
F28HS Hardware-Software Interface:
Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

Semester 2 — 2018/19

0No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2018/19 1 / 26

Outline

1 Lecture 1: Introduction to Systems Programming

2 Lecture 2: Systems Programming with the Raspberry Pi

3 Lecture 3: Memory Hierarchy
Memory Hierarchy

Principles of Caches

4 Lecture 4: Programming external devices
Basics of device-level programming

5 Lecture 5: Exceptional Control Flow

6 Lecture 6: Computer Architecture
Processor Architectures Overview

Pipelining

7 Lecture 7: Code Security: Buffer Overflow Attacks

8 Lecture 8: Interrupt Handling

9 Lecture 9: Miscellaneous Topics

10 Lecture 10: Revision
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2018/19 2 / 26

Lecture 10:
Revision

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 3 / 26

A simple picture of the CPU

The ALU executes arithmetic/logic operations with arguments in
registers
Load and store instructions move data between memory and
registers

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 4 / 26

Three-stage pipelined computation hardware

The computation is split into stages A, B, and C. The stages for
different instructions can be executed in an overlapping way.

0From Bryant, Chapter 4
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 5 / 26

Stages of executing an assembler instruction

Processing an assembler instruction involves a number of operations:
1 Fetch: The fetch stage reads the bytes of an instruction from

memory, using the program counter (PC) as the memory address.
2 Decode: The decode stage reads up to two operands from the

register file.
3 Execute: In the execute stage, the arithmetic/logic unit (ALU)

either performs the operation specified by the instruction,
computes the effective address of a memory reference, or
increments or decrements the stack pointer.

4 Memory: The memory stage may write data to memory, or it may
read data from memory.

5 Write back: The write-back stage writes up to two results to the
register file.

6 PC update: The PC is set to the address of the next instruction.
NB: The processing depends on the instruction, and certain stages
may not be used.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 6 / 26

Pipelining and branches

How can a pipelined architecture deal with conditional branches?
In this case the processor doesn’t know the successor instruction
until further down the pipeline.
To deal with this, modern architectures perform some form of
branch prediction in hardware.
There are two forms of branch prediction:

I static branch prediction always takes the same guess (e.g. guess
always taken)

I dynamic branch prediction uses the history of the execution to take
better guesses

Performance is significantly higher when branch predictions are
correct
If they are wrong, the processor needs to stall or inject bubbles
into the pipeline

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 7 / 26

Example: bad branch prediction

.global _start

.text
_start: MOVS R1, #0 @ load 0 =>

LSR R1, #1 @ LSR yields zero =>
BNE target @ Not taken
MOV R0, #0 @ fall through
MOV R7, #1
SWI 0

target: MOV R0, #1 @ return: branch taken?
MOV R7, #1
SWI 0

Branch prediction: we assume the processor takes an always taken
policy, i.e. it always assumes that that a branch is taken
NB: the conditional branch (BNE) will NOT be taken, because the right
shift (LSR) will set the zero flag according to the right-most bit, which is
0 in this case. This is a deliberately bad example for the branch
predictorHans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 8 / 26

Example: good branch prediction

.text
_start: MOVS R1, #1 @ load 1 =>

LSR R1, #1 @ LSR yields one =>
BNE target @ Branch taken
MOV R0, #0 @ fall through
MOV R7, #1
SWI 0

target: MOV R0, #1 @ return: branch taken?
MOV R7, #1
SWI 0

Branch prediction: we assume the processor takes an always taken
policy, i.e. it always assumes that that a branch is taken
NB: now the conditional branch (BNