14/21

Turning the LED on or off

Write into this bit (15) to set pin 47

:131[30]29(28|27|26|25[24/|23|22/21|20|19|18|17|16(15{14(13{12/11|10

1131[30]29|28|27|26|25[24|23]22|21120|19(18|17|16|15{14]|13[12|11[10

31[30|29|28|27|26|25(24(23]22|21[20{19]18|17]16]1514|13[12/11]10

31|30[29|28|27|26|25/24(23|2221/20({19/18|17|16]15|14(13|12{11|10

31|30[29|28|27|26|25|24(23|22|21|20({19|1\8|17|16(15|14(13|12{11|10

31|30[29|28|27|26|25/24|23|22|21[20{19]1847|16[15|14(13|12{11|10

ol ss By = e

:131|30[29|28|27|26|25[24|23]22/21(20[19]18]17{16[15[14]13[12[11]10

7:13130[29|28|27|26[25/24|23|22]21|20|19[18[17|16[15[14]13[12]1 1|10

GPSET1 30[29|28|27(26|25|24|23|22|21|20[19|18|17| pin 47 ||13]|12/11|10

9:131|30[29|28|27|26|25[24(23|22|21|20{19|18]17|16]15|14(13|12{11|10

10131(30|29(28|27(26|25[24|23[22|21[20{19(18|17|16]15|14(13|12{11|10

GPCLR1 30|29|28|27|26|25[24(23|22/21]20(19|18[17| pin 47 [13{12[11]10

O OO|O|O|O©|O©|O|O|O|W|O|©
Q|00 |C0|C0|C0|00|0C0|00 |00 |0O|0O|CO|CO

12131|30[29|28|27|26/25|24(23[22|21]20/19t18[17[16(15[14[13[12[11]10

Write into this bit (15) to clear pin 47

HERIOT
EEWATT

Tutorial 2: Prging an LED 16/21

A.ls4lanlnalnoln=Inclncinslnanlnnl4 lnnl4aldold =l4al4cl4a alanlanl44l4anlal ol

Code: blinking LED

for (j=0; j<1000; J++) {

thevalue = ((j % 2) == 0) ? HIGH : LOW;
// write the value into the location corresp. to pin 47
if ((pinACT & OxXFFFFFFCO0) == 0) // sanity check
{
if (thevalue == LOW) { // GPCLR
// GPCLR for GPIOs 32-53 is register 11
clrOff = 11; // register for clearing a pin value
* (gpio + clrOff) = 1 << (pinACT & 31) ;

} else { // GPSET
// GPSET for GPIOs 32-53 is register 8
setOff = 8; // register for setting a pin value
* (gpio + setOff) = 1 << (pinACT & 31) ;
}
} else { fprintf (stderr, "only, supporting, on-board pins\n
"); exit (1); }

// delay for howLong ms, using a Linux system function

or
1

}
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 2: Prging an LED 17/21

The main registers that you need to know about

Address Field Name Description Size Rea.d/
Write
FctSelect GPFSELO | GPIO Function Select 0 32 RIW
0 GPFSELO GPIO Function Select O 32 RW
1 GPFSEL1 | GPIO Function Select 1 2 R/W
2 GPFSEL2 | GPIO Function Seleet 2 2 RIW
3 GPFSEL3 GPIO Function Seleet 3 32 W
g GPFSEL4 | GPIO Function Select 4 2 R/W
-— GPFSELS | GPIO Funetion Select § 32 RIW
——————
Set Registers Reserved
5 GPSETO | GPIO Pin Output Set 0 32 w
8 GPSET1 GPIO Pin Ou[pul Set 1 32 W
e - Reserved
Clear Registers GPCLRO | GPIO Pin Output Clear 0 2 W
1 0 GPCLRI GPIO Pin Ou[pulClt‘ar 1 32 W
11 - Reserved

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 2: Prging an LED 19/21

Discussion

@ In each iteration of the loop, we toggle thevalue between the
constants HIGH and L.OwW

@ This is not the value written to a register, but a flag for the control
flow

@ If thevalue is LowW, we write a 1 into the corresponding GPCLR
register, to turn the LED off

@ If thevalue is HIGH, we write a 1 into the corresponding GPSET
register, to turn the LED on

@ Note, that we determine the bit location in these registers by
PinACT & 31, which is the same as taking pinACT modulo 32

@ We then wait for a certain amount of time to control the blinking

frequency
See sample source: tut _led.c HERIOT
gwall
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 2: Prging an LED 18/21

Controlling the LED in Assembler

@ ... mmap boilerplate here

ADD R3, R3, #4 @ add 4 for block 1

LDR R2, [SP, #16] @ get virtual mem addr

ADD R2, R2, #1l6 @ add 16 for block 4

LDR R2, [R2, #0] @ load R2 with value at R2

BIC R2, R2, #0blll<<21l @ Bitwise clear of three bits

STR R2, [R3, #0] @ Store result in Register

LDR R3, [SP, #16] Q@ Get virtual mem address

ADD R3, R3, #16 @ Add 16 for block 4

LDR R2, [SP, #16] @ Get virtual mem addr

ADD R2, R2, #4 @ add 16 for block 4

LDR R2, [R2, #0] @ Load R2 with wvalue at R2

ORR R2, R2, #1<<21 @ Set bit....

STR R2, [R3, #0] @ ...and make output

LDR R3, [SP, #16] @ get virt mem addr

ADD R3, R3, #32 @ add 32 to offset for GPSET1

MOV R4, #1 @ get 1

MOV R2, R4, LSL#15 @ Shift by pin number

STR R2, [R3, #0] @ write to memory
; o clelof) - WAL
From: Bruce Smith “Raspberry Pi Assembly Language: Raspbian”, Ch 25

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 2: Prging an LED 20/21

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/tut_led.c
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/gpio47on.s

Summary

@ Controlling a simple external device means logically sending 1 bit
of information (on/off)

@ Realising this control means physically writing into special
registers which have special meaning

@ The information on the special meaning is usually in bulky
hardware-description documentation

@ Once uncovered, the code for direct device control is fairly short

@ The sample sources show a C and an Assembler version of
turning pin 47 (ACT) on/off

Thanks to Gordon Henderson for his sterling work on the wiringPi
library.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 2: Prging an LED 21/21

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/

	Tutorial 2: Programming an LED

