F28HS Hardware-Software Interface:
Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

HERIOT
EWATT
~ UNIVERSITY
Semester 2 2017/18
e
%No proprietary software has been used in producing these slides o
Hans-Wolfgang Loidl (Heriot-Watt Univ) 2017/18 1/251
Lecture 1:
Introduction to Systems
Programming
et

Outline

0 Lecture 1: Introduction to Systems Programming
9 Lecture 2: Systems Programming with the Raspberry Pi

e Lecture 3: Memory Hierarchy
@ Memory Hierarchy
@ Principles of Caches

e Lecture 4: Programming external devices
@ Basics of device-level programming

Lecture 5: Exceptional Control Flow

Lecture 6: Computer Architecture
@ Processor Architectures Overview
@ Pipelining

Lecture 7: Code Security: Buffer Overflow Attacks

Lecture 8: Interrupt Handling

Lecture 9: Miscellaneous Topics ERIOT

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) 2017/18 2/251

Introduction to Systems Programming

@ This course focuses on how hardware and systems software
work together to perform a task.

@ We take a programmer-oriented view and focus on software and
hardware issues that are relevant for developing fast, secure,
and portable code.

@ Performance is a recurring theme in this course.
@ You need to grasp a lot of low-level technical issues in this course.
@ In doing so, you become a “power programmer”.

HERIO'
GWAL

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 4 /251

Why is this important?

You need to understand issues at the hardware/software interface, in

order to

@ understand and improve performance and resource consumption
of your programs, e.g. by developing cache-friendly code;

@ avoid progamming pitfalls, e.g. numerical overflows;
@ avoid security holes, e.g. buffer overflows;
@ understand details of the compilation and linking process.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 5/251

Questions to be addressed

@ Understanding link-time errors:

>

>

What does it mean when the linker reports that it cannot resolve a
reference?

What is the difference between a static variable and a global
variable?

What happens if you define two global variables in different C files
with the same name?

What is the difference between a static library and a dynamic
library?

Why does it matter what order we list libraries on the command
line?

Why do some linker-related errors not appear until run time?

@ Avoiding security holes:

>

How can an attacker exploit a buffer overflow vulnerability?

HERIOT

WAL

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 71251

Questions to be addressed

For each of these issues we will address several common questions
on the hardware/software interface:

@ Optimizing program performance:

» Is a switch statement always more efficient than a sequence of

if-else statements?
How much overhead is incurred by a function call?
Is a while loop more efficient than a for loop?
Are pointer references more efficient than array indexes?
Why does our loop run so much faster if we sum into a local
variable instead of an argument that is passed by reference?
» How can a function run faster when we simply rearrange the

parentheses in an arithmetic expression?

vVYyVvYyy

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 6/251

Compilation of hello world

printf.o

Pre- [—’

hello.c hello.i | Compiler | hello.s |Assembler| hello.o Linker hello
p“(’ces?"' (ccl) (as) (1d)
Source °PP) | Mo ed ly f

program source program object object
(text) program (text) programs program
(text) (binary) (binary)

@ We have seen individual phases in the compilation chain so far
(e.g. assembly)

@ Using gcc on top level picks the starting point, depending on the
file extension, and generates binary code

@ You can view the intermediate files of the compilation using the
gcc flag —save-temps

@ This is useful in checking, e.g. which assembler code is generated
by the compiler

@ We will be using -D flags to control the behaviour of the

pre-processor on the front end El)
LeoT:InotoSysPrg 8/251

The Shell

Your window to the system is the shell, which is an interpreter for
commands issued to the system:

host> echo "Hello_world"
Hello world
host> 1s

The Linux Introduction in F27PX-Praxis gave you an overview of what
you can do in a shell. In this course, we make heavy usage of the
shell. Check the later sections in the on-line Linux Introduction, which
explain some of the more advanced concepts.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 9/251

Components

The picture on the previous slide, mentions several important
concepts:

@ Processor: the Central Processing Unit (CPU) is the engine that
executes instructions; modern CPUs are complicated in order to
provide additional performance (multi-core, pipelining, caches
etc);

@ Main Memory: temporary storage for both program and data;
arranged as a sequence of dynamic random access memory
(DRAM) chips;

@ Buses transmit information, as byte streams, between
components of the hardware; the Universal Serial Bus (USB) is
the most common connection for external devices;

@ 1/O devices are in charge of input/output and represent the

HERIOT

interface of the hardware to the external world AT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 11/251

Hardware organisation of a typical system

CPU

Register le
i
: Systgm bus Memory bus

I/
. Vo (T | Main
e

<: |ﬂﬁjﬁj>
/O bus Expansion slots for
other devices such

usB Graphics Disk as network adapters
controller adapter controller

-

Mouse Keyboard Display el lo executable
e o

stored on disk

9From Bryant and O’Hallaron. Ch 1
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 10/ 251

The Hello World Program

#include <stdio.h>

int main ()

{
printf ("hello, world\n");

}

What happens when we compile and execute this hello world
program?

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 12/ 251

http://www.macs.hw.ac.uk/~hwloidl/Courses/LinuxIntro/t1.html
http://www.macs.hw.ac.uk/~hwloidl/Courses/LinuxIntro/t1.html

Compiling Hello World

When we compile the program by calling
gcc —o hello hello.c

the compilation chain is executed. Note:
@ The source code of Hello World is represented in ASCII
characters and stored in a file.
@ The contents of the file is just a sequence of bytes
@ The context determines whether these bytes are interpreted as

text or as graphics etc.
When we execute the resulting binary, the next slides show what'’s

happening

./hello

Lec 1: Intro to Sys Prg 13/251

Hans-Wolfgang Loidl (Heriot-Watt Univ)

2. Reading the executable from disk to main memory

CPU

Register le
ALU
System bus 0

Memory bus

"hello,world\n"

Bus interfa <j e ' emo
us interface brifige |\ I Y| heiiocode
|

/O bus 4; Expansion slots for
other devices such

UsB Graphics ‘ Digk as network adapters
controller adapter contipller

/

hello executable

Mouse Keyboard Display
DiSk stored on disk

Using direct memory access (DMA) the data travels from disk dlrectly)
BWALT

to mpmnrv
: Lec 1: Intro to Sys Prg 15/ 251

Hans- Wolfgang Loidl (Henot -Watt Unlv)r

1. Reading the he1 1o program from the keyboard

CPU

Register le
/Ay
= System

1

bus Memory bus

'
'
pal VI

Main | "hello”

4l
Bus inter
\—‘Ll <

| — DNa
178 >}’irlge N 17

i

R

Us| Graphics
controligr adapter

Mouse Keyboard Display

User
types
"hello”

The shell reads . /hello from the keyboard, stores it in memory; .

than,_mm.ales_to_bad_the_executable file from disk to memory.
N Lec 1: Intro to Sys Prg 14 /251

Hans- Wolfgang L0|dl 7(Hernot Watt Unlv)

1/0 bus
Disk
controller

ExpanS|on slots for
other devices such
as network adapters

S

RIOT
BEWATT

3. Writing the output string from memory to display

CPU

-

Register le
ALU
== g System bus

PR

Memory bus

B |/‘—'—'\ "o L1 Main |"hello,worldin"

l/ MEemory| ; o110 code

i Tay i
Bus intelka T l/ BMMige N

i

I

1/0 bus

UsB Graghics
controller adapter

Mouse Keyboard Display

"hello,world\n"

Disk
controller

Expansion slots for
other devices such
as network adapters

hello executable
stored on disk

Once the code and data in the hello object file are loaded into memory,
the processor beglns executlng the machine-language instructions mlkl(.
EEWATT

Lec 1: Intro to Sys Prg 16 /251

Hans-Wolfgang Loidl (Heriot-Watt Unlv)'

Caches

@ Copying data from memory to the CPU is slow compared to
performing an arithmetic or logic operation.

@ This difference is called processor-memory gap and it is
increasing with newer generations of processors.

@ Copying data from disk is even slower.
@ On the other hand, these slower devices provide more capacity.

@ To speed up the computation, smaller faster storage devices
called cache memories are used.

@ These cache memories (or just caches) serve as temporary
staging areas for information that the processor is likely to need in
the near future.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 17 /251

Caches and Memory Hierarchy

Lo:
Smaller, Regs CPU registers hold words retrieved from
faster, cache memory.
and L1: / L1cache
cosgie{r (SRAM) L1 cache holds cache lines retrieved
(ggrag:) from the L2 cache.
devices L2: L2 cache
(SRAM)
L2 cache holds cache lines
retrieved from L3 cache
L3: L3 cache
(SRAM)
L3 cache holds cache lines
Larger, retrieved from memory.
slower, . R
and L4: Main memory
cheaper (DRAM) . X
(per byte) Main memory holds disk
storage blocks retrieved from local
devices disks.
L5: Local secondary storage
(local disks)
Local disks hold les
retrieved from disks on
remote network servers.
L6: Remote secondary storage

(distributed le systems, Web servers)

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 19/ 251

Cache memories

CPU chip
Register le
—1 —)
Cache W= h—— a1y
memories _-
I — System bus Memory bus
ir) |
: /10 Main
Bus interface bridge memory

@ An L1 cache on the processor chip holds tens of thousands of
bytes and can be accessed nearly as fast as the register file.

@ Alarger L2 cache with hundreds of thousands to millions of bytes
is connected to the processor by a special bus.

@ It might take 5 times longer for the process to access the L2 cache
than the L1 cache, but this is still 5 to 10 times faster than
accessing the main memory.

@ The L1 and L2 caches are implemented with a hardware
technology known as static random access memory (SRAM). »
Newer systems even have three levels of cache: L1, L2, and L30T

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 18/ 251

The Role of the Operating System

Application programs } Software
Operating system
Processor Main memory 1/0 devices } Hardware

@ We can think of the operating system as a layer of software
interposed between the application program and the hardware.

@ All attempts by an application program to manipulate the hardware
must go through the operating system.

@ This enhances the security of the system, but also generates
some overhead.

@ In this course we are mainly interested in the interface between
the Software and Hardware layers in the picture above. or

WATT
9From Bryant and O’Hallaron, Ch 1

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 20/ 251

Goals of the Operating System

The operating system has two primary purposes:
@ to protect the hardware from misuse by runaway applications, and
@ to provide applications with simple and uniform mechanisms for
manipulating complicated and often wildly different low-level
hardware devices.
The operating system achieves both goals via three fundamental
abstractions: processes, virtual memory, and files.

Processes

Virtual memory
~
Files
Processor Main memory l 1/O devices
HERIOT
GWAL
Processes
@ A process is the operating system’s abstraction for a running
program.
@ |t provides the illusion of having exclusive access to the entire
machine.
@ Multiple processes can run concurrently.
@ The OS mediates the access to the hardware, and prevents
processes from overwriting each other’s memory.
HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 23/251

Basic Concepts

In this overview we will cover the following basic concepts:

@ Processes

@ Threads

@ Virtual memory
@ Files

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 22 /251

Concurrency vs Parallelism vs Threads

@ Concurrent execution means that the instructions of one
process are interleaved with the instructions of another process.

@ The operating system performs this interleaving with a mechanism
known as context switching.

@ The context of a process consists of: the program counter (PC),
the register file, and the contents of main memory.

@ They appear to run simultaneously, but in reality at each point the
CPU is executing just one process’ operation.

@ On multi-core systems, where a CPU contains several
independent processors, the two processes can be executed in
parallel, running on separate cores.

@ In this case, both processes are genuinely running simultaneously.
@ The main goal of parallelism is to make programs run faster.

@ A process can itself consist of multiple threads. WAL
Lec - InrotoSysPrg 24/ 251

Example of Context Switching Different Forms of Concurrency

This example shows the context switching that is happening between

the shell process and the hel 1o process, when running our hello Concurrency can be exploited at different levels:

world example. @ Thread-level concurrency: A program explicitly creates several
Process A | Process B threads with independent control flows. Each thread typically
Time represents a large piece of computation. Shared memory, or
read -+ ! Useroode. . context message passing can be used to exchange data.
T~ Kernel code } switch . .
.] User code @ Instruction-Level Parallelism: The components of the CPU can
D Kemel code } COMEX! be arranged in a way so that the CPU executes several .
from read | User code instructions at the same time. For example, while one instruction
is performing an ALU operation, the data for the next instruction
can be loaded from memory (“pipelining”).

@ Single-Instruction, Multiple-Data (SIMD) Parallelism: Modern
processor architectures provide vector-operations, that allow to
execute an operation such as addition, over a sequence of values
(“vectors”), rather than just two values. Graphic cards make heq}%”
use of this form of parallelism to speed-up graphics operations. “ "1

Lec 1: Intro to Sys Prg 25/ 251 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 26 /251
- - - : Virtual Memor
Categorizing different processor configurations tual Vlemory
Virtual memory is an abstraction that provides each process with the
All processors illusion that it has exclusive use of the main memory. Each process
Multiprocessors has the same uniform view of memory, which is known as its virtual
address space.
Uniprocessors
Memory
Kernel virtual memory [Lns‘l;sri:liis
User stack
(created at runtime)
i
. . o Mermory mapped region for | ¢ funciion
@ Uniprocessors, with only one CPU, need to context-switch in shared lbrares
order to run several processes seemingly at the same time !
@ Multiprocessors replicate certain components of the hardware to (creaied by mtoc)
genuinely run processes at the same time: Readrie dta Loaded from e
» Muticores replicate the entire CPU, as several “cores”, each of can] e || it e
run a process. Sastson {o)
» Hyperthreaded machines replicate hardware to store the context »
of several processes to speed-up context-switching. BB WALT BB WALT

nrocesses are not allowed to write into this area!

Virtual Memory

The lower region holds the data for the user.

The user space is separated into several areas, with different roles:

@ The code and data area: contains the progam code and
initialised data, starting at a fixed address. The program code is
read only, the data is read/write.

@ The heap contains dynamically allocated data during the
execution of the program. In high-level languages, such as Java,
any new will allocate in the heap. In low-level languages, such as
C, you can use the library function ma11oc to dynamically allocate
data in the heap.

@ The shared data section holds dynamically allocated data,
managed by shared libraries.

@ The stack is a dynamic area at the top of the memory, growing
downwards. It is used to hold the local data of functions whenever
a function is called during program execution.

@ The topmost section of the virtual memory is allocated to kernel

IERIOT
virtual memory, and only accessible to the OS kernel. B

Aside The Linux project

In August 1991, a Finnish graduate student named Linus Torvalds modestly announced a new Unix-like
operating system kernel:

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Newsgroups: comp.os.minix

Subject: What would you like to see most in minix?

Summary: small poll for my mew operating system

Date: 25 Aug 91 20:57:08 GMT

Hello everybody out there using minix -

I'm doing a (free) cperating system (just a hobby, won't be big and

professicnal like gmu) for 386(486) AT clones. This has been brewing
since April, and is starting to get ready. I'd like any feadback on

things people like/dislike in minix, as my 05 resembles it somewhat

(same physical layout of the file-system (due to practical reasons)

among other things).

I've currently ported bash(l.08) and gcc(l1.40), and things seem to work.
This implies that I'll get something practical within a few months, and
I'd 1like to know what features most people would want. Any suggestions
are welceme, but I won't promise I'll implement them :=)

Linus (torvalds@kruwmna.helsinki.fi)

HERIOT

WAL

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 31/251

Virtual Memory

@ Virtual memory gives the illusion of a continuous address space,
exceeding main memory, with exclusive access.

@ It abstracts over the limitations of physical main memory and
allows for several parallel threads to access the same address
space.

@ We will discuss this aspect in more detail in the Lecture on
“Memory Hierarchy”.

HERIOT
Bwall
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 30/ 251

Files

@ Afile is a sequence of bytes.

@ A file can be used to model any I/O device: disk, keyboard,
mouse, network connections etc.

@ Files can also be used to store data about the hardware (/proc/
filesystem), or to control the system, e.g. by writing to files.

@ Thus, the concept of a file is a very powerful abstraction that can
be used for many different purposes.

HERIOT
Gwarr

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 32/251

External Devices A network is another I/O device

@ An important task of the OS/code is to interact with external

devices. CPU chip
@ We will see this in detail on the Rpi2 Register '
@ From the OS point of view, external devices and network ALY
connections are files that can be written to and read from. 1T Sysiom bus Me’“‘I“ bus
@ When writing to such a special file, the OS sends the data to the B o <:“ 0 h Main
corresponding network device memery
@ When reading from such a special file, the OS reads data from the f} Expansion slots
. . \
corresponding network device < {} {} O
@ This file abstraction simplifies network communication, but is also

usB Graphics Disk

adapter

==

a source of additional communication overhead.
@ Therefore, high performance libraries tend to avoid this “software Molse Keyioard Mo,fnor

!
— 3
stack” of implementing file read/write in the OS, but rather directly

read to and write from the device (in the same way that we will be

controller controller

P

using these devices) EWATT The network can be viewed as just another I/O device. EWATT
The Role of Abstraction Some abstractions provided by a computer system

@ In order to tackle system complexity abstraction is a key concept.

@ For example, an application program interface (API), abstracts
from the internals of an implementation, and only describes its

Virtual machine

core functionality. .

@ Java class declaration or C prototypes are programming language Processes
features to facilitate abstraction. Ineeton set Virtual memory

@ The instruction set architecture abstracts over details of the < Fios)
hardware, so that the same instructions can be used for different —
realisations of a processor_ Operating system Processor Main memory I 1/0 devices

@ On the level of the operating system, key abstractions are
» processes (as abstractions of a running program),

> files (as abstractions of I/0), and A major theme in computer systems is to provide abstract

> VRN ISieny (e an_abs_tracno_n @ il me_morY)' . representations at different levels to hide the complexity of the actual
@ A newer form of abstraction is a virtual machine, which abstracts implementations.

HERIOT HERIOT

over an entire computer. EEWALT BT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 35/251 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 36 /251

Reading List: Systems Programming

¥ David A. Patterson, John L. Hennessy. “Computer Organization
and Design: The Hardware/Software Interface”,
ARM edition, Morgan Kaufmann, Apr 2016. ISBN-13:
978-0128017333.

¥ Randal E. Bryant, David R. O’Hallaron “Computer Systems: A
Programmers Perspective”,
3rd edition, Pearson, 7 Oct 2015. ISBN-13: 978-1292101767.

¥ Bruce Smith “Raspberry Pi Assembly Language: Raspbian’,
CreateSpace Independent Publishing Platform; 2 edition, 19 Aug
2013. ISBN-13: 978-1492135289.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 37 /251

Lecture 2.
Systems Programming with
the Raspberry Pi

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 2: Sys Prg on RPi 39/251

Other Online Resources

¥ Gordon Henderson “WiringPi library: GPIO Interface library for the
Raspberry Pi,
http://wiringpi.com/

¥ Valvers “Bare Metal Programming in C”,

http://www.valvers.com/open-software/raspberry-pi/step01-bare-
metal-programming-in-cpt1/

¥ Alex Chadwick, Univ of Cambridge “Baking Pi”,
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 38 /251

SoC: System-on-Chip

@ A System-on-Chip (SoC) integrates all components of a
computer or other electronic system into a single chip.

@ One of the main advantages of SoCs is their low power
consumption.

@ Therefore they are often used in embedded devices.
@ All versions of the Raspberry Pi are examples of SoCs

Note: In this course we are using the Raspberry Pi 2 Model B. The
low-level code will only work with this version.

The Raspberry Pi Foundation: https://www.raspberrypi.org/
UK registered charity 1129409

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 2: Sys Prg on RPi 40/ 251

http://wiringpi.com/
http://www.valvers.com/open-software/raspberry-pi/step01-bare-metal-programming-in-cpt1/
http://www.valvers.com/open-software/raspberry-pi/step01-bare-metal-programming-in-cpt1/
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os
https://www.raspberrypi.org/

Raspberry Pi 1 vs 2

The Raspberry Pi version 2 was released on 2" February 2015. Its
components are:
the BCM2836 SoC (System-on-Chip) by Broadcom

@ an ARM-Cortex-A7 CPU with 4 cores (clock frequency: 900MHz)

e 1 GB of DRAM

@ a Videocore IV GPU

@ 4 USB ports (sharing the one internal port together with the

Ethernet connection)

@ power supply through a microUSB port
NB: RPi2 is significantly more powerful than RPi1, which used an
ARM1176JZ-F single-core at 700MHz clock frequency (as the
BCM2835 SoC). However, its network bandwidth is unchanged.
NB: The A-series of the ARM architectures is for “application” usage
and therefore more powerful than the M-series, which is mainly for
small, embedded systems.

JLLS.pQ&Slb[E.tO.S&fE/;LOM&LClOCk the processor up to 950 MHz.

0 AViE=
Hans-Wolfgang L0|dl (Henot Watt Univ) Lec 2: Sys Prg on RPi 41 /251

ﬂ“

Software configuration

@ RPi2 supports several major Linux distributions, including:
Raspbian (Debian-based), Arch Linux, Ubuntu, etc

@ The main system image provided for RPi2 can boot into several of
these systems and provides kernels for both ARMv6 (RPi1) and
ARMv7 (RPi2)

@ The basic software configuration is almost the same as on a
standard Linux desktop

@ To tune the software/hardware configuration call

> sudo raspi-config

IIlRl()I:

EEWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 2: Sys Prg on RPi 43 /251

HERIOT
EWATT

Raspberry Pi 2

r Basgbarap FiE Badad BRI ?
m Bragheriy l‘ P

R
]

1Tl
l
—_
e
2
=
-
=
=3
=
=
aw
=
1

.=

9Source: https:/en.wikipedia.org/wiki/Raspberry_Pi
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 2: Sys Prg on RPi 42/ 251

Updating your software under Raspbian

We are using Raspbian 7, which is based on Debian “Wheezy” with a
Linux kernel 3.18.
There is a more recent version (2017-01-11) out: Raspbian 8, based
on Debian “Jessie” with a Linux kernel 4.4. Highlights:
@ Uses systemd for starting the system (changes to run-scripts,
enabling services).
@ Supports OpenGL and 3D graphics acceleration in an
experimental driver (enable using the raspi-config)
To update the software under Raspbian, do the following:

> sudo apt-get update
> sudo apt-get upgrade
> sudo rpi-update

To find the package foo in the on-line repository, do the following:

> sudo apt-cache search foo

To install the package foo in the on-line repository, do the foIIowing:%&w{:

> sudo apt—-get install foo
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 2: Sys Prg on RPi 44 /251

https://en.wikipedia.org/wiki/VideoCore
https://en.wikipedia.org/wiki/Raspberry_Pi

Virtualisation

@ In this powerful, multi-core configuration, an RPi2 can be used as
a server, running several VMs.

@ To this end RPi2 under Raspbian runs a hypervisor process,
mediating hardware access between the VMs.

@ Virtualisation is hardware-supported for the ARMv6 and ARMv7
instruction set

@ The ARMv?7 instruction set includes a richer set of SIMD
(single-instruction, multiple-data) instructions (the NEON
extensions), to use parallelism and speed-up e.g. multi-media
applications

@ The NEON instruction allow to perform operations on up to 16
8-bit values at the same time, through the processor’s support for
64-bit and 128-bit registers

@ Performance improvements in the range of 8 — 16x have been
reported for multi-media applications

@ The usual power consumption of the Ri2 is between 3.5 — —4 Wait'1

) _ Lec2:SysPrgonRPi 45/251
@ |0 compare tne (peak) periormance o RPI2 with RPi1, the

Dhrystone benchmark delievers 875 DMIPS on an RPi 1 and

AAAA A AIRNA e A

CPU Performance Comparison: Measurements

DMIPS/MHz Keme MHz DMIPS Vgl RPi 1 Vgl RPi 2
| Note

125 1 700 875 100% 13%) .
1,90 2 200 5840 7820 100% RPi2 ca. 7.82 x faster than RPi1
1,90 2 1000 3800 A3, 560
1,90 2 1000 3800 434% 56%
1,90 4 1600 5 A

1000 L LI Banana Pi M2 is 1.11 x faster than
2,00 1 1000 2000 29% 29% RPi2
2,50 7 1000 5000 571% 3%
2,50 4 1000 10000 1143% 145% Cubox i4Pro is 1.46 x faster
2l 4 1300 8119420 27 | 138% ODroid C1 is 1.38 x faster
2,50 2 1000 5000 571% T3%
3,50 2 1300 9100 1040% 133%
20,34 1 295 6000 686% 88%
0,43 1 1 0,43 0,05% 001%
0,23 1 6 1.4 0,16% 0,02%
2,25 1 233 525 60% 8%
20l ! gt FHELS gl g Intel i7 PC is 15.5x faster than RPi2
2,81 1 800 2250 257% 33% ‘
14,19 4 2200 99750 11400% 1458% B Nivensiy

Hans-Wolfgang Loidl (Heriot-Watt Univ) i ’ Lec 2: Sys Prg on RPi 47 /251

CPU Performance Comparison: Hardware

Rechenleistung im Vergleich

Plattform RAM Chip Technologie Architektur

Raspberry Pi

Raspbermy Pi 1 512 MByte Broadcom BCM2835 65 nm ARM11T6IZ-F

Raspbery Pi 2 1 GByte LPDDR2 Broadcom BCM2636 28nm Cortex A7

Banana Pi

Banana Pi 1 GByte AllWinner A20 40 nm Cortex A7

Banana Pro 1 GByte AllWinner A20 40 nm Cortex A7

Banana Pi M2 1 GByte Allwinner A315 40 nm Cortex A7

Andere Single Board Computer (SBC)

Beaglebone Black 512 MByte Tl Sitara AM3358/9 45 nm Cortex AB

Hummingboard-i2 1 GByte Freescale iMX6 Duallite 40 nm Cortex A9

Cubox-i4Pro 2 GByte Freescale i.MX6 Quad 40 nm Cortex A9

Odroid C1 1 GByte DDR3 Amlogic 5805 28 nm Cortex AS

Smartphones

Galaxy 53 Mini (GT-18190) 1 GByte ST-Ericsson NovaThor U500 45 nm Cortex A9

iPhane 5 1 GByte Apple A6 32nmhighk ARMVTs Swift [Apple]
metal gate

Spielekonsolen

Playstation 2 36 MByte EmaotionEngine 250 nm RISC, basiert auf MIPS R5300

Apple-Computer

Apple J[e 64 KByte MOS Technology 6502 8000 nm MOS Technology

Apple Macintosh 128 K 128 KByte Motorola 68000 3500 nm asc

iMac G3 32 MByte PowerPC 750 G3 260 nm PowerPC G3

Intel- und AMD-PCs

No Name PC 1 64 MByte Pentium ||, 300 MHz 350 nm XB6 Intel

No Name PC 2 384 MByte AMD Duton, B00 MHz 180 nm AMD Spitfire ERRIOT)

Dell Inspiron 7520 8 GByte Intel Core i7-36320M 22 nm Intel Core i7
ntal Cara i no Intel Core i7
Lec 2: Sys Prg on RPi 46 / 251

Hans-Wolfgang Loid! (Heriot-Watt Univ)

Network performance comparison: RPi 1 vs RPi 2

@ To compare network performance, encrypted data-transfer
through scp is used.

@ This profits from the quad-core architecture, because one core
can be dedicated to encryption, another core to the actual data
transfer.

@ Anincrease in network performance by a factor of 2.5x is
reported.

@ The highest observed bandwidth on the RPi 2 (with overclocking
to 1.05 GHz) is 70 Mbit/s.

@ The theoretcial peak performance of the LAN-port is ca 90 MBit/s.

@ The SunSpider benchmark for rendering web pages, reports up to
5x performance improvement.

HERIOT
Gwarr

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 2: Sys Prg on RPi 48 /251

Network performance Measurements High-performance Alternatives

@ There are several single-board computers that provide a
high-performance alternative to the RPi.

SCP-Yergleichsiest

ARM Freq SDRAMFreq GPUCorefreq Temp SCP-Schreiben® % ScPlesan® | % @ These are of interest if you have applications with high
Raspberry Pi 2, Raspblan R .
e T FA e R AR | | e R computational demands and you want to run it on a low-cost and
1000 tz 500MHT 500 Mz 584°C 563 Mbit/s 1070 &30 Mbit/s 125 low-power device.
1050 MHz 500 MHz 500 MH 584°C 65,6 Mbit/s 146 69,0 Mbils 126 . .]
100 iz S0MHE 500 1k @ It's possible to build for example a cluster of such devices as a
Ra: Pi 1, Ra: . 0 0
o T TP I BT S R D parallel programming platform: see The Glasgow University
1000 MHz 60{ MHz 250 MHz 514°C 36,4 Mbit/s 69,1 33,3 Mbit/s Bl H
e | Raspberry. Pi Cloud . .
$00 iz CDlE EEAE :;;':";f; 0. :f::::i{s = @ Here we give an overview of the main performance
1058 MH: 500 MH: 500 MH; s 3 i itfs . - . g .
o e T C Y T e R e A G e characteristics of three RPi2 alternatives:

» the CuBox i4Pro by SolidRun

» the Banana Pi M3 by Sinovoip

» the Lemaker HiKey by Lemaker

HERIOT HERIOT
T GWALT
Lec 2: Sys Prg on RPi 49/ 251 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 2: Sys Prg on RPi 50/ 251
: Core Specs of the Banana Pi M3
Core Specs of the CuBox i4-Pro P

@ Allwinner A83T (SoC) chip, containing an ARM Cortex-A7
(ARMv7 instruction set) with 8 cores
@ Freescale i.MX6 (SoC) quad-core, containing an ARM Cortex A9 @ PowerVR SGX544MP1 GPU (supports OpenGL etc)

(ARMV7 instruction set) with 4 cores 2 GB LPDDR3 RAM plus 8 GB eMMC memory and a micro-SD
@ GC2000 GPU (supports OpenGL etc) card slot

@ 4 GB RAM and a micro-SD card slot @ Gigabit Ethernet
® 10/100/1000 Mb/s Ethernet (max 470Mbys) © WLAN (802.11b/g/n)
@ Bluetooth 4.0
e S @ 2 USB ports and SATA interface
@ Bluetooth 4.0 @ 40 GPIO pins (not compatible with RPi2)
@ 1 USB port and eSATA (3Gb/s) interface @ Price: 90€
@ Price: 124% Software
Software ° B_PI—Berryboot (allegedly with GPU support), or Ubuntu Mate
)) o] Experiences
® Debian Linux, Kodi Linux, XBMC Linux sor @ SATA shares the the USB bus connection and is therefore slow o

@ Problems accessing the on-board micro-phone

http://www.sicsa.ac.uk/research/research-projects/glasgow-raspberry-pi-cloud/
http://www.sicsa.ac.uk/research/research-projects/glasgow-raspberry-pi-cloud/
https://www.solid-run.com/freescale-imx6-family/cubox-i/cubox-i-specifications/
http://www.banana-pi.org/m3.html
http://www.lemaker.org/product-hikey-specification.html

Core Specs of the Lemaker Hikey

@ Kirin 620 (SoC) chip with ARM Cortex A53 and 8 cores
@ ARM Mali450-MP4 (supports OpenGL etc) GPU

@ 1 or2 GB LPDDR3 RAM plus 8 GB eMMC memory and a
micro-SD card slot

WLAN (802.11b/g/n)

Bluetooth 4.1

2 USB ports

40 GPIO pins (not compatible with RPi2)

Audio and Video via HDMI connectors

Board-layout matches the 96-board industrial standard for
embedded devices

@ Price: 120€
Software
@ Android variant (part of 96-board initiative) ror
@ Linaro (specialised Linux version for embedded devices) L AN
Raspberry Pi 3 and Lemaker Hikey: Performance
Performance as runtime (of sysbench benchmark) and network
bandwidth (using 1per £ benchmark):
Perf. (runtime) Max | Network bandwidth
number of threads | power | Ethernet WLAN
1 4 8
Raspberry Pi2 | 297s 75s —
Raspberry Pi3 | 182s 45s — 45 Mb/s
Cubox i4Pro 296s 75s —
Banana Pi M3 159s 40s 21s| 1.1A | 633 Mb/s 2.4 Mb/s
Lemaker Hikey | 12s 3s 2s | 1.7A — 37.3 Mb/s

Summary: In terms of performance, the Lemaker Hikey is the best
choice.

%Material from Raspberry Pi Geek 04/2016

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 2: Sys Prg on RPi 55/ 251

HERIOT
GWALT

Banana Pi M3 and Lemaker Hikey: Specs

Banatia Pi M3 Lemaker Hikey
CFU ABIT ARM Cortex-A7, ARMvY, B Keme, max 2 GHz ARM Cortex-A53, ARMvE, 8 Kerne
GPU | PoweVR SGX544MP1 {OpenGL ES 2.0, OpenCL 1. DX 8 3} ARM Mali450-MP4 (OpenGL ES 1.1/2,0, Open¥G 1.1}
RAM 2 GRyte LPDDRS 1 odar 2 GByte LPODRS
Speicher 8 GByte eMMC 8 GByte eldhC
Schaittstellen
Massenspeicher | Micro-SD-Card, SATA {USE-to-SATA; GLB3O) Mico-50-Card
USB Ports | 25820, USB OTG 2 USB 2.0, USB GTC
GPID 40 Pins. (GPID, UART, 12, 125, 5P|, PIVM, +3.3, +5Y, GNDB) 40 Fins (CPI0, UART, 12, 91, ik, POM, SY5_DCIN,
+1,8¥, +5Y, GND; 60 Pins (SDIQ, MIPI_DSL, MIPLCS)
| Netrwark
Ethecnet 104/100/1000 Mbit/s (Reakek RTLE21 1E/D) optional {via LSB-Adapter)
WLAN 802.11b/g/n 8021 1b/g/n
Bluetoath Bluetooth 4.0 Bluetooth 4.1 LE
| Audio, Video
Audio Out 3,5mm Klinke, HDMI HOMI
Audio In Onbaard-Mikrofon HOMI
Video Out HDMI 1.4 (HDCP 1.2, max. 1920x1080), MIPI D3I HDMI 1.4 (max FHD 1080p), 2 MIPI DSI
Video In Parallele 8-Bii-kamemaschnittstelle, MIP| CSI 2 MIPL 51
Sonstlges
Schalter Power, Reset, U-Boot Power/Reset
LEDs Pawver, RJ45, benutzerdefiniert WLAN, Bluetooth, 4 benutzardefiniert
Strom Mico-L5B, optional S¥-Klinks BY - 184734 Klinke
as Android, Linux Android, Linux
Abmessupg 92mm x 60mm BSmm x 55mm
Stralenpreis 0 Euro 120 Ere HERIOT
ALl

Lec 2: Sys Prg on RPi 54 /251

Raspberry Pi 3 and Lemaker Hikey: Performance
comparison

Benchmark-Ergebnisse

1 Thread 4 Threads B Threads
Raspberry Pi 3 182 Sekunden | 45 Sekuniden -
Banana P1 M3 158 Sekunden | 40 Sekunden 21 Sekunden
Lemaker Hkey 12 Sekunden | 3 Sekunden 2 Sehunden

To run the (CPU) performance benchmark on the RPi2 do:

> sudo apt—-get update
> sudo apt-get install sysbench
> sysbench --num-threads=1 --cpu-max-prime=10000 --test=cpu
run
HERIOT

BwaLT

9Material from Raspberry Pi Geek 04/2016

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 2: Sys Prg on RPi 56 /251

http://www.raspberry-pi-geek.de/Magazin/2016/04/Banana-Pi-M3-vs.-Lemaker-Hikey
http://www.raspberry-pi-geek.de/Magazin/2016/04/Banana-Pi-M3-vs.-Lemaker-Hikey
http://www.raspberry-pi-geek.de/Magazin/2016/04/Banana-Pi-M3-vs.-Lemaker-Hikey

Core Specs of Odroid-XU4

@ Exynos 5422 (SoC) Octa big.LITTLE ARM with an ARM
Cortex-A15 quad-core and an ARM Cortex-A7 quad-core

e Mali-T628 MP6 GPU

@ 2 GB LPDDR3 RAM plus eMMC memory and a micro-SD card
slot

@ Gigabit Ethernet

@ 1 USB 2.0A and 1 USB 3.0 port

@ Video via HDMI connectors

@ 40 GPIO pins (not compatible with RPi2)

@ Price: 95€

The CPU is the same as in high-end smartphones such as the

Samsug Galaxy S5.

The big.LITTLE architecture dynamically switches from (faster)
Cortex-A15 to (slower) Cortex-A7 to save power.

Software: Ubuntu 14.04 or Ubuntu 16.04; Android 4.4.4; HERIOT
OpenMediaVault 2.2.13, Kali Linux, Debian.]

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 2: Sys Prg on RPi 57 /251

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Odroid-XU4

Odroid-#;a Open Hardware .

ich also nicht
n den XU4 an-
chlicBen. Der 4 Fen-
meter grofie Luftaguirl

hrt die Abwiarme des Chipsat-

es Zzuverldssig aly anders als beim laut
1sen RasPi milssen Sie jedoch mit dem
aufgerdusch leben, Laut Angaben des

n In den Dimensionen unterscheiden

Lec 2: Sys Prg on RPi 59 /251
[rer Liifter hebt den Qdroid jedoch schon

P ST T T, T R T

lerstellers springt der Lifer jedoch nur

#lr Im Praxistest genauer hingehort.

e A ibrarmed o odme BA o d = ot v ard o

RPi3 vs Odroid-XU4: Specs

Odroid-Xi4 vs. Raspherry Pi 3

Odroid-XU4 ResPi 3
Sof Exynos 5427 Oicta big LITTLE ARM Broadcom BCM2ZE3T
CPU Cortex-A15 {2.0 GHz) Quad-Core und Cartex-A7 Quad-Core ARM Cortex-A53 Quad-Core (1,2 GHz)
GFU Mali-T628 MPS Broadcom Dual Core VideoCore [V
RAM 2 GRyte LPDDR3 (933 MHz) 1 GByte LFDDR2 {300 MHz)
Speicher Micra-50, eMMC 5.0 Micro-SD
Netnwerk 107100/ 1000-Mbitfs-Ethemet 10/100-Mbit/s-Ethemnet, WLAN 802.11k/g/n
UsB USE 2.0 A, 2 USB 3.0 4 USB 2.0 (fiber Hubs}
Yideoausgang HEMI HOAI
Schnittstellen | 125, e, GPIO 5P, FC, UART
Grijfle 83 159 1 18 mm | B36A56 %21 mm
Prais {ca} 95 Euro | 35 Eurg

9Material from Raspberry Pi Geek 02/2017
Hans-Wolfgang Loidl (Heriot-Watt Univ)

Note

Hans-Wolfgang Loidl (Heriot-Watt Univ)

HERIOT

WAL

Lec 2: Sys Prg on RPi 58 /251

Network performance: RPi3 vs Odroid-XU4

Datenraten im Yergleich

Raspherty Fi 3 Odroid-XU4
Samba |
Datenrate (Upload) i B7.20 Mbit/s 418,88 Mbit/s
Datenrate {Download) BS,63 Mbit/s 469,45 Mbit/s
FIP |
Datenrate {Upioad) Bd,14 Mbit/s 404,15 Mbitfs I
Diatenrate {Download} B6,18 Mbit/s 439,46 Mbit/s |
55H]
Datenrate (Uplnad) 86,90 Mbit/s 305,34 Mbitfs
Caterrate (Dawnload) _ 88,91 Mbit/s 293,59 Mbit/s
e]
Daterrabe 94,73 Mbit/s 511,33 Mbit/s

samtliche Ubertragungsraten iiber dret Versuche gemittelt. !

HERIOT
: Raw network performance is ca. 5x faster on the ODroid-XU4!*"

Lec 2: Sys Prg on RPi 60 /251

http://www.raspberry-pi-geek.de/Magazin/2017/02/Odroid-XU4-RasPi-Alternative-mit-Gigabit-LAN-und-USB-3.0

Raspberry Pi 3 and ODroid C2:
CPU Performance Comparison

Syshench (Inkeger)
™
a4
[
_=m
1
| £ 418
[|
i o
' i
| i m
| 00
| 24 3 a2
o | | .
e3Pl 2 Anafl 3 Odraldt2 Ao Plne Ads |
[50-Card] MDY i
HERIOT
0 . . gwall
Material from Raspberry Pi Geek 04/2016
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 2: Sys Prg on RPi 61/251
Raspberry Pi 3 and ODroid C2:
Network Performance Comparison
Iperf (Netzwerkdurchsatz)
RaPl T -'94
o -
|
e [T |
| Plne Afd+ (¥ 1)
|
1} 100 20 300 400 Sy (=] Ol il] 100
Il Mblers (griBer = besser) HERIOT
GWALT
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 2: Sys Prg on RPi 63 /251

Ethernet-bestiickte Konkurrenz in Sachen Geschwindigkeit nicht mehr punkten.

Raspberry Pi 3 and ODroid C2:
I/O Performance Comparison

Syshench (L0
an
3 24,63
|
| ™
a
H
1o
e r
|]
| u 1a
[x
I |
| 5 456 41 o R |
H H =]
Pzt 2 ResPl 3 Odrald.C2 Adroid £2 Pl A4+
[s0-carm {EMMT

L

Hans-Wolfgang Loidl (Heriot-Watt Univ)

" HERIOT
GWALT

%Material from Raspberry Pi Geek 04/2016
Lec 2: Sys Prg on RPi 62 /251

RPi3 vs Odroid-XU4: Experience

@ In terms of network-performance, the ODroid-XU4 is much faster.

@ ltis a good basis for a NAS (Network attached Storage).

@ In terms of CPU-performance, the Odroid is slightly faster:
Cortex-A15 (2.0 GHz) vs Cortex-A53 (1.2 GHz).

@ However, in practice, the GUI is much slower.

@ Based on the gtkperf GUI benchmark, the ODroid is ca. 3 x
slower.

@ The reason for this difference is more optimisation in the device
drivers for RPi’s VideoCore IV GPU (compared to ODroid’s Mali
GPU).

@ Note: To assess performance and usability, one has to consider
the entire software stack, not just the raw performance of the

hardware! Lor
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 2: Sys Prg on RPi 64 /251

http://www.raspberry-pi-geek.de/Magazin/2016/04/Mini-Rechner-im-Vergleichstest
http://www.raspberry-pi-geek.de/Magazin/2016/04/Mini-Rechner-im-Vergleichstest
http://www.raspberry-pi-geek.de/Magazin/2016/04/Mini-Rechner-im-Vergleichstest

Summary

@ The Raspberry Pi is one of the most widely-used single-board
computers.

@ The RPi comes in several version (1,2,3); we are using the
Raspberry Pi 2 model B.

@ There is a rich software eco-system for the RPis and excellent,
detailed documentation.

@ A good high-CPU-performance alternatives is: Lemaker HiKey
@ A good high-network-performance alternative is: Odroid-XU4
@ Check out the Raspberry Pi projects available online.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 2: Sys Prg on RPi 65 /251

Memory Hierarchy: Introduction

@ Some fundamental and enduring properties of hardware and
software:

» Fast storage technologies cost more per byte, have less capacity,
and require more power (heat!).
» The gap between CPU and main memory speed is widening.
» Well-written programs tend to exhibit good locality.
@ These fundamental properties complement each other beautifully.

@ They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

; - SWALT
OLecture based on Bryant & O’Hallaron, 3rd edition, Chapter 6

HERIOT

Lecture 3:
Memory Hierarchy

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 66 / 251

Memory Hierarchy

@ Our view of the main memory so far has been a flat one, ie.
@ access time to all memory locations is constant.
@ In modern architecture this is not the case.

@ In practice, a memory system is a hierarchy of storage devices
with different capacities, costs, and access times.

@ CPU registers hold the most frequently used data.

@ Small, fast cache memories nearby the CPU act as staging areas
for a subset of the data and instructions stored in the relatively
slow main memory.

@ The main memory stages data stored on large, slow disks, which

in turn often serve as staging areas for data stored on the disks or
tapes of other machines connected by networks HEROT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 68 /251

https://www.raspberrypi.org/

Caches and Memory Hierarchy

Smaller,
faster,
and
costlier
(per byte)
storage
devices

Lo:

cache memory.

L1: / L1cache

from the L2 cache.

Regs } CPU registers hold words retrieved from

(SRAM)] L1 cache holds cache lines retrieved

L2: L2 cache
(SRAM) }

L3: L3 cache

(SRAM)

Larger,
slower,)
and L4:
cheaper
(per byte)

Main memory
(DRAM)

L2 cache holds cache lines
retrieved from L3 cache

L3 cache holds cache lines
retrieved from memory.

storage
devices

L5:

Local secondary storage
(local disks)

|

Main memory holds disk
blocks retrieved from local
disks.

retrieved from disks on

L6:

Remote secondary storage
(distributed le systems, Web servers)

Local disks hold les
remote network servers.

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Lec 3: Memory Hierarchy 69 /251

The importance of the memory hierarchy

@ For the programmer this is important because data access times
are very different:

» Register: 0 cycles

» Cache: 1-30

cycles

» Main memory: 50-200 cycles

@ We want to store data that is frequently accessed high in the
memory hierarchy

Hans-Wolfgang Loidl (Heriot-Watt Univ)

HERIOT
GWALT

Lec 3: Memory Hierarchy 71/ 251

Discussion

As we move from the top of the hierarchy to the bottom, the devices
become slower, larger, and less costly per byte.

The main idea of a memory hierarchy is that storage at one level
serves as a cache for storage at the next lower level.

Using the different levels of the memory hierarchy efficiently is crucial
to achieving high performance.

Access to levels in the hierarchy can be explicit (for example when
using OpenCL to program a graphics card), or implicit (in most other
cases).

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 70/ 251

Locality

@ Principle of Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used recently

@ Temporal locality: Recently referenced items are likely to be
referenced again in the near future.

@ Spatial locality: ltems with nearby addresses tend to be
referenced close together in time

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 72/ 251

Locality Example: sum-over-array Importance of Locality

ulong count; ulong sum;

for (count = 0, sum = 0; count<n; count++)
sum 4= arrlcount]: Being able to look at code and get a qualitative sense of its locality is a
[1; , .
resl->count = count; key skill for a professional programmer!
resl->sum = sum;
resl->avqg = sum/count: Which of the following two version of sum-over-matrix has better
g ; _
} locality (and performance):
@ Data references
» Reference array elements in succession (stride-1 reference Traversal by rows: Traversal by columns:
pattern). spatial locality int 1, j; wulong sum; int i, j; ulong sum;
» Reference variable sum each iteration. temporal locality for (i = 0; i<n; i++) for (J = 0; Jj<n; J++)
e Instruction references fe (] =By eer S Sos e B0 ety e
.) . . . sum += arr[i][J]; sum += arr[i][j];
» Reference instructions in sequence. spatial locality
» Cycle through loop repeatedly. spatial locality
i, T HERIOT
WAL
Caches General Cache Concepts
@ Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.
0 q Smaller, faster, i
@ Fundamental idea of a memory hierarchy: Cache |2 0 [0 J[3]| memorycachesa subsetof
» For each k, the faster, smaller device at level k serves as a cache the locks
for the Iarger, slower device at level k + 1. Data is copied in block-sized
transfer units
@ Why do memory hierarchies work?
. Larger, slower, cheaper memory
» Because of locality, programs tend to access the data at level k Memory |0 J[2][z [3]| viewedas partitionedinto “bocks"
more often than they access the data at level k + 1. Cal s [s [7|
» Thus, the storage at level k + 1 can be slower, and thus larger and Cs [9 [0 |[1]
cheaper per bit. Tz [[1] 5]
@ Big Idea: The memory hierarchy creates a large pool of storage Mty

that costs as much as the cheap storage near the bottom, but that

serves data to programs at the rate of the fast storage near the

top. BB WALT BB WALT
c 9From Bryant and O’Hallaron, Ch 6 c

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 75/ 251 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 76 /251

General Cache Concepts: Hit General Cache Concepts: Miss

Request: 14 Data in block b is needed Request: 12 Data in block b is needed
Block b is in cache: Block b is not in cache:
Cache ([8 [o J[aa][3 || Cache [8 J[m2][][3]| ;5
Block b is fetched from
Izl Request: 12
memory
Block b is stored in cache
Memory |[o [1 || 2 || 3 | Memory ([0 J[2 J[2 |l 3 || o iement policy:
I 4 ” 5 ” 6 ” 7 I I 4 ” 5 ” 6 II 7 I determines where b goes
* Replacement policy:
8 o 2 ::1—0: :L: : 8 o 2 ::1—0::L_ determines which block
12 13 14 15 12 13 14 15 gets evicted (victim)
000000 OOGOIOIOSIPOIPOIOPIOITPOITS 00000 0OOOIOIOIOSIOIOIOIONODS

%From Bryant and O’Hallaron, Ch 6 %From Bryant and O’Hallaron, Ch 6
Lec 3: Memory Hierarchy 77 /251 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 78 /251

Types of Cache Misses Examples of Caching in the Memory Hierarchy
Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By
° COId (CompUISory) miss: Registers 4-8 bytes words CPU core 0 | Compiler
» Cold misses occur because the cache is empty. LB Address translations | On-Chip TLB 0| Hardware
° i iss:
conﬂICt s .. . L1 cache 64-bytes block On-Chip L1 1| Hardware
» Most caches limit blocks at level k+1 to a small subset (sometimes 2 cache o4 Iytes blodk onfoft-Chip 12 10 ardware
a Slngleton) Of the blOCk posmons at |eve|. k . Virtual Memory 4-KB page Main memory 100 | Hardware + OS
* E.g. Block i at level k+1 must be placed in block (i mod 4) at level k. Buffer cache parts of files Main memory 100 | os
> ConﬂiCt miSSGS occur When the Ievel k CaChe iS Iarge enotha bUt Disk cache Disk sectors Disk controller 100,000 | Disk firmware
mumple data ObJeCtS a“ map tO the same Ievel k b|OCk' Network buffer Parts of files Local disk 10,000,000 | AFS/NFS client
* E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time. cache
® Capacity miSS: Browser cache Web pages Local disk 10,000,000 | Web browser
» Occurs when the set of active cache blocks (working set) is larger Web cache Web pages Remote server disks 1,000,000,000 | Web proxy
than the cache. server
HERIOT HERIOT
GWALT GWALT

9From Bryant and O’Hallaron, Ch 6

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 79 /251 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 80/ 251

Summary

@ The speed gap between CPU, memory and mass storage

continues to widen.

@ Well-written programs exhibit a property called locality.

Principles of Caches

@ Cache memories are small, fast SRAM-based memories
managed automatically in hardware.
» Hold frequently accessed blocks of main memory
@ CPU looks first for data in caches (e.g., L1, L2, and L3), then in
main memory.
@ Typical system structure:

CPU chip
@ Memory hierarchi n hing cl h xploitin Register le
emory hierarc es based on caching close the gap by exploiting Ci& =N
|Oca||’[y. memories
I System bus Memory bus

susintotce [1O K | Ma
us interrace bridge memory

HERIOT
Bwall
Lec 3: Memory Hierarchy 81/251 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 82 /251
ARM Cortex A7 Cache Hierarch :
y ARMv7-A Memory Hierarchy
Cora
Intemal cache Virtual
(L1 Cache) FMain mem oy addmss Address Physical address
$ translation
Extemal cache m
CP15 configuration
(L2 cache) and control
; : , ~
B Level 1 Level 2 Level 3
| = Processor I o Cache Cact ol
Instructi - - "
Figure 8-1 A basic cache arrangement R1 ‘_mféﬁhm_ gm
T Tl Load Flash Level 4

A cache is a small, fast block of memory that sits between the core and main memory. It holds RO Store - » - ROM s« & forexample,

copies of items in main memory. Accesses to the cache memory happen significantly faster than ’ CF card, disk

those to main memory. Because the cache holds only a subset of the contents of main memory,

it must store both the addre§s of the |‘tem in main memory gnd the asspglated data. Whgngver Figure A3-6 Multiple levels of cache in a memory hierarchy

the core wants to read or write a particular address, it will first look for it in the cache. If it finds

the address in the cache, it will use the data in the cache, rather than having to perform an

access to main memory. This significantly increases Fhe potential performance of the system, by See ARM Architcture Reference, Ch A3, Fig A3.6, p.157

reducing the effect of slow external memory access times. It also reduces the power - -

consumption of the system. NB: In many ARM-based systems, access to external memory will ()} EEWALT

take 10s or 100s of cycles. S

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Lec 3: Memory Hierarchy 83/251 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 84 /251

Caching policies: direct mapping

@ The caching policy determines how to map addresses (and their
contents) in main memory to locations in the chache.

@ Since the cache is much smaller, several main memory addresses
will be mapped to the same cache location.

@ The role of the caching policy is to avoid such clashes as much as
possible, so that the cache can be used for most memory
read/write operations.

@ The simplest caching policy is a direct mapped cache:

» each location in main memory always maps to a single location in
the cache

» this policy is simple to implement, and therefore requires little
hardware

» a weakness of the policy is, that if two frequently used memory
addresses map to the same cache address, this results in a lot of

cache misses (“cache thrashing”) ST

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 85 /251

Caching policies: set-associative

@ To eliminate the weakness of the direct-mapped caches, a more
flexible set-associative cache can be used.

@ With this policy, one memory location can map to one of several
ways in the cache.

@ Conceptually, each way represents a slice of the cache.

@ Therefore, a main memory address can be mapped to any of
these slices in the cache.

@ Inside one such slice, however, the location is fixed.

@ If the system uses n such slices (“ways”) it is called an n-way
associative cache.

@ This avoids cache thrashing in cases where no more than n
frequently used variables (memory locations) occur.

NB: The ARM Cortex A7 uses a 4-way set associative data cache
with cache size of 32kB, and a cache line size of 8 words

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 87 /251

WAL

» HERIOT

Direct mapped cache

Main memory Cache
ox0000.0000 [+ 1 | | —— :ﬁm
0x0000.0010 >
0x0000.0020
0x0000.0030
oxo000.0040 [+ 1 & |{
0x0000. 0050
0x0000. 0060
0x0000.0070

0x0000.0080

0x0000.0090

|

|
N
T
¥

-

Figure 8-4 Direct mapped cache operation

9See ARM Programmer’s Guide, Ch 8, Fig 8.4, p 113

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy

Set-associative cache

Main memory Cache way 0
0x0000.0000 ' i i I -
0x0000.0010
0x0000.0020
0x0000.0030
0%0000.0040 |+ 1t k.
0x0000.0050 ,‘?'-‘r. ‘,‘ Cache way 1
0x0000.0060
0x0000.0070
0x0000.0080 ||
0x0000.0090

A

Figure 8-6 A 2-way set-associative cache

9See ARM Programmer’s Guide, Ch 8, Fig 8.5, p 115

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy

HERIOT
Gwarr

88 /251

ARM cache features ARM cache features

Table 8-1 Cache features of Cortex-A series processors

Processor

Cortex-A5 Cortex-A7 Cortex-A8 Cortex-A9 Cortex-A12 Cortex-A15
L2 Cache External Integrated Integrated External Integrated Integrated
L2 Cachesi - 128KB 10 - 256KB 10 8MB

dchesize IMBs UKB 1o IMB* JI2KE Lo aMB2 Table 8-1 Cache features of Cortex-A series processors (continued)
Cache PIPT PIPT PIPT PIPT PIPT PIPT Processor
Implementation
(Data) Cortex-A5 Cortex-A7 Cortex-AB Cortex-A9 Cortex-A12 Cortex-A15
Cache VIPT VIPT VIPT VIPT VIPT PIFT Cache line 8 8 16 8 - 16
Implementation (words)
(Instruction)
Cache line 32 64 64 32 64 64
L1 Cache size 4K w0 64K* BKB1lo64KB* 16/32KB* I6KBA2KB/64KE* 32KB 32KB (bytes)
(datay*
Ertor protection None None L2 ECC None L1 None, L2 Optional for L1
Cache size AK 10 64K BKB o 64K B* 16/32KB? I6KB3IKB/64KB: 32KBor 64KB 3IKB ECC and L2
(Instp
a. Configurable

L1 Cache 2-way set 2-way set d-way set L-way set d-way set 2-way set
Siructure associalive associalive associalive associative (Inst) associative associalive

(Inst) (Insty 4-way set (Inst) (Inst)

A-way sel 4-way sel associative (Data) 4-way sel 2-way sel

associalive associative associative associative

{(Data) (Data) (Data) (Daia)
L2 Cache - S-way sel B-way set - 16-way set 16-way
Structure associative associative associative associative

HERIOT %ERJ()T
Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 89 /251 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 90/ 251

ARM Cortex A7 Structure Example: Cache friendly code

| ARM CoreSight Multicore Debug and Trace |
I Generic Interrupt Controller |
I
I
NEON
CorteaT "~ See the background reading material on the web page:
Froating pont Web aside on blocking in matrix multiplication
unit i
. 3
s Data Cache 2
coe 1
| sScu | | L2 Cache W/ECC |
| 128-bit AMBAACE Coherent Bus Interface |
HERIOT HERIOT
GWAT] GWATl
7 processor

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 91/251 Hans-Wolfgang

idl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 92 /251

http://csapp.cs.cmu.edu/2e/waside/waside-blocking.pdf

Summary: Memory Hierarchy

@ In modern architectures the main memory is arranged in a
hierarchy of levels (“memory hierarchy”).

@ Levels higher in the hierarchy (close to the processor) have fast
access time but small capacity.

@ Levels lower in the hierarchy (further from the processor) have
slow access time but large capacity.

@ Modern systems provide hardware (caches) and software
(paging; configurable caching policies) support for managing the
different levels in the hierarchy.

@ The simplest caching policy uses direct mapping

@ Modern ARM architectures use a more sophisticated set
associative cache, that reduces “cache thrashing”.

@ For a programmer it’s important to be aware of the impact of
spatial and temporal locality on the performance of the program.

@ Making good use of the cache can reduce runtime by a factor of

I

ERIOT
HwaLT

ca. 3 as in our example of blocked matrix multiplication. ®

Basics of the I12C interface

@ So far we always used the GPIO interface to directly connect
external devices.

@ This is the easiest interface to use.

@ Itis however limited in the number of connections and devices you
can connect with.

@ A more general interface is the I°C interface or the I°C bus.

®Based on the article The I1°C-bus of the Raspberry Pi (Der I°C-Bus des Raspberey

WAL

Pi) (in German), Raspberry Pi Geek 01/15

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 95/ 251

Lecture 4.
Programming external devices

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 94 / 251

Basics of the I12C interface

@ 12C is a serial master-slave bus.
@ ltis serial, i.e.communication is one bit at a time.

@ It allows to connect several masters (data-providers) with several
slaves (data-consumers)

@ It is designed for short-distance communication,
i. e.communication on a board

@ Therefore it is also used in the standard Linux kernel to monitor,
e. g.temperature and other system health information

@ 1°C was originally developed by Philips in the 1980s, and has
become an industry standard.

HERIOT
Gwarr

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 96/ 251

http://www.raspberry-pi-geek.de/Magazin/2015/01/Der-I2C-Bus-des-Raspberry-Pi-Teil-1
http://www.raspberry-pi-geek.de/Magazin/2015/01/Der-I2C-Bus-des-Raspberry-Pi-Teil-1

Technical detail on I2C

@ Communication uses 2 connections:
» a serial data line (SDA)
» a serial clock line (SCL) for synchronising the communication
@ Both connections use pull-up resistors to encode one bit (high
potential = 1)
@ The two sides of the communication are
» a master that sends the clock information and initiates
communication
» a slave that receives the data
@ Typical communication rates are between 100 kb/s (standard
mode) and 5 Mb/s (ultra fast mode)

@ NB: I°C was not designed for communicating large volumes of

data
HERIOT
BWAT
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 97/ 251

Block Diagram of the PCF8574 Port Expander

T e INTERRUPT
INT + ki LP FILTER
PCF8574
AQ
4
Al 3 » PO
Az 1 3 s
L 4 — P
sC INPUT o FC-BUS Pl
soaed > o FILTER CONTROL || sHIFT T vo [T
REGISTER PORT »py
01 4ps
1
+ » P
2
» P7
-
WRITE puisa T
v |18 READ pulsa
DD s POWER-OM
Ves ——1] RESET

MECSSD

NB: 1 input data channel (SDA), 8 output data channels (PO ... P7),,.,

WAL

0 Q 4 1) aYaYal

nm B 3
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 99/ 251

Technical detail on 1°C

@ I°C uses a 7-bit address space, i. e.128 possible addresses of
which 16 are reserved.
@ The 8-th bit indicates the direction of the data transfer between
master and slave.
@ The usable address-space is defined in the technical
documentation of the device. E.g.
PCF8574 Port-Expander 0x20 — 0x27
PCF8583 Clock/Calendar 0xA0 — 0xA2
@ The device PCF8583 is a chip that provides an external clock,
with three registers starting at 0x20
@ As an example we will now use the PCF8574 port-expander,
which is accessed through address 0x20.
@ This can be used to e. g. control an LCD display over just one data

HERIOT

channel. BWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 98 /251

What's happening on the wires?

JRp—
SDA I Y
I I

|

stL | \ / \ / | soL
s P

W
)
&

——— ————

START condifion STOP condifion J—

Fig.6 Definition of start and stop cenditions.

@ signals start with HTIGH
@ a change in the SDA signal, with SCL HIGH, indicates start/stop

ERIOT
5 WAL
From PCF8574 Data Sheet
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 100/ 251

http://www.nxp.com/documents/data_sheet/PCF8574.pdf
http://www.nxp.com/documents/data_sheet/PCF8574.pdf
http://www.nxp.com/documents/data_sheet/PCF8574.pdf

How are the bits transferred?

data
data valid allowead -
Fig.5 Bit transfer.
@ one bit is transferred during each clock pulse
@ data is sampled while the SCL line is HIGH
@ the SDA line needs to be stable during this HTIGH period o

Hans-Wolfgang Loidl (Heriot-Watt Univ)

I°C on the Raspberry Pi 2

@ On the RPi2 the following pins provide an I°C interface: physical
Pin 03 (SDA) and Pin 05 (SCL) (these are pins 2 and 4 in the
BCM numbering)

@ In the following example we will use these pins to connect a
PCF8574 device.

@ In our configuration we connect the device with four buttons and
LEDs as shown in the picture below.

HERIOT
HwaLt

Hans-Wolfgang Loidl (Heriot-Watt Univ)

A typical system configuration using 12C

SDA

SCL I I]

MASTER SLAVE MASTER
TRANSMITTER / Rs&;‘&iﬁ TRANSMITTER / THAM:SS;:;T'ER TRANSMITTER /
RECEIVER RECEIVER RECEIVER

MEASDS

Fig.7 System configuration.

@ lines are (quasi-)bidirectional

@ a device generating a message is a “transmitter”
@ a device receiving is the “receiver”

@ the controller of the message is the “master”

@ the receivers of the message are the “slaves”

HERIOT
gwall

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Test configuration

°From The I°C-bus of the Raspberry Pi (Der I°C-Bus des Raspberry Pi) (in {10}

German), Raspberry Pi Geek 01/15

Hans-Wolfgang Loidl (Heriot-Watt Univ)

http://www.raspberry-pi-geek.de/Magazin/2015/01/Der-I2C-Bus-des-Raspberry-Pi-Teil-1
http://www.raspberry-pi-geek.de/Magazin/2015/01/Der-I2C-Bus-des-Raspberry-Pi-Teil-1

Software configuration Software configuration

@ We use the wiringPi library that we have installed and
discussed before. @ Initially all lines are at high, so all LEDs should light up

@ To turn LEDs off, one-by-one we execute:
@ We also need the i2c-tools package for the drivers

. . > i2cset -y 1 0x20 0x00
communicating over the 12C bus I _3; L 0ar0 0a10
@ Toinstall i2c—tools do the following: > i2cset -y 1 0x20 0x20
> sudo apt—get install i2c-tools > dfeset =y 1 020 DAl

> i2cset -y 1 0x20 0x80

> sudo adduser pi i2c

> GID1O LOEE - 2S @ Now we want to configure the button as an input device:

o We can now use iZcdetect .to check the connection between > i2cset -y 1 0x20 0x0f
our RPi2 and the external device: > watch ’i2cget -y, 1.0x20’

> i2cdetect -y 1 . .
@ Using watch we continously get output about the current value

@ This shows that we can reach the device through address 0x20 issued by the button

igh-bits i he 4 low-bi . .
@ The 4 high-bits in that address refer to the LEDs, the 4 low-bits - e Pressing the button will change the observed value or
refer to the buttons 5! WAL
A C API for I2C Sample Source for I12C

. ing this interf n make the LEDs blink one-by-one:
@ Now we want to use the 1°C-bus to programmatically control I LS [GIEIEE 149 CEl ik ! y

external devices #include <wiringPiI2C.h>

int main(void) {

@ We use the following API provided by Gordon Henderson’s int handle = wiringPiI2CSetup (0x20) ;

wiringPi library: wiringPiI2CWrite (handle, 0x10);
int wiringPiI2CSetup (const int devId) (mlaY600?7 Fandle. 0x20

. . . iringPiI2CWrit , ;

Open the 12C device, and regsiter the target device 222235300) e A

int wiringPiI2CRead (int fd) wiringPiI2CWrite (handle, 0x40);

Simple device read delay (5000) ;
int wiringPiI2CWrite (int fd, int data) wiringPil2CWrite (handle, 0x80);

delay (5000) ;
wiringPiI2CWrite (handle, 0x00);
return 0;

Simple device write
int wiringPiI2CReadReg8 (int fd, int req)

Read an 8-bit value from a regsiter on the device }
AL Wi EINGIR TACMETEEREE (A el dnit meg, At el NB: We access the LEDs as a bitmask on the high 4-bits, setting the

_V\(nte a 8-bit _val_ue to the given re_glster erior (G Ass e 259 I ceEh coen, I
and similar read/write interface for 16-bit values. BWATT BEWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 107 / 251 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 108 / 251

Further Reading & Hacking

@ The I°C-bus of the Raspberry Pi (Der 1°C-Bus des Raspberry Pi)

(in German), Raspberry Pi Geek 01/15 LeCtU re 5 .

@ Data sheet of the PCF8574 port-expander .

o FCTutorial o Exceptional Control Flow
@ Configuring I°C, SMBus on Raspbian Linux

@ Using wiringPi on the PCF8574

@ Using an PCF8574 to control an LCD display

@ Another guide how to use an PCF8574 to control an LCD display

HERIOT
GWATT e
Lec 5: Exceptional Control Flow 110/
Lec 4: Prging ext devices 109/ 251 Hans-Wolfgang Loidl (Heriot-Watt Univ) 251
What are interrupts and why do we need them? ECF on different levels

@ In order to deal with internal or external events, abrupt changes in SCIF EEelS Ell et el

control flow are needed. @ hardware level: e.g. arithmetic overflow events detected by the
o Such abrupt changes are also called exceptional control flow hardwa.re trigger abrupt control transfers to exception handlers
(ECF). @ operating system: e.g. the kernel transfers control from one user
process to another via context switches.
@ application level: a process can send a signal to another process
that abruptly transfers control to a signal handler in the recipient.
In this class we will cover an overview of ECF with examples from
the operating system level.

@ Informally, these are known as hardware- and
software-interrupts.

@ The system needs to take special action in these cases (call
interrupt handlers, use non-local jumps)

HERIOT
I

BwaLT
112/
1

HERIOT
: GWALT
OLecture based on Bryant and O’Hallaron, Ch 8
111/ Lec 5: Exceptional Control Flow

Lec 5: Exceptional Control Flow
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251 Hans-Wolfgang Loidl (Heriot-Watt Univ) 25

http://www.raspberry-pi-geek.de/Magazin/2015/01/Der-I2C-Bus-des-Raspberry-Pi-Teil-1
http://www.raspberry-pi-geek.de/Magazin/2015/01/Der-I2C-Bus-des-Raspberry-Pi-Teil-1
http://www.nxp.com/documents/data_sheet/PCF8574.pdf
http://www.robot-electronics.co.uk/i2c-tutorial
https://www.abelectronics.co.uk/kb/article/1/i2c--smbus-and-raspbian-linux
http://wiringpi.com/extensions/i2c-pcf8574/
https://arthurguy.co.uk/blog/2014/6/mini-lcd-adapter-backpack
http://www.circuitbasics.com/raspberry-pi-i2c-lcd-set-up-and-programming/

Handling ECF on different levels

ECF is dealt with in different ways:
@ hardware level: call an interrupt routine, typ. in Assembler
@ operating system: call a signal handler, typ. in C
@ application level: call an exception handler, e.g. in a Java

catch block
HERIOT
BwALT
. " : Lec 5: Exceptional Control Flow 113/
Exceptions
Definition

An exception is an abrupt change in the control flow in response to
some change in the processor’s state.

Application Exception
program handler
Event
OCCUIS —mmmemmm > by Exception
here "iex! Exception
processing

Exception
return
(optional)

A change in the processor’s state (event) triggers an abrupt control transfer
(an exception) from the application program to an exception handler. After it
finishes processing, the handler either returns control to the interrupted
program or aborts.

Lec 5: Exceptional Control Flow 115/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

HERIOT
GWALT

Why do we need this?

Why do you need to understand ECF/interrupts:

@ Understanding ECF will help you understand important
systems concepts. Interrupts are used by the OS to deal with
I/O, virtual memory etc.

@ Understanding ECF will help you understand how
applications interact with the operating system. To request a
service from the OS, a program needs to perform a system call,
which is implemented as an interrupt.

@ Understanding ECF will help you write interesting new
application programs. To implement the concept of a process
waiting for an event, you’ll need to use interrupts.

@ Understanding ECF will help you understand how software
exceptions work. Most programming languages have “exception”
constructs in the form of try, catch, and throw statements.
These are implemented as non-local jumps, as application-leve

e

IERIOT

ECFE PWALL
i Lec 5: Exceptional Control Flow 114/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

@

Exceptions (cont'd)

When the processor detects that the event has occurred, it makes an
indirect procedure call (the exception), through a jump table called an
exception table, to an operating system subroutine (the exception
handler) that is specifically designed to process this particular kind of
event.

When the exception handler finishes processing, one of three things
happens, depending on the type of event that caused the exception:

@ The handler returns control to the current instruction, i.e. the
instruction that was executing when the event occurred.

@ The handler returns control to the instruction that would have
executed next had the exception not occurred.

@ The handler aborts the interrupted program.

HERIOT
GWALT

Lec 5: Exceptional Control Flow 1
Hans-Wolfgang Loidl (Heriot-Watt Univ) 25

!
16/
1

Interrupt handling

(2) Control passes
(1) Interrupt pin to handler after current
goes high during . instruction finishes

executionof [, l (3) Interrupt
current instruction ‘\ handler runs
(4) Handler
returns to

next instruction

The interrupt handler returns control to the next instruction in the
application program’s control flow.

Lec 5: Exceptional Control Flow 2}) 11 71/

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Exception table

Code for
exception handler 0

Exception
table Code for
exception handler 1
0 s
1 :// Code for
2 > exception handler 2

Code for
exception handler n-1

The exception table is a jump table where entry k contains the address
of the handler code for exception k.

HERIOT
GWALT

. " : Lec 5: Exceptional Control Flow 119/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Exception Handling

Exception Handling requires close cooperation between software and
hardware.

@ Each type of possible exception in a system is assigned a unique
nonnegative integer exception number.

@ Some of these numbers are assigned by the designers of the
processor. Other numbers are assigned by the designers of the
operating system kernel.

@ At system boot time (when the computer is reset or powered on),
the operating system allocates and initializes a jump table called
an exception table, so that entry k contains the address of the
handler for exception k.

@ At run time (when the system is executing some program), the
processor detects that an event has occurred and determines the
corresponding exception number k. The processor then triggers
the exception by making an indirect procedure call, through

3] I

entry k of the exception table, to the corresponding handler. ~ “%
Lec 5: Exceptional Control Flow 235 11 8/

&

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Calculating the adress of an exception handler

Exception number
(x4)

0
1
} Address of entry 2
Exception table N for exception # k :
base register) 1

Exception table

This picture shows how the processor uses the exception table to form
the address of the appropriate exception handler. The exception
number is an index into the exception table, whose starting address is
contained in a special CPU register called the exception table base

q HERIOT
register. EWATT
- - - Lec 5: Exceptional Control Flow 120/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Differences between exception handlers and
procedure calls

Calling an exception handler is similar to calling a procedure/method,
but there are some important differences:

@ Depending on the class of exception, the return address is either
the current instruction or the next instruction.

@ The processor also pushes some additional processor state onto
the stack that will be necessary to restart the interrupted program
when the handler returns.

@ If control is being transferred from a user program to the kernel, all
of these items are pushed onto the kernel’'s stack rather than onto
the user’s stack.

@ Exception handlers run in kernel mode, which means they have
complete access to all system resources.

ERIO
B

&

3

é

T
T
1

L
121/
1

) " . Lec 5: Exceptional Control Flow
Hans-Wolfgang Loidl (Heriot-Watt Univ) 25

Traps and System Calls

@ Traps are intentional exceptions that occur as a result of
executing an instruction.

@ Traps are often used as an interface between application program
and OS kernel.

@ Examples: reading a file (read), creating a new process (fork),
loading a new program (execve), or terminating the current
process (exit).

@ Processors provide a special “syscall n” instruction.
@ This is exactly the sw1 instruction on the ARM processor.

HERIOT
SWATT

. " : Lec 5: Exceptional Control Flow 123/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

) " . Lec 5: Exceptional Control Flow 1
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Classes of exceptions

Exceptions can be divided into four classes: interrupts, traps, faults,
and aborts:

Class Cause (A)Sync Return behavior

Interrupt Signal from 1/O device Async Always returns to next instr
Trap Intentional exception Sync Always returns to next instr
Fault Potent. recoverable error Sync Might return to current instr
Abort Nonrecoverable error Sync Never returns

It is useful to distinguish 2 reasons for an exceptional control flow:
@ an exception is any unexpected change in control flow;
e.g. arithmetic overflow, using an undefined instruction, hardware
timer
@ an interrupt is an unexpected change in control flow triggered by
an external event;

. . 1ERIO
e.g. /0 device request, hardware malfunction Gl
22/

T
T

&

Trap Handling

(2) Control passes
to handler

(1) Application
makesa ~ Syscall
system call next

(3) Trap
handler runs

(4) Handler returns
to instruction
folfowing the syscall

The trap handler returns control to the next instruction in the
application program’s control flow.

HERIOT
Gwarr

Lec 5: Exceptional Control Flow 124/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Faults Fault handling

@ Faults result from error conditions that a handler might be able

to correct. (2) Control passes
. . (1) Current to handler
@ Note that after fault handling, the processor typically reexecutes instruction leur

; . fault (3) Fault
the same instruction. causes afad ‘\l handier runs

. L T nandier dTs + abort
@ Example: page fault exception. (4) Handler either reexecutes

» Assume an instruction references a virtual address whose current instruction or aborts.
corresponding physical page is not in memory.

» In this case page fault is triggered. _ _

» The fault handler loads the required page into main memory. Depending on whether the fault can be repaired or not, the fault

» After that the same instruction needs to be executed again. handler either reexecutes the faulting instruction or aborts.

- - - Lec 5: Exceptional Control Flow 125/ - - - Lec 5: Exceptional Control Flow 126/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251 Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Aborts Common system calls

Number Name Description

(2) Control passes

(1) Fatal hardware | i0 handler 1 exit Terminate process
eror oceurs (3) Abort 2 fork Create new process
handler runs 3 read Read file
------------------- » abort . 0 "
(4) Handler returns 4 write Write file
to abort routine 5 open Open file
6 close Close file
7 waitpi Wait for child to terminate
Aborts result from unrecoverable fatal errors, typically hardware errors 11 execve Load and run program
such as parity errors that occur when DRAM or SRAM bits are 19 Iseek Go to file offset
corrupted. Abort handlers never return control to the application 20 getpid Get process ID
program.
HERIOT HERIOT
GWATT AT

9For a more complete list see Smith, Appendix B “Raspbi%n System Calls”

- - - Lec 5: Exceptional Control Flow 127/ - - - ec 5:"Exceptional Control Flow 128/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251 Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Common system calls

Number Name

Description

27 alarm

29 pause
37 kill

48 signal
63 dup2

64 getppid
65 getpgrp
67 sigaction
90 mmap
106 stat

Set signal delivery alarm clock
Suspend process until signal arrives
Send signal to another process
Install signal handler

Copy file descriptor

Get parent’s process ID

Get process group

Install portable signal handler

Map memory page to file

Get information about file

==
C

OFor the truly complete list see /usr/include/sys/syscall.h

) " . Lec 5: Exceptional Control Flow
Hans-Wolfgang Loidl (Heriot-Watt Univ)

9

B =
=Y 3
-~

Signal handlers in C (cont'd)

@ For example, if you type a ctr1-c (i.e. press the ctrl key and the
¢ key at the same time) while a process is running in the
foreground, then the kernel sends a STGINT (number 2) to the

foreground process.

@ A process can forcibly terminate another process by sending it a
SIGKILL signal (number 9).

@ When a child process terminates or stops, the kernel sends a
STGCHLD signal (number 17) to the parent.

HERIOT
GWALT

. " : Lec 5: Exceptional Control Flow 131/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Signal handlers in C

exceptions to user processes.
kernel sends it a SIGFPE signal (number 8).

kernel or in other user processes.

°From Bryant and O’Hallaron, Sec 8.5

) " . Lec 5: Exceptional Control Flow
Hans-Wolfgang Loidl (Heriot-Watt Univ)

Signal handling

(1) Signal received
by process !

(2) Control passes
to signal handler

(4) Signal handler
returns to
next instruction

|

@ For example, if a process attempts to divide by zero, then the

@ Other signals correspond to higher-level software events in the

(3) Signal
handler runs

. " . Lec 5: Exceptional Control Flow
Hans-Wolfgang Loidl (Heriot-Watt Univ)

UNIX signals are a higher-level software form of exceptional control
flow, that allows processes and the kernel to interrupt other processes.

@ Signals provide a mechanism for exposing the occurrence of such

==
C

R =

n

Receipt of a signal triggers a control transfer to a signal handler. After
it finishes processing, the handler returns control to the interrupted
program.

HERIOT
Gwarr

132/
251

Example: handling ctrl-c

// header files

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

void ctrlc_handler (int sig) {
fprintf (stderr, "Received_signum_%d; thank_you_for pressing,
CTRL-C\n", sig);
exit (1);
}

int main () {
signal (SIGINT, ctrlc_handler); // install the signal handler
while (1) { } ; // infinite loop
HERIOT
GWALT

: : : Lec 5: Exceptional Control Flow 133/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Example: sending SIGALARM by the kernel

/* signal handler, i.e. the fct called when a signal is
received */

void handler (int sig)

{

static int beeps = 0;

printf ("BEEP_%d\n", beeps+l);
if (++beeps < 5)
alarm(l); /* Next SIGALRM will be delivered in 1 second

*/
else {
printf ("BOOM!\n") ;
exit (1);
}
}
int main () {
signal (SIGALRM, handler); /* install SIGALRM handler; see:
man 2 signal */ &F

alarm(1l); » Next SIGALRM will be delivered in ls; .see: man, . .
. (L) / . Lec 5: Exceptional Contrcﬁ Flow. 135/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Example: handling ct r1-c in more detail

See signal2.c

HERIOT
GWALT

- - - Lec 5: Exceptional Control Flow 134/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Timers

@ We now want to use timers, i.e. setting up an interrupt in regular
intervals.

@ The BCM2835 chip as an on-board timer for time-sensitive
operations.

@ We will explore three ways of achieving this:

» using C library calls (on top of Raspbian)

» using assembler-level system calls (to the kernel running inside
Raspbian)

» by directly probing the on-chip timer available on the RPi2

@ In this section we will cover how to use the on-chip timer to
implement a simple timeout function in C

HERIOT

GWALT
. " . Lec 5: Exceptional Control Flow 136/

Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

OrErE Example: C library functions for controlling timers

getitimer, setitimer - get or set value of an interval timer

#include <sys/time.h>

Feaunes(ﬁthecﬁﬁerentapproaches: %nt get%t%mer(}nt wh%ch, struct 1t1merya} *curr_value) ;
. . int setitimer (int which, const struct itimerval =
@ C library calls (on top of Raspbian)

new_value,
» are portable across hardware and OS
» require a (system) library for handling the timer
@ assembler-level system calls (to the kernel running inside

struct itimerval xold_value);

setitimer sets up an interval timer that issues a signal in an interval

. ifi he new_val rgument, with this str re:
Raspbian) specified by the new_value argument, with this structure

» depend on the OS, but are portable across hardware struct ltlme{fval { -

» require a support for software-interrupts in the OS kernel struct timeval it _interval; /* next value «/

struct timeval it_value; /* current value x/
bi
struct timeval {

@ directly probing the on-chip timer available on the RPi2

» depend on both hardware and OS
» the instructions for probing a hardware timer are specific to the

time_t tv_sec; /* seconds */
hardware suseconds_t tv_usec; /+ microseconds =/ oT
ShalLl . oy
. . . Lec 5: Exceptional Control Flow 137/ i . . . Lec 5: Exceptional Control Flow 138/
C library functions for controlling timers Programming a C-level signal handler

Signals (or software interrupts) can be programmed on C level by
associating a C function with a signal sent by the kernel.

There are three kinds of timers, specified by the which argument: sigaction - examine and change a signal action

. - . include <si 1.h>
@ ITIMER REAL decrements in real time, and delivers STGALRM #include <signal.h> . .
.. int sigaction(int signum, const struct sigaction =act,
upon expiration.

struct sigaction =xoldact);
¢ LIIMBERVIRIUAL decrements only when thePfO_CeSS IS The sigaction structure is defined as something like:
executing, and delivers STGVTALRM upon expiration.

struct sigaction {
@ ITIMER PROF decrements both when the process executes and

void (*xsa_handler) (int) ;

when the system is executing on behalf of the process. Coupled void (»sa_sigaction) (int, siginfo_t =,

with TTIMER VIRTUAL, this timer is usually used to profile the void x);

time spent by the application in user and kernel space. STGPROF sigset_t sa_mask;

is delivered upon expiration. i sa_tlags;

void (xsa_restorer) (void) ;
NB: the sa_handler or sa_sigaction fields define the action to be

- T performed when the signal with the id s ignum is sent. ST
See: man getitimer 0

Lec 5: Exceptional-Control-Flow..139./ Seeman sicaction Lec 5: Exceptional-Control-Flow..140./
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251 Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Programming Timers using C library calls

We need the following headers:

#include <signal.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <sys/time.h>

// in micro-sec
#define DELAY 250000

HERIOT
GWALT

Lec 5: Exceptional Control Flow 2})11 /

9Sample source in itimer11.c
Hans-Wolfgang Loidl (Heriot-Watt Univ)

Programming Timers using C library calls

Now, we need to set-up a timer to send STGALRM every DELAY
micro-seconds:

/+ Configure the timer to expire after 250 msec... =/
timer.it_value.tv_sec = 0;

timer.it_value.tv_usec = DELAY;

/+ ... and every 250 msec after that. */
timer.it_interval.tv_sec = 0;

timer.it_interval.tv_usec = DELAY;

/+ Start a real timer. It counts down whenever this
process is executing. =/

setitimer (ITIMER_REAL, &timer, NULL);

/+ A busy loop, doing nothing but accepting signals */
while (1) {} ;
}

HERIOT
0 — GWATT
Sample source in itimer11.c

Lec 5: Exceptional Control Flow 143/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Programming Timers using C library calls

int main ()

{

struct sigaction sa;
struct itimerval timer;

fprintf (stderr, "configuring_a _timer with_ a delay_of_%d_

micro-seconds_...\n", DELAY);

/+ Install timer_handler as the signal handler for
SIGALRM. =/

memset (&sa, 0, sizeof (sa));

sa.sa_handler = &timer_handler;

sigaction (SIGALRM, &sa, NULL);

Calling sigaction like this, causes the function t imer handler to

be called whenever signal STGALRM arrives. HERIOT

WAL

) " . Lec 5: Exceptional Control Flow
Hans-Wolfgang Loidl (Heriot-Watt Univ)

Further Reading & Hacking

¥ Randal E. Bryant, David R. O’Hallaron “Computer Systems: A
Programmers Perspective”,
3rd edition, Pearson, 7 Oct 2015. ISBN-13: 978-1292101767.
Chapter 8: Exceptional Control Flow

¥ David A. Patterson, John L. Hennessy. “Computer Organization
and Design: The Hardware/Software Interface”,
ARM edition, Morgan Kaufmann, Apr 2016. ISBN-13:
978-0128017333.
Section 4.9: Exceptions

® tewart Weiss. “UNIX Lecture Notes”
Chapter 5: Interactive Programs and Signals
Department of Computer Science, Hunter College, 2011

HE!

142/
251

RIOT
NATT

BwaLT

Lec 5: Exceptional Control Flow
Hans-Wolfgang Loidl (Heriot-Watt Univ)

144/
251

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/itimer11.c
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/itimer11.c
http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/unix_lecture_notes/chapter_05.pdf

Summary

@ Interrupts trigger an exceptional control flow, to deal with
special situations.

@ Interrupts can occur at several levels: LeCtU re 6 .

» hardware level, e.g. to report hardware faults
» OS level, e.g. to switch control between processes

» application level, e.g. to send signals within or between processes CO m pUter AI’Ch IteCtU re
@ The concept is the same on all levels: execute a short sequence
of code, to deal with the special situation.
@ Depending on the source of the interrupt, execution will continue
with the same, the next instruction or will be aborted.

@ The mechanisms how to implement this behaviour are different:
in software on application level, in hardware with jumps to entries
in the interrupt vector table on hardware level

HERIOT HERIOT
gwall Bwall
. . . Lec 5: Exceptional Control Flow 145/ . . . Lec 6: Computer Architecture 146/
Classes of Computer Architectures Number of processors produced
[Dcenprones mrcs o Tvs|
1200
1100
q q q 1000
@ There is a wide range of computer architectures from small-scale 900
(embedded) to large-scale (super-computers) 0 o
n 2 600
@ In this course we focus on embedded systems g o
. . . . 400
@ A key requirement for these devices is low power consumption 300 _
@ This is also increasingly important for main-stream hardware and 100 ﬂ
even for super-computin o o P
poreompiT | ELILS IS S
@ Embedded devices are found in cars, planes, house-hold devices,
. FIGURE 1.1 The number of cell phones, personal computers, and televisions manufactured
network-deVIceS, Ce”'phones etC per year between 1997 and 2007. (e have television data only from 2004.) Maore thana billion new
cell phones were shipped in 2006, Cell phones sales exceeded PCs by only a factor of 14 in 1997, but the
H H H 1 ratio grew to 4.5 in 2007, The total number inuse in 2004 is estimated to be about 208 televisions, 1 8E cell
® ThIS 1S the mOSt rapldly grOWIng market for CompUter hardware P|'Ilﬂ|'li'.. Jmli 08B PCs As the i\\l:rld population was Jh\uLhAlES in 110{)[4. there wcllt: ~1p|.1l|'1\xin1n1lc|‘_\r' one PG,
2.2 cell phones, and 2.5 televisions for every cight people on the planet. A 2006 survey of US. families found
that they owned on average 12 gadgets, including three TVs, 2 PCs, and other devices such as game consoles,
MPF3 players, and cell phones.
HERIOT HERIOT
Gwarr BYALL

9From Patterson & Hennessy, Chapter 1

- - - Lec 6: Computer Architecture 147/ - - - Lec 6: Computer Architecture 148 /
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251 Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Limitations to further improvements Processor Architectures: Introduction

@ In this part we take a brief look at the design of processor

10000 - oo 3000 2867 T 120 hardware.
g 10001 = 7' @ This view will give you a better understanding of how computers
g 100+ C'“Z:ﬂin‘!"}]ﬁ 2 § work.
= § @ In particular you will gain a better understanding of issues relevant
& 104 Power T < to resource consumption.

-+ 20
N , , , . @ So far we have used a very simple model of a CPU: each
gg gg gg .%2" €§ ¢ E: EEF ggg mstructlgn is fetched and executed to completion before the next
SRR L 53553535” one begins. | o '
@ Modern processor architectures use pipeling to execute multiple
FIGURE 1.15 Clock rate and Power for Intel x86 microprocessors over eight generations . . . « . »
and 25 years. The Fentium 4 made a dramatic jump in clock rate and power but less so in performance. |nStrUCt|0nS Slmultaneously (Su per-scalal’ arChIteCtUI’eS)
The Prescott thermal problems led to the abandonment of the Fentium 4 line. The Care 2 line reverts to a .
simpler pipeline with lower dock rates and multiple processors per chip. Qo SpeC|a| measures need to be ‘taken to ensure that the processor
computes the same results as it would with sequential executior%wgg;};
9From Patterson & Hennessy, Chapter 1 , , R
. . . Lec 6: Computer Architecture 149/ . . . Lec 6: Computer Architecture 150/
A simple picture of the CPU Why should you learn about architecture design?
CPU
Register file
i/ ALU @ ltis intellectually interesting and important.
\ @ Understanding how the processor works aids in understanding
how the overall computer system works.
@ Although few people design processors, many design hardware
Businterface K > systems that contain processors.
@ You just might work on a processor design.
@ The ALU executes arithmetic/logic operations with arguments in
registers
@ Load and store instructions move data between memory and
. HERIOT HERIOT
registers EWATT EWALT
- - - Lec 6: Computer Architecture 151/ - - - Lec 6: Computer Architecture 152/

Stages of executing an assembler instruction

Processing an assembler instruction involves a number of operations:
@ Fetch: The fetch stage reads the bytes of an instruction from
memory, using the program counter (PC) as the memory address.
© Decode: The decode stage reads up to two operands from the
register file.
© Execute: In the execute stage, the arithmetic/logic unit (ALU)
either performs the operation specified by the instruction,
computes the effective address of a memory reference, or
increments or decrements the stack pointer.
© Memory: The memory stage may write data to memory, or it may
read data from memory.
© Write back: The write-back stage writes up to two results to the
register file.
© PC update: The PC is set to the address of the next instruction.
NB: The processing depends on the instruction, and certain stages

1ERIOT
HWATT

may not be used. GWAL
1

I
- Lec 6: Computer Architecture 53/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Instruction-level parallelism

@ Key observation: We can do the different stages of the execution
in parallel (“instruction-level parallelism”)

@ An architecture that allows this kind of parallelism is called
“pipelined” architecture

@ This is a big performance boost: ideally each instruction takes just
1 cycle (as opposed to 5 cycles for the 5 stages of the execution)

@ However, the ideal case is often not reached, and modern

architecture play clever tricks to get closer to the ideal case:
branch prediction, out-of-order execution etc

HERIOT
GWALT

Lec 6: Computer Architecture 155/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Unpipelined computation hardware

300 ps

Delay: 320 ps

Unpipelined Design
Throughput: 3.12 GIPS J

20 ps

Combinational
logic

| Delay = 320 ps
Throughput = 3.12 GIPS

(a) Hardware: Unpipelined Clock
11
12
B Time é

(b) Pipeline diagram

On each 320 ps cycle, the system spends 300 ps evaluating a
combinational logic function and 20 ps storing the results in an output

register.

9From Bryant, Chapter 4
Hans-Wolfgang Loidl (Heriot-Watt Univ)

IERIO
5 WAT

& universt

T
T

Lec 6: Computer Architecture 235 54/

Three-stage pipelined computation hardware

100 ps 20 ps

Comb.
= logic

A

100 ps

Comb.
logic
B

20 ps

Delay: 360 ps

Three-stage Pipeline
Throughput: 8.33 GIPS J

100 ps 20 ps
Clon,]b' Delay = 360 ps
°g'° Throughput = 8.33 GIPS

(a) Hardware: Three-stage pipeline

nlalB]c

12 A B

13 A

Time

(b) Pipeline diagram

Clock

The computation is split into stages A, B, and C. On each 120-ps
cycle, each instruction progresses through one stage.

9From Bryant, Chapter 4

HERIOT
Gwarr

Lec 6: Computer Architecture 156 /
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Three-stage pipeline timing

clock L L L L L
I1
12 A B C
13 A B C

0 120 240 360 480 600
Time
The rising edge of the clock signal controls the movement of
instructions from one pipeline stage to the next.

HERIOT

EWATT
) ’ . Lec 6: Computer Architecture 157/

Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Example: One clock cycle of pipeline operation.

@ Time =239
100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. Comb.
= logic P logic ==
A [

Just before clock rise: values have been computed (stage A of
instruction 12, stage B of instruction 13), but the pipeline registers have

not been updated, yet.

HERIOT
BEWATT

Lec 6: Computer Architecture 15 59/

9From Bryant, Chapter 4

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Example: One clock cycle of pipeline operation.

Clock I I N

11

12 A B

13 A

Time w0 A | o
O @0 @

@ We now take a closer look on how values are propagated through
the pipeline.

@ Instruction 11 has completed stage B

@ Instruction 12 has completed stage A

HER ()

EFWATT
Lec 6: Computer Architecture i ?8/

9From Bryant, Chapter 4, Fig 4.35
Hans-Wolfgang Loidl (Heriot-Watt Univ)

Example: One clock cycle of pipeline operation.

@ Time = 241 Clock
100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb Comb
=D logic =jef=P| logic logic >
A 9 B (o}

On clock rise, inputs are loaded into the pipeline registers.

HERIOT

BEWATT

Lec 6: Computer Architecture }) 60/

9From Bryant, Chapter 4
Hans-Wolfgang Loidl (Heriot-Watt Univ)

Example: One clock cycle of pipeline operation.

@ Time = 300

100 ps

Co

= logit
A

20 ps

20 ps 100 ps
Comb.
o=t logi
B

100 ps

Signals then propagate through the combinational logic (possibly at

different rates).

°From Bryant, Chapter 4

Hans-Wolfgang Loidl (Heriot-Watt Univ)

HERIOT
WAL

Lec 6: Computer Architecture 2})(131 /

Multiple-clock-cycle pipeline diagram

Time (in clock cycles)

CC1 CC2 CC3 CC4 CCs CCe6 cCc7 CcCs8 CCo9
Program
execution
order
(in instructions)
Instruction | Instruction " Data "
Iw $10, 20($1) fetch decode Execution access Write-back
Instruction | Instruction . Data "
sub $11, $2, $3 fotch decode Execution acoess Write-back
Instruction | Instruction " Data .
add $12, $3, $4 fetch decode Execution ac068s Write-back
Instruction | Instruction " Data N
Iw $13, 24($1) fetch decode | EXecution | loes | Write-back
Instruction | Instruction . Data N
add $14, $5, $6 fotch decode | EXecution | tc |Write-back
FIGURE 4.44 Traditional multipl Y &1 of five instr in Figure 4.43.

9From Patterson & Hennessy, Chapter 4

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Lec 6: Computer Architecture 215 ?3/

Example: One clock cycle of pipeline operation.

@ Time = 359 Clock
100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb.
D logic Ple[—> logic D
A 9 B

Before time 360, the result values reach the inputs of the pipeline
registers, to be propagated at the next rising clock.

9From Bryant, Chapter 4
Hans-Wolfgang Loidl (Heriot-Watt Univ)

PC

Write back

Memory

Execute

Decode

HERIOT
GWALT

Lec 6: Computer Architecture 22_) (152/

Abstract view of a sequential processor

Fetch

Hans-Wolfgang Loidl (Heriot-Watt Univ)

The information processed
during execution of an in-
struction follows a clockwise
flow starting with an instruc-
tion fetch using the program
counter (PC), shown in the
lower left-hand corner of the
figure.

o
BUALT

Lec 6: Computer Architecture 2]5 ?4/

Discussion of pipelined execution

The main pipeline stages are:

@ Fetch: Using the program counter register as an address, the
instruction memory reads the bytes of an instruction. The PC
incrementer computes valP, the incremented program counter.

@ Decode: The register file has two read ports, A and B, via which
register values valA and valB are read simultaneously.

@ Execute: This uses the arithmetic/logic (ALU) unit for different
purposes according to the instruction type: integer operations,
memory access, or branch instructions.

@ Memory: The Data Memory unit reads or writes a word of
memory (memory instruction). The instruction and data memories
access the same memory locations, but for different purposes.

@ Write back: The register file has two write ports. Port E is used to
write values computed by the ALU, while port M is used to write
values read from the data memory.

AT
- Lec 6: Computer Architecture 165/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

HE

CRIOT
EWATT

<ﬂ

Pipeline registers
The pipeline registers are labeled as follows:

@ F holds a predicted value of the program counter.

@ D sits between the fetch and decode stages. It holds information
about the most recently fetched instruction for processing by the
decode stage.

@ E sits between the decode and execute stages. It holds
information about the most recently decoded instruction and the
values read from the register file for processing by the execute
stage.

@ M sits between the execute and memory stages. It holds the
results of the most recently executed instruction for processing by
the memory stage. It also holds information about branch
conditions and branch targets for processing conditional jumps.

@ W sits between the memory stage and the feedback paths that
supply the computed results to the register file for writing and the
return address to the PC selection logic when completing a retu,mm,
instruction.

Lec 6: Computer Architecture 167/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Hardware structure of a
pipelined implementation.
By inserting pipeline regis-
ters between the stages, we
create a five-stage pipeline.

\ =
| A
HERIOT
5 @WALT
From Bryant, Chapter 4
Lec 6: Computer Architecture 166/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251
Example of instruction flow through pipeline
3 4 5 6 7 8 9
MOV RL,#20 @Il E|M|W
MOV R2,#05 R@I2 D|IE|M]|W
MUL RO,R1,R2 @I3 FID|E|M|W
MOV R7,#00 @I4 FID|E|M|W
SWI 0 @15 FID|E|M|W
Cycle 5
w
Il
M
12
=
I3
D
14
F
E et
o Lec 6: Computer Architecture 168/

The ARM picture

The pipeline in the BCM2835 SoC for the RPi has 8 pipeline stages:
@ Fe1l: The first Fetch stage, where the address is sent to memory
and an instruction is returned.
© Fe2: Second fetch stage, where the processor tries to predict the
destination of a branch.
© De: Decoding the instruction.
© Iss: Register read and instruction issue
© Only for ALU operations:
@ Sh: Perform shift operations as required.
@ ALU: Perform arithmetic/logic operations.
© Sat: Saturate integer results.
© Only for Multiply operations:
@ MACH1: First stage of the multiply-accumulate pipeline.
@ MAC2: Second stage of the multiply-accumulate pipeline.
© MACS3: Third stage of the multiply-accumulate pipeline.
@ Only for Load/Store operations:
(%) ADD Address generation stage

=%

= ==

9

g

Lec 6: Computer Architecture

n
o :H0

Hans- Wolfgang L0|dl (Herlot -Watt Unlv)

MBL.JMmebacknLdalairom any of the above sub-pipelines.

9See slidesRPiArch and the table in Smith’s book

Example: bad branch prediction

.global _start

.text

_start: EORS R1, R1, Rl @ always O
BNE target @ Not taken
MOV RO, #11 @ fall through
MOV R7, #1
SWI 0

target: MOV RO, #1
MOV R7, #1
SWI O

Branch prediction: we assume the processor takes an always taken
policy, i.e. it always assumes that that a branch is taken

NB: the conditional branch (BNE) will never be taken, because
exclusive-or with itself always gives 0, i.e. this is a deliberately bad | .
example for the branch predictor SIS

Lec 6: Computer Architecture 171/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

i i i HERIOT
into the pipeline o
Lec 6: Computer Architecture 170/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Pipelining and branches

@ How can a pipelined architecture deal with conditional branches?

@ In this case the processor doesn’t know the successor instruction
until further down the pipeline.
@ To deal with this, modern architectures perform some form of
branch prediction in hardware.
@ There are two forms of branch prediction:
» static branch prediction always takes the same guess (e.g. guess
always taken)
» dynamic branch prediction uses the history of the execution to take
better guesses
@ Performance is significantly higher when branch predictions are
correct

@ If they are wrong, the processor needs to stall or inject bubbles

Processing mispredicted branch instructions.

ponzoll 1 2 3 4 5 6 7 8 9 10
0x000: EORS R1, R1, R1 F E|M|W
0x004: BNE target @ Not taken! F D E M W
0x014: MOV RO,#1 @ Target F|D
bubble Helm[w
0x018: MOV R7,41 @ Target+l [T
bubble UbJe[m|w
0x008: MOV R1,#11 @ Fall through FID|E|M|W
0x00c: MOV R7,#1 FIDJ| E|M|W

0x010: SWI 0
@ Predicting “branch taken”, instruction 0x014 is fetched in cycle 3,
and instruction 0x018 is fetched in cycle 4.
@ In cycle 4 the branch logic detects that the branch is not taken
@ It therefore abandons the execution of 0x014 and 0x018 by
injecting bubbles into the pipeline.
@ The result will be as expected, but performance is sub-optimal! ;.01

EEWATT

9Adapted from Bryant, Figure 4.62

Lec 6: Computer Architecture 172/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Example of bad branch prediction Hazards of Pipelining
@ Pipelining complicates the processing of instructions because of:

» Control hazards, where branches are mis-predicted (as we have
seen)

» Data hazards, where data dependencies exist between
subsequent instructions

@ Several ways exist to solve these problems:

» To deal with control hazards, branch prediction is used and, if
necessary, partially executed instructions are abandoned.

» To deal with data hazards, bubbles can be injected to delay the
execution of instructions, or data in pipeline registers (but not
written back) can be forwarded to other stages in the pipeline.

@ A lot of the complexities in modern processors is due to deep
pipelining, (possibly dynamic) branch prediction, and forwarding of
data

For details on pipelining and data hazards, see Bryant & O’Hallaron,
Computer Systems: A Programmer’s View, Chapter 4 (especially

Code example: sumav3_asm

Ll Sec 4.4 and 4.5). e
- - - Lec 6: Computer-Architecture.173./ - - - Lec 6: Computer-Architecture..174./
251 Hans-Wolfgang Loidl (Heriot-Watt Univ) 251
Data Hazards A Graphical Representation of Forwarding
@ The branch-prediction example above was a case of a control
hazard.
@ Now we look into a simple example of a data hazard.
@ Consider the following simple ARM assembler program: Program
S v 200 400 600 800 1000
ADD R3, R1, R2 @ R3 =Rl + R2 ey T ' T
SUB RO, R3, R4 @ RO =R3 - R4 ADD X1, X2, X3 F—= D :9%MEM We
@ Note, the result from the first instruction, in R3, will only become
available in the write-back (5th) stage —
@ But, the data in R3 is needed already in the decode (2nd) stage of SUB X4, X1, X5 B 'D‘ng'“m We
the second instruction
@ Without intervention, this would stall the pipeline, similar to the
branch-mis-prediction case
@ The solution to this is to introduce forwarding (or by-passing) to
the hardware of the processor ST ST

9From Patterson & Hennessy, Chapter 4

Lec 6: Computer Architecture 175/ - - - Lec 6: Computer Architecture 176/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251 Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Example: Reordering Code to Avoid Pipeline Stalls

@ We have previously examined, how C expressions are compiled to
Assembler code. For example, consider this C program fragment:

int a, b, ¢, d, e, £f;
a=>b + e;
c =Db + £;

@ Knowing about control and data hazards motivates reordering of
code that should be done by the compiler to avoid pipeline stalls.

@ Such reordering is commonly done in the backend of compilers.

@ Therefore, the sequence of Assembler instructions might be
different from the one you expect.

IERIOT
BWATT

) " . Lec 6: Computer Architecture 177/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Example: Reordering Code to Avoid Pipeline Stalls

Example: Translate the following C expression into Assembler:

int a, b, ¢, d, e, f;
a=>b + e;
@ =19 + ig

Example: We assume the variables are stored in memory, starting
from the location held in register R0. Here is the naive Assembler code:

ILDR R1, [RO, #4] @ load b
IDR R2, [RO, #16] @ load e
ADD R3, R1, R2 @ b + e
STR R3, [RO, #0] @ store a
LDR R4, [RO, #20] @ load f
ADD R5, R1, R4 Q@ b + £
STR R5, [RO, #12] @ store c
Eli

Can you spot the data hazard in this example?

Lec 6: Computer Architecture 179/
Hans-Wolfgang Loidl (Heriot-Watt Univ) 251

Data layout and code for a C expression

C a b c d e f a=Db+e
L []
I LDR R1, [RO, #4]
ARM RO LDR R2, [RO, #16]

ADD R3, Rl, R2
STR R3, [RO, #0]

IERIOT
WATT

&

°From Patterson & Hennessy, Chapter 4 o i e
Hans-Wolfgang Loidl (Heriot-Watt Univ) . P 251

A Graphical Representation of a Load-Store Hazard

Program

execution) 200 400 600 800 1000 1200 1400
order Time T T r T T T T

(in instructions)
LDUR X1, [X2,#0] | IF —C 1D a m . WB%

AN F Rl T

G0 s ~ €7 W\ g8 s
f"bubh\c,‘f (_bubbley (_bubble/\ (_bubble/ bubble/

SUB X4, X1, X5 E’—E Ii:B—MEM—EB

9From Patterson & Hennessy, Chapter 4
Hans-Wolfgang Loidl (Heriot-Watt Univ)

Example: Reordering Code to Avoid Pipeline Stalls

Example: Translate the following C expression into Assembler:

int a, b, ¢, d, e, £f;
a=>b + e;
c =Db + £;

Example: The reordered Assembler code, eliminating the data hazard:

ILDR R1, [RO, #4] @ load b

ILDR R2, [RO, #16] @ load e

ILDR R4, [RO, #20] @ load f; moved_up
ADD R3, R1, R2 @ b+ e

STR R3, [RO, #0] @ store a

ADD R5, R1, R4 @ b + £

STR R5, [RO, #12] @ store c

Moving the third T.DR instruction upward, makes its result available
soon enough to avoid a pipeline stall.

- Lec 6: Computer Architecture
Hans-Wolfgang Loidl (Heriot-Watt Univ)

I

ER

=c :=0O

N ER
Ol o=

Lecture 7: Code Security: Buffer Overflow Attacks

@ Code Security deals with writing code that is “secure” against
attacks, i.e. that cannot be tricked in performing an unintended
task.

@ This is important across all application domains, e.g. web
programming, server programming, embedded systems
programming.

@ ltis particularly important in embedded systems programming,
because you often don’t have OS protection against attacks.

@ You will learn more about security in F20CN: Computer Network
Security.

@ Here we focus on the security of low-level code and in particular
on buffer overflow attacks.

@ NB: Buffer overflow attacks are some of the most commonly

occuring security bugs BB WALT

Summary: Processor Architecture and Pipelining

@ Modern (“super-scalar”) processors can execute several
instructions at the same time, by organising the execution of an
instruction into several stages and using a pipeline structure.

@ This exploits instruction-level parallelism and boosts
performance.

@ However, there is a risk of control and data hazards, leading to
reduced performance, e.g. due to poor branch prediction

@ Knowing these risks, you can develop faster code!

@ These code transformations are often done internally by the
compiler.

HERIOT
GWALT

Lec 6: Computer Architecture
Hans-Wolfgang Loidl (Heriot-Watt Univ) 2

h

10
AT
182/
51

Dynamically Changing Attributes: setuid

Background: dynamically changing the ownership of programs.

@ Sometimes we want to specify that a file can only be modified by a
certain program.

@ Thus, we want to control access on a per-program, rather than a
per-user basis.

@ We can achieve this by creating a new user, representing the role
of a modifier for these files.

@ Mark the program, as setuid to this user.

@ This means, no matter who started the program, it will run under
the user id of this new user.

@ Example:
User Operating | Accounts | Accounting | Audit
System Program Data Trail
Sam rwx rwx r r
Alice rx X - -
Accounts program rx r ™w w Wt
Bob rx T r r e
Hans-Wolfgang Loidl (Heriot-Watt Univ) ZecrgBulienCrericapitiacts 215 e

Ll WVl O, DT L U T PDITVUYILAN Ulll.y Plllall
OEiqure from “Securitv Enaineering” bv Ross Anderson Chanters 4 6

http://cwe.mitre.org/top25/
http://cwe.mitre.org/top25/

Example code for setuid

static uid_t euid, uid;
int main(int argc, char % argvpl[]) {
FILE xfile;
/* Store real and effective user IDs =*/
uid = getuid(); euid = geteuid();
/+ Drop privileges */
seteuid (uid) ;
/* Do something useful ... «/
/+ Raise privileges, in order to access the file «/
seteuid(euid) ;
/+ Open the file; NB: this is owned and readable only by a different user x
file = fopen("/tmp/logfile", "a");
/+ Drop privileges again */
seteuid (uid) ;
/* Write to the file */
if (file) {
fprintf (file, "Someone used this program: UID=%d, EUID=%d\n", getuid(), g

} else {
fprintf (stderr, "Could not open file /tmp/logfile; abortﬁﬁﬁ&%.

return 1; ’
Hans-Wolfgang Loidl (Heriot-Watt Univ) zecpgButioneyericupiitacy 2%%5/

An");

/+ Close the file and return =/
As Gl Userdo tHe féfloWing

> cd /tmp

try to run the program

> . /sl

Could not open file /tmp/logfile; aborting

this failed, because guest doesn’t have permission to write to logfile

As normal user do the following

set the setuid bit

> chmod +s sl

> 1ls -lad sl

—-rwsrwsr-x 1 hwloidl hwloidl 10046 2011-11-11 22:06 sl

Now, as guest you can run the program:

> . /sl

now this succeeds, although the user still cannot read the file
> cat /tmp/logfile

cat: /tmp/logfile: Permission denied

But the normal user can read the file, eg:

> cat /tmp/logfile
Someone used this program: UID=1701, EUID=1701 -
Someone used this program: UID=12386, EUID=12386 %%ﬁ%i

Hans-Wolfgang Loid! (Heriot-Watt Univ) zecpgBulienCrericipitiackopuu! 67

Testing this prgram

As normal user do the following:

#
>
#
>
#
>
#
>
#
>

do everything in an open directory

cd /tmp

download the source code

wget http://www.macs.hw.ac.uk/~hwloidl/Courses/F21CN/Labs/OSsec/setuidl.c
compile the program

gcc -o sl setuidl.c

change permissions so that everyone can execute it
chmod a+x sl

check the permissions

ls —-lad sl

—rwxrwxr-x 1 hwloidl hwloidl 10046 2011-11-11 22:06 sl

V ##= V #*= V =

generate an empty logfile

touch /tmp/logfile

change permissions to make it read/writeable only by the owner!
chmod go-rwx /tmp/logfile

check the permissions

1ls -lad /tmp/logfile LRIOT

—rw-—————-— 1 hwloidl hwloidl 0 2011-11-11 22:06 /tmp/logfile %ﬂﬁﬂ

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Lec 7: Buffer Overflow Attacks 2%?6 1

Buffer Overflow Attacks

@ Often low-level programs use fixed-size arrays (buffers) to store
data.

@ When copying into such buffers, the program has to check that it
doesn’t exceed the size of the buffer.

@ There are no automatic bounds checks in low-level languages
such as C.

@ If no check is performed, the program would just overwrite the
following data block.

@ If the data beyond the bound is chosen to be malign, executable
machine code, an attacker can gain control of the system in this
way.

HERIOT

I
BUALT

Lec 7: Buffer Overflow Attacks 2]5§8 1

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21CN/Labs/OSsec/setuid1.c

Example 1: Rsyslog

The following vulnerability in the rsys1og program was reported in
Linux Magazin 12/11:

[...]

int i; /% general index for parsing */

uchar bufParseTAG[CONF_TAG_MAXSIZE];

uchar bufParseHOSTNAME [CONF_HOSTNAME_MAXSIZE];
[oooal

while (lenMsg > 0 && *p2parse != ':’ && *p2parse != "' ' &&
i < CONF_TAG_MAXSIZE) {

bufParseTAG[i++] = xp2parse++;

—-lenMsg;

}

if (lenMsg > 0 && *p2parse == ’:’) {

++p2parse;

—-—lenMsg;

bufParseTAG[i++] = ":’';

}

[...] IERIOT
bufParseTAG[1] = ’\O’; /* terminate string =*/ R

Discussion

@ The goal of this code is to read tags and store them in a buffer.

@ The program reads from a memory location p2parse and writes
into the buffer bufParseTAG.

@ The fixed size of the buffer is CONF_TAG_MAXSIZE

@ The while-loop iterates over the input text, and also checks
whether the index 1 is still within bounds.

@ BUT: after the while loop, 1 or 2 characters are added to the buffer
as termination characters; this can cause a buffer overflow!

@ The impact of the overflow is system-specific. It can lead to
overwriting the variable i on the stack.

HERIOT
SWATT

Lec 7: Buffer Overflow Attacks 1/
Hans-Wolfgang Loid! (Heriot-Watt Univ) e¢ {Butier Dveriiow o

Example 2:

The following vulnerability in the rsys1og program was reported in
Linux Magazin 12/11:

[...]

int i; /% general index for parsing */

uchar bufParseTAG[CONF_TAG_MAXSIZE];

uchar bufParseHOSTNAME [CONF_HOSTNAME_MAXSIZE];
[...]

while (lenMsg > 0 && #*p2parse != ’:’ && *p2parse != "' ' &&
i < CONF_TAG_MAXSIZE) {

bufParseTAG[i++] = xp2parse++;

—-lenMsg;

}

if(lenMsg > 0 && *p2parse == ":’) {

++p2parse;

——-lenMsg;

bufParseTAG[i++] = ";

}

foool HERIOT
bufParseTAG[i] = "\0’; /x terminate string =*/ GWALl

Lec 7: Buff rflow Attack
Hans-Wolfgang Loidl (Heriot-Watt Univ) ee isgCherinpitiacks 2% o

Smashing the Stack

@ One common form of exploiting a buffer overflow is to manipulate
the stack.

@ This can happen through unchecked copy operations into a local
function variable or argument.

@ This is dangerous, because local variables are kept on the stack,
together with the return address for the function.

@ Therefore, a buffer-overflow can directly modify the control-flow
in the program.

Example of Smashing the Stack

fi‘gﬁ_umes we call this func- The stack-layout for this

function is:
int function() {
int a; c
char b[5]; b
char c[4]; a

} return address

A buffer overflow of b can overwrite the contents of a, or maybe even
the return address, which would change the control flow of the
program.

Stack Guard and other security programs re-order the variables on the
stack, and add variables at the end to detect overwrites.

Lec 7: Buff rflow Attack
Hans-Wolfgang Loidl (Heriot-Watt Univ) ee iegCherionpiiacks 2 ?3/

A Worst Case Scenario

A particularly dangerous combination of weaknesses is the following:
@ A setuid function, raising privileges temporarily,
@ which contains a buffer overflow vulnerability,

@ and an attacker that plants shellcode as malign code onto the
stack.

@ If successful, the shellcode will give the attacker access to a full
shell with the privileges used in that part of the application.

@ If these are root privileges, the attacker can do anything he wants!

HERIOT
SWATT

Lec 7: Buffer Overflow Attack 5/
Hans-Wolfgang Loid! (Heriot-Watt Univ) EeBuiisnlyerionRiacks puy

Difficulties in exploiting the vulnerability

@ The attacker needs to locate the position of the return address,
and write the address of its own, malign code there.

@ Several techniques can be used to achieve this.

@ In a return-to-libc attack, the attacker overwrites the return
address with a call to a known libc library function (eg. system).

@ After this, the return address to the malign code and data for the
arguments to the libc function is placed.

@ This will cause a call to the libc function, followed by executing the
malign code itself.

Hans-Wolfgang Loidl (Heriot-Watt Univ) zecygautiogerericupiitacy 2 ?4/

Prevention Mechanisms

@ Canary variables, eg. on the stack, can detect overflows.

@ Re-ordering variables on the stack can help to reduce the impact
of a buffer overflow.

@ Compiler modifications can change the pointer semantics, eg.
never store a pointer directly, but only a version that needs to be
XORed to get to the real address.

@ Some operating systems allow to mark address blocks as
non-executable.

@ Address randomisation (re-arranging data at random in the
address space) is frequently in modern operating systems to
make it more difficult to predict where to find a return address or
similar, attackable control-flow data.

HERIOT
Gwarr

Liec7:-Buffer-Overflow-Attack
Hans-Wolfgang Loid! (Heriot-Watt Univ) SCBuiieiy o iiacks pus) S01

Listing 2: imap/nntpd.c

Another attack mentioned in Linux Magazin 12/11 is this one:

do {
if ((c = strrchr(str, ’,7)))
xctt+ = "\0';
else
c = str;
if (!(n % 10)) /x alloc some more =/
wild = xrealloc(wild, (n + 11) * sizeof (struct wildmat));
if (xc == '!’) wild[n].not = 1; /x not =x/
else if (*c == ’'@') wild[n].not = -1; /* absolute not (feeding) =*/
else wild[n].not = 0;

strcpy (p, wild[n].not 2?2 ¢ + 1 : c);
wild[n++] .pat = xstrdup (pattern);
} while (c != str); HERIOT

Lec 7: Buff rflow Attack 7
Hans-Wolfgang Loidl (Heriot-Watt Univ) ee iegCherionpiiacks 2% |

Discussion

@ This example is part of an IMAP server for emails.
@ This code segment handles wildcards to perform operations.

@ Its weakness is that it uses strcpy to copy a block of characters,
which copies an unbounded 0-terminated block of memory.

@ Instead, the function st rncpy should be used, which takes the
size of the block to copy as additional argument.

- T
EEWATT

Lec 7: Buffer Overflow Attacks 9/
Hans-Wolfgang Loid! (Heriot-Watt Univ) dtiervertiow Pt

Listing 2: imap/nntpd.c

Another attack mentioned in Linux Magazin 12/11 is this one:

do {
if ((c = strrchr(str, ’,7)))
xctt = \0;
else
c = str;
if (!(n % 10)) /x alloc some more =/
wild = xrealloc(wild, (n + 11) * sizeof (struct wildmat));

if (xc == ’'!’) wild[n].not = 1; /x not =x/

else if (*c == ’'@') wild[n].not = -1; /x absolute not (feeding) =*/
else wild[n].not = 0;

strcpy (p, wild[n].not 2?2 ¢ + 1 : c);
wild[n++] .pat = xstrdup (pattern);
} while (c != str); HERIOT

Lec 7: Buff rflow Attack
Hans-Wolfgang Loidl (Heriot-Watt Univ) ee isgCherinpitiacks 2% 5

Lecture 8.
Interrupt Handling

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 200 / 251

What are interrupts and why do we need them?

@ In order to deal with internal or external events, abrupt changes in
control flow are needed.

@ Such abrupt changes are also called exceptional control flow
(ECF).

@ The system needs to take special action in these cases (call
interrupt handlers, use non-local jumps)

9Lecture based on Bryant and O’Hallaron, Ch 8

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 201 /251

Timers with assembler-level system calls

We have previously used C library functions to implement timers.
We will now use the ARM assembler swT command that we know, to
trigger a system call to sigaction, getitmer or setitimer.

The corresponding codes are':

@ sigaction: 67
@ setitimer: 104
@ getitmer. 105

The arguments to these functions need to be in registers: RO, R1, R2,
etc

HERIOT

; R« . » Gwarr
'See Smith, Appendix B “Raspbian System Calls

Revision: Interrupts on different levels

An abrupt change to the control flow is called exceptional control
flow (ECF).
ECF occurs at different levels:

@ hardware level: e.g. arithmetic overflow events detected by the
hardware trigger abrupt control transfers to exception handlers

@ operating system: e.g. the kernel transfers control from one user
process to another via context switches.

@ application level: a process can send a signal to another process
that abruptly transfers control to a signal handler in the recipient.

We covered the application level in a previous class, today we will
focus on the OS and hardware level.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 202/ 251

Reminder: Interface to C library functions

getitimer, setitimer - get or set value of an interval timer

#include <sys/time.h>

int getitimer (int which, struct itimerval *curr_value);
int setitimer (int which, const struct itimerval =
new_value,
struct itimerval *old_value);

setitimer sets up an interval timer that issues a signal in an interval
specified by the new_value argument, with this structure:

struct itimerval {
struct timeval it_interval; /* next value x/
struct timeval it_value; /x current value x/
}i
struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */

}i

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 204 / 251

Reminder: Setting-up a timer in C

Signals (or software interrupts) can be programmed on C level by
associating a C function with a signal sent by the kernel.
sigaction - examine and change a signal action
#include <signal.h>
int sigaction (int signum, const struct sigaction =xact,
struct sigaction =xoldact);

The sigaction structure is defined as something like:

struct sigaction {

void (*sa_handler) (int) ;

void (#sa_sigaction) (int, siginfo_t =x,
void *);

sigset_t sa_mask;

int sa_flags;

void (xsa_restorer) (void) ;

NB: the sa_sigaction field defines the action té be performed when

the signal with the id in =i gnum is sent. EEWATT

1

See man sigaction
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 205/ 251

Example: Timers with assembler-level system calls

We need the following headers:

#include <signal.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <sys/time.h>

// sytem call codes

#define SETITIMER 104
#define GETITIMER 105
#define SIGACTION 67

// in micro-sec
#define DELAY 250000

|
HwaLt

2Sample source itimer21.c
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 207 / 251

HERIOT

Timers with assembler-level system calls

We will now use the ARM assembler siwI command that we know, to
trigger a system call to sigaction, getitmer or setitimer.
The corresponding codes are?:

@ sigaction: 67
@ setitimer. 104
@ getitmer. 105

The arguments to these functions need to be in registers: RO, R1, R2,
etc

2See Smith, Appendix B “Raspbian System Calls”
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 206 / 251

Our own getitimer function

static inline int getitimer_ asm(int which, struct
itimerval xcurr_value) {

int res;

asm(/* inline assembler version of performing a system
call to GETITIMER =/
"\tB_,_bonzol05\n"
" _bonzol05: NOP\n"
"\tMOV_RO, % [which]\n"
"\tLDR_R1, %[buffer]\n"
"\tMOV_R7, %[getitimer]\n"

o\

"\tSWI_O0\n"
"\tMOV_% [result], RO\n"
[result] "=r" (res)

[buffer] "m" (curr_value)

, [which] "r" (ITIMER_REAL)

, [getitimer] "r" (GETITIMER)

nrovv, "rl", nr7n, "CC") P .(I):i:
} a1

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 208 / 251

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/itimer21.c
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/itimer21.c

Our own setitimer function Our own sigaction function

static inline int setitimer_asm(int which, const struct int sigaction_asm(int signum, const struct sigaction xact
itimerval *new_value, struct itimerval xold_value) { , struct sigaction =*oldact) {
int res; int res;
asm(/+ system call to SETITIMER */ asm(/* performing a syscall to SIGACTION x/
"\tB__bonzol04\n" "\tB__bonzo67\n"
" _bonzol04: NOP\n" " _bonzo67: NOP\n"
"\tMOV_RO, % [which]\n" "\tMOV_RO, % [signum]\n"
"\tLDR_R1, % [bufferl]\n" "\tLDR_R1, $[bufferl]\n"
"\tLDR_R2, % [buffer2]\n" "\tLDR_R2, % [buffer2]\n"
"\tMOV_R7, %[setitimer]\n" "\tMOV_R7, %[sigaction]\n"
"\tSWI_O0\n" "\tSWI_O0\n"
"\tMOV_%[result], RO\n" "\tMOV_%[result], RO\n"
[result] "=r" (res) : [result] "=r" (res)
[bufferl] "m" (new_value) : [bufferl] "m" (act)
, [buffer2] "m" (old_value) , [buffer2] "m" (oldact)
, [which] "r" (ITIMER_REAL) , [signum] "r" (signum)
, [setitimer] "r" (SETITIMER) o , [sigaction] "r" (SIGACTION) -
Ve@W, WelW, We2W¥, Yeg¥, YeeY) g LT : "rO", "ri", "r2", "xr7", "cc"); 1
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 209/ 251 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 210/ 251
Sample source in itimer21.c 2Sample source in itimer21.c
Example: Timers with assembler-level system calls Example: Timers with assembler-level system calls
. /+ Configure the timer to expire after 250 msec... =/
The main function is as before, using our own functions: e . b vellua.tty_ses = O
int main () { timer.it_value.tv_usec = DELAY;
struct sigaction sa; /* ... and every 250 msec after that. =/
struct itimerval timer; timer.it_interval.tv_sec = 0;
timer.it_interval.tv_usec = DELAY;
/* Install timer_handler as the signal handler for /* Start a virtual timer. It counts down whenever this
SIGALRM. =/ process 1is executing. =*/
memset (&sa, 0, sizeof (sa)); setitimer_asm (ITIMER_REAL, &timer, NULL);
sa.sa_handler = &timer_handler;
/+ Busy loop, but accepting signals x/
sigaction_asm (SIGALRM, &sa, NULL); while (1) {} ;

}

2Sample source in itimer21.c
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 211/ 251 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 212/ 251

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/itimer21.c
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/itimer21.c
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/itimer21.c

Timers by probing the RPi on-chip timer

@ The RPi 2 has an on-chip timer that ticks at a rate of 250 MHz

@ This can be used for getting precise timing information

@ (in our case) to implement a timer direcily.

@ As before, we need to know the base address of the timer device
@ and the register assignment for this device.

@ We find both in the BCM Peripherals Manual, Chapter 12,
Table 12.1

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 213/ 251

Example code

#define TIMEOUT 3000000

static volatile unsigned int timerbase ;
static volatile uint32_t xtimer ;

timerbase = (unsigned int) 0x3F003000 ;
// memory mapping
timer = (int32_t x)mmap (0, BLOCK_SIZE, PROT_READ|
PROT_WRITE, MAP_SHARED, fd, timerbase) ;
if ((int32_t)timer == (int32_t)MAP_FAILED)
return failure (FALSE, "wiringPiSetup:_mmap_ (TIMER)
failed: $s\n", strerror (errno)) ;
else
fprintf (stderr, "NB:_timer_=_%x _for_timerbase %x\n",
timer, timerbase);

As usual we memory-map the device memory into the accessible
address space.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 215/ 251

HERIOT
GWALT

GPIO Register Assignment

The Physical (hardware) base address for the system timers is Ox7E003000.

12.1 System Timer Registers

ST Address Map
g'd;:s Register Name Description Size
ox0 [« System Timer Control/Status 32
Oxd CLo System Timer Counter Lower 32 bits 32
0x8 CHL System Timer Counter Higher 32 bits 32
Oxc co Systern Timer Compare 0 32
0x10 c1 System Timer Compare 1 3z
0x14 c2 Systern Timer Com pare 2 32
0x18 o} System Timer Compare 3 3z
L

2See BCM Peripherals Manual, Chapter 12, Table 12.1

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 214 /251

Example code

{ volatile uint32_t ts = *(timer+l); // word offset
volatile uint32_t curr;

while(((curr=#*(timer+l)) - ts) < TIMEOUT) { / *
nothing =/ }
}

To wait for TTMEOUT micro-seconds, the core code just has to read
from location t imer+1 to get and check the timer value.

2Sample source in itimer31.c; see also this discussion on the BakingPi pages
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 216 /251

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/itimer31.c
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/ok04.html

Summary Interrupt requests in Assembler

Code for
@ In order to implement a time-out functionality, several mechanisms _ exception handler 0
Exception
can be used: table /1 Code for
q . g exception handler 1
» C library calls (on top of Raspbian) ° L —
» assembler-level system calls (to the kernel running inside 2 L ’ exception handler 2
Raspbian) M%
» directly probing the on-chip timer available on the RPi2
. Code for
@ We have seen sample code for each of the 3 mechanisms. ’ exception handler n-1

@ Also, on embedded systems time-critical code is often needed, so

access to a precise on-chip timer is important for many kinds of . . .
P P P y The central data structure for handling (hardware) interrupts is the

applications. . :

PP interrupt vector table (or more generally exception table).
HERIOT HERIOT
GWATT GWATT

Interrupt handlers in C + Assembler Building an Interrupt Vector Table

The relevant information for the Cortex A7 processor, used on the
RPi2, can be found in the ARMv7 reference manual in Section B1.8.1

(Table B1-3).
We will n hrough th f handling hardware interr

.eWI .OW S UNTELE e SHERS @ Tl INE e eV St i Exception Type Mode VE Normal Address

directly in assembler. :
. . . .) Reset Supervisor 0x00
To implement interrupt handlers directly on the RPi2 we need to: Uit Tasii s Undioed] 0x04
@ Build vector tables of interrupt handlers Software Interrupt (SWI) Supervisor 0x08
Prefetch Abort Abort 0x0C

L r tabl

e V?Cto tables o Data Abort Abort 0x10
© Set registers to enable specific interrupts IRQ (Interrupt) IRQ 0 0x18
@ Set registers to globally enable interrupts IRQ (Interrupt) IRQ 1 undef
FIQ (Fast Interrupt) FlQ 0 0x1C
FIQ (Fast Interrupt) FlQ 1 undef

NB: each entry is 4 bytes; just enough to code a branch operation to
the actual code NB: when an exception occurs the processor changes

HERIOT
¥ GWALT

EHWAT” - ags
2Valvers: Bare Metal Programming in C (Pt4) s mode to the exception-specific mode

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 219/ 251 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 220/ 251

http://www.valvers.com/open-software/raspberry-pi/step04-bare-metal-programming-in-c-pt4/

Modes
Privileged modes
Exception modes——————————————————>
User System Supervisor Abort i Interrupt Fast interrupt
RO RO RO RO RO RO RO
R1 Ri1 R1 R1 R1 Ri Ri
A2 R2 =3 3 3 Az Az
A3 A3 A3 A3 A3 A3 A3
Rd Rd i i i R R
RS RS RS RS RS RS RS
Ré RE RE RE RE RE RE
R7 R7 RT RT RT RT RT
R R RE RE RE RE Ra_fig
R R R9 A9 A9 RY Ro_fig
R10 R10 A10 A10 A10 A10 R10_iq
R1 R A1 A1 R11 R11 R11_fig
Riz Ri2 Ri2 Ri2 Ri2 Ri2 N, Rizfiq
Ri3 Ri3 Ri3_sve A13_abt At3_und A13_im M, Rtaia
A4 R14 Ri4_sve R14_abt R14_und R14_ig \ Riddia
PO [PC PC PC PC PC
| PSR cPSR CPSR PSR CPSR CPSR CPSR
N, SPSRawc [N SPSRant P SPSRund [SPSRUm >, PSR

E:L indicates that the normal register used by User or System mode has
bean replaced by an akemnalive register specific lo the axcaption mode

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Figure A2-1 Register organization

Lec 8: Interrupt Handling

IIERI()'}:

BWAL

221 /251

NB: For Fast Interrupt exception, a lot of registers have been replaced

by mode-specific registers, i.e. these registers can be used in the

Example interrupt handler

A very basic “undefined instruction” handler looks like this:

/ %%
@brief The undefined instruction interrupt handler
If an undefined instruction is encountered,
start
executing this function. Just trap here as a debug
solution.
*/
void __attribute__ ((interrupt ("UNDEEF")))
undefined_instruction_vector (void)
{
while(1)
{
/+ Do Nothing! =/
}
}

Hans-Wolfgang Loidl (Heriot-Watt Univ)

the CPU will

Lec 8: Interrupt Handling

223 /251

Coding Interrupt Handlers

An interrupt handler is a block of C (or assembler) code, that is called
on an interrupt. The interrupt vector table links the interrupt number

with the code.
We need to inform the compiler that a function should be used as an
interrupt handler like this:

void f

0

__attribute_

((interrupt

("IRQ")))i

Other permissible values for this parameter are: IRQ, FIQ, SWI,
ABORT and UNDEF.

Hans-Wolfgang Loidl (Heriot-Watt Univ)

“Our vector table:”
_start:

ldr pc, _reset_h

ldr pc, _undefined_instruction_vector_h

1ldr pc, _software_interrupt_vector_h

ldr pc, _prefetch_abort_vector_h

ldr pc, _data_abort_vector_h

ldr pc, _unused_handler_h

ldr pc, _interrupt_vector_h

1ldr pc, _fast_interrupt_vector_h
_reset_h: .word
_undefined_instruction_vector_h: .word

undefined_instruction_vector
_software_interrupt_vector_h: .word

software_interrupt_vector
_prefetch_abort_vector_h: .word

prefetch_abort_vector
_data_abort_vector_h: .word
_unused_handler_h: .word
_interrupt_vector_h: .word

HERIO]

gwir

Lec 8: Interrupt Handling 222/ 251

Constructing Vector Tables

Hans-Wolfgang Loidl (Heriot-Watt Univ)

fast_interrupt_vector

reset

data_abort_vector

I
T

reset oy

interrupt_vector
Lec 8: Interrupt Handling 224/ 251

Constructing Vector Tables

reset:
mov r0, #0x8000
mov rl, #0x0000

ldmia r0!, {r2, r3
stmia rl!,{r2, r3
ldmia r0!, {r2, r3
stmia rl!,{r2, r3

, r4, r5, re6,
, r4, r5, ro,
, r4, r5, ro,
, r4d, r5, ro,

ro}
r9}
r9}
r9}

NB: using tools such as gdb and ob jdump we know that “our” vector
table is at address 0x00008000; in supervisor mode we can write to
any address, so the code above moves our vector table to the start of
the memory, where it should be

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Lec 8: Interrupt Handling 225/ 251

Interrupt Control Registers

The base address for the ARM interrupt register is Ox7EQ0B0OOO.

Registers averview:

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Address Name Notes
offset’
0x200 IRQ, basic pending
0x204 IRQ pending 1
0x208 IRQ pending 2
0x20C FIQ control
0x210 Enable IRQs 1
Ox214 Enable IRQs 2
0x218 Enable Basic IRQs
0x21C Disable IRQs 1
0x220 Disable IRQs 2
0x224 Disable Basic IRQs

Lec 8: Interrupt Handling 227/ 251

The intarriint ~rantrallar nn an ARM architacrtiire nrovidace reanaictare tn

Hans-Wolfgang Loidl (Heriot-Watt Univ)
9] 4

The Interrupt Controller

We need to enable interrupts by
@ enabling the kind of interrupt we are interested in;
@ globally enabling interrupts

The global switch ensures that disabling interrupts can be done in just
one instruction.

But we still want more detailed control over different kinds of interrupts
to treat them differently.

HERIOT
GWALT

Interrupt Control Registers

We now define a structure for the interrupt controller registers,
matching the table on the previous slide

/** Q@brief See Section 7.5 of the BCM2835 ARM Peripherals docu
x/

#define RPI_INTERRUPT_CONTROLLER_BASE (PERIPHERAL_BASE + 0
xB200)

/+x @brief The interrupt controller memory mapped register set
x/

typedef struct ({

volatile uint32_t IRQ_basic_pending;

volatile uint32_t IRQ_pending_1;

volatile uint32_t IRQ_pending_2;

volatile uint32_t FIQ_control;

volatile uint32_t Enable_IRQs_1;

volatile uint32_t Enable_IRQs_2;

volatile uint32_t Enable_Basic_IRQs;

volatile uint32_t Disable_IRQs_1;

volatile uint32_t Disable_IRQs_2;

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 226/ 251

or

I

Lec 8: Interrupt Handling 228/ 251

|
i\

Auxiliary functions

Functions to get the base address of the peripherals:

/*x @brief The BCM2835 Interupt controller peripheral at its

base address */
static rpi_irg controller_tx rpiIRQController =

(rpi_irqg _controller_t*)RPI_INTERRUPT_CONTROLLER_BASE;

/ * %

@brief Return the IRQ Controller register set
*/
rpi_irqg controller_tx RPI_GetIrgController (void)
{

return rpiIRQController;

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Before using the ARM Timer it also needs to be enabled.

Lec 8: Interrupt Handling

229 /251

Again, we map the ARM Timer peripherals register set to a C struct to

give us access to the registers:

/** Q@brief See Section 14 of thed BCM2835 Peripherals PDF «/

#define RPI_ARMTIMER_BASE

/*% Q@brief 0 16-bit counters - 1
#define RPI_ARMTIMER_CTRL_23BIT (1 << 1)

#define RPI_ARMTIMER_CTRI_PRESCALE_1 (0 << 2
#define RPI_ARMTIMER_CTRI_PRESCALE_16 (1 << 2
#define RPI_ARMTIMER_CTRL_PRESCALE_256 (2 << 2

/** @brief 0 Timer interrupt disabled - 1

enabled */
#define RPI_ARMTIMER_CTRL_INT_ENABLE (1 << 5)
#define RPI_ARMTIMER_CTRIL_INT_DISABLE (0 << 5)
/*+ @brief O Timer disabled - 1 : Timer enabled =/
#define RPI_ARMTIMER_CTRL_ENABLE (1 << 7))
#define RPI_ARMTIMER_CTRL_DISABLE (0 << 7))

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling

23-bit counter =x/

(PERIPHERAL_BASE + 0xB400)

Timer interrupt

or
0y

231 /251

The ARM Timer Peripheral

The ARM timer is in the basic interrupt set. To enable interrupts from

the ARM Timer peripheral we set the relevant bit in the Basic
Interrupt enable register:

/** Q@brief Bits in the Enable_Basic_IRQs register to enable

various interrupts.

See the BCM2835 ARM Peripherals manual, section 7.5 %/
#define RPI_BASIC_ARM_ TIMER_IRQ (1 << 0)
#define RPI_BASIC_ARM MAILBOX_IRQ (1 << 1
#define RPI_BASIC_ARM DOORBELIL_O0_IRQ (1 <<
#define RPI_BASIC_ARM DOORBELIL_1_IRQ (1 <<
#define RPI_BASIC_GPU_O_HALTED_IRQ (1 <<
#define RPI_BASIC_GPU_1_HALTED_IRQ (1 <<
#define RPI_BASIC_ACCESS_ERROR_1_TIRQ (1 <<
#define RPI_BASIC_ACCESS_ERROR_0_IRQ (1 <<

and in our main C code to enable the ARM Timer IRQ:

/* Enable the timer interrupt IRQ =/
RPI_GetIrgController ()->Enable_Basic_IRQs =
RPI_BASIC_ARM_TIMER_IRQ;

~N o U W N

)
)
)
)
)
)
)

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling

Accessing the ARM Timer Register

This code gets the current value of the ARM Timer:

static rpi_arm timer_ t* rpiArmTimer = (rpi_arm_timer_tx)
RPI_ARMTIMER_BASE;

rpi_arm_timer_tx RPI_GetArmTimer (void)
{

return rpiArmTimer;

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling

230/ 251

232/ 251

ARM Timer setup

Then, we can setup the ARM Timer peripheral from the main C code
with something like:

/* Setup the system timer interrupt =/
/* Timer frequency = Clk/256 % 0x400 x*/
RPI_GetArmTimer () -—>Load = 0x400;

/* Setup the ARM Timer =/

RPI_GetArmTimer () —>Control =
RPI_ARMTIMER_CTRL_23BIT |
RPI_ARMTIMER_CTRL_ENABLE |
RPI_ARMTIMER_CTRL_INT_ENABLE |
RPI_ARMTIMER_CTRL_PRESCALE_256;

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 233/ 251

An LED control interrupt handler

Our interrupt handler should control an LED, as usual.
Note that we need to clear the interrupt pending bit in the handler, to
avoid immediately re-issuing an interrupt.

/* @brief The IRQ Interrupt handler: blinking LED =/
void __attribute_ ((interrupt ("IRQ"))) interrupt_vector (void)
{

static int 1lit = 0;

/* Clear the ARM Timer interrupt =/
RPI_GetArmTimer () -=>IRQClear = 1;

/+* Flip the LED x/
if(1it) {
LED_OFF () ;
lit = 0;
} else {

LED_ON () ;

(
lit = 1; oT

I

}

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling

235/ 251

I
T

Globally enable interrupts

We have now configured the ARM Timer and the Interrupt controller.
We still need to globally globally enable interrupts, which needs some
assembler code.

_enable_interrupts:

mrs r0, cpsr @ move status to reg
bic r0, r0, #0x80 @ modify status

msr cpsr_c, rO0 @ move reg to status
mov pc, 1lr

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 8: Interrupt Handling 234 /251

Kernel function

On a bare-metal system, the following wrapper code is needed to start
the system:

/+% Main function - we’ll never return from here =/
void kernel_main(unsigned int r0, unsigned int rl, unsigned int atags)
{
/x Write 1 to the LED init nibble in the Function Select GPIO
peripheral register to enable LED pin as an output */
RPI_GetGpio () ~>LED_GPFSEL |= LED_GPFBIT;

/* Enable the timer interrupt IRQ =/
RPI_GetIrgController () ->Enable_Basic_IRQs = RPI_BASIC_ARM_TIMER_IRQ;

/* Setup the system timer interrupt =/
/+ Timer frequency = Clk/256 = 0x400 =/
RPI_GetArmTimer () ->Load = 0x400;

/* Setup the ARM Timer =/

RPI_GetArmTimer () ->Control =
RPI_ARMTIMER_CTRL_23BIT |
RPI_ARMTIMER_CTRL_ENABLE |
RPI_ARMTIMER_CTRL_INT_ENABLE |
RPI_ARMTIMER_CTRL_PRESCALE_256;

/* Enable interrupts! =/
_enable_interrupts();

or

/* Never exit as there is no OS to exit to! =%/
while (1)
Hans-Wolfgang Loidl (Heriot-Watt Univ)

Lec 8: Interrupt Handling 236/ 251

}

a2

I

|
i\

Summary

@ Interrupts trigger an exceptional control flow, to deal with
special situations.
@ Interrupts can occur at several levels:
» hardware level, e.g. to report hardware faults LeCtu re 9 .
» OS level, e.g. to switch control between processes . .
» application level, e.g. to send signals within or between processes M |Sce| Ianeo us TOp|CS
@ The concept is the same on all levels: execute a short sequence
of code, to deal with the special situation.
@ Depending on the source of the interrupt, execution will continue
with the same, the next instruction or will be aborted.
@ The mechanisms how to implement this behaviour are different:

in software on application level, in hardware with jumps to entries
in the interrupt vector table on hardware level

HERIOT HERIOT
EEWATT %)}1—\'1"1'
2Complete bare-metal application: Valvers: Bare Metal Programming in C (Pt4) "
Bare-metal programming What's different?
@ Bare-metal programming means “programming directly on the A lot:

hardware”, i.e. on a system that doesn’t run an operating system.

@ This is the most common scenario for embedded systems
programming.

@ You have to control the boot process yourself
@ You have to manage all aspects of the hardware directly:
» memory (no virtual memory!)

@ In this course we used Raspbian on the RPi2 mainly for - odEE| CEEEs

SR EIED (o S?’p!”” s @ You need to produce stand-alone executables, i.e. no dynamically
@ Embedded systems in industry usage are often too small to run linked libraries

any OS

) N _ _ @ You typically need to cross-compile your code
@ For time-critical operations you don’t want an OS because in order

to meet real-time constraints.

HERIOT HERIOT
GWALT GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 9: Miscellaneous Topics 239/ 251 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 9: Miscellaneous Topics 240/ 251

http://www.valvers.com/open-software/raspberry-pi/step04-bare-metal-programming-in-c-pt4/

What are the advantages? How does the application code differ?

. Looking at our example code from the course
@ You have direct control over the hardware: . .
@ No mmap is needed to access the GPIO pins

» For our LED etc examples, you don’t need mmap to access the ,)])
devices, rather you directly write to the hardware registers. @ You can’t use external libraries: everything must be part of the

» You can access aspects of the hardware that might not be application
accessible otherwise. @ This means that in general you need to write your own device
@ Better suited for real-time constraints: no OS overhead, drivers for external devices such as a monitor
predictable performance @ The code typically needs to be cross-compiled, i.e. the machine
@ Very small code size of the entire application that you are compiling on is different from the machine that you

are compiling for.

@ Typically lower energy consumption
And of course there are a lot of differences in terms of usability.

HERIOT HERIOT
GWATT GWAT]
Lec 9: Miscellaneous Topics 241/ 251 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 9: Miscellaneous Topics 242/ 251
Further Reading & Deeper Hacking Rust: an alternative systems programming language
@ “Embedded Linux”, by Jirgen Quade (Textbook on embedded
systems programming, using a bare-metal approach) Rust is a systems programming language that runs blazingly
@ Baking Pi, by Alex Chadwick (a course on bare-metal fast, prevents segfaults, and guarantees thread safety.
programming on the Rasbperry Pi at Cambridge University (only
for RPi1))
@ Valvers: Bare Metal Programming in C
HERIOT HERIOT
GWATT GWATT

2Rust

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 9: Miscellaneous Topics 243/ 251 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 9: Miscellaneous Topics 244 / 251

http://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/index.html
http://www.valvers.com/open-software/raspberry-pi/step04-bare-metal-programming-in-c-pt4/
https://www.rust-lang.org/

Rust Features

@ zero-cost abstractions

@ move semantics

@ guaranteed memory safety
@ threads without data races
@ trait-based generics

@ pattern matching

@ type inference

@ minimal runtime

o efficient C bindings

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 9: Miscellaneous Topics 245/ 251

OS choices for the Internet of Things

@ Rapbian, while useful as an interactive OS, comes with a lot of
unnecessary packages if it should be used on one of these
networked, embedded devices.

@ Smaller, configurable Linux versions are often a better choice, e.g.
Arch Linux (also available for RPi2).

@ These reduce the resource consumption of the system, and
improve maintainability.

@ Several new® OS’s target this market: for example MinocaOS

Internet of Things

@ The amount of processors used in all kinds of settings is
increasing rapidly.

@ Examples are “smart homes” with configurable/programmable
devices such as smart TVs etc

@ These typically use small, embedded devices

@ These devices want to exchange data, e.g. to monitor the
environment and react to changes

@ Therefore, these systems are inter-connected, building an
Internet of Things

@ These systems increasingly use a full operating system
underneath

@ Thus, a RPi 2 running Raspbian is a good case study

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 9: Miscellaneous Topics 246 / 251

Main features of MinocaOS

@ MinocaOS is a completely new OS, matching standard interfaces
such as POSIX.

@ MinocaOS is advertised as: Modular, Lean, Flexible

@ MinocaOS supports RPi1 and RPi2/3 in 2 different images that
can be downloaded

@ There is no 64-bit support available yet*

@ MinocaOS is also provided as a Quemu-based virtual machine,
for experimentation on a laptop

@ MinocaOS has a very small resource footprint, and works well
even on older RPi1’s

@ MinocaOS has good hardware support and fairly good tool
support

3There are also several old OS’s that fit this characterisation: see Minix and Rl%gl\%g;i{t “See the slides at the end for a link on how to build your own 64-bit kernel on anor
OS & UNiveRsITY RP|3 Y university

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 9: Miscellaneous Topics 247 / 251 Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 9: Miscellaneous Topics 248/ 251

http://www.minix3.org/
http://www.riscos.com/
http://www.riscos.com/
http://www.minocacorp.com/

MinocaOS UBQOS: easy configuration

@ UBOS is a Linux distribution for easy management of several web
services on an Rpi.
@ Very flexible, being based on Arch Linux
@ Features (as advertised):
» With UBOS, web applications can be installed, and fully configured

Some notable features of MinocaOS are:

@ Most command-line tools are based on GNU versions: bash, 1s,
cat, chmod, nano (use ——help to get info)

@ It uses package management similar to Debian-based systems with a single command.
(opkg as package manager; packages have extension . ipkq) > UBOS fully automates app management at virtual hosts
@ The list of available packages and repos can be edited in g U BOS pre-installs and pre-configures networking and other
_ infrastructure.
/var/opkg-lists/ » Systems that have two Ethernet interfaces can be turned into a
@ No graphical user interface at the moment (not necessary for loT home router/gateway with a single command.
context) » UBOS can backup or restore all, or any subset of installed

applications on a device
» UBOS uses a rolling-release development model
» UBOS itself is all free/libre and open software.
111231(1;}; 5 11121{}()_;};
“Material from Raspberry Pi Geek 04/2017 ‘ SMaterial from Raspberry Pi Geek 04/2017
Lec 9: Miscellaneous Topics 249/ 251 Lec 9: Miscellaneous Topics 250/ 251

A Guided Tour is available on the MinocaOS web page.

Compiling an 64-bit kernel for RPi3

A detailed discussion on how to build a 64-bit kernel on a Rasberry
Pi 3 is given in the Raspberry Pi Geek 04/2017.
A pre-pared 64-bit image for the RasPi 3 is here

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 9: Miscellaneous Topics 251 /251

http://www.minocacorp.com/documentation/getting-started/tour/
http://ubos.net/about
http://archlinux.org/
http://www.tom-yam.or.jp/rpi3/rpi3-arm64-debian-20160414.img.xz

	Lecture 1: Introduction to Systems Programming
	Lecture 2: Systems Programming with the Raspberry Pi
	Lecture 3: Memory Hierarchy
	Memory Hierarchy

	Lecture 4: Programming external devices
	Basics of device-level programming

	Lecture 5: Exceptional Control Flow
	Lecture 6: Computer Architecture
	Processor Architectures Overview

	Lecture 7: Code Security: Buffer Overflow Attacks
	Lecture 8: Interrupt Handling
	Lecture 9: Miscellaneous Topics

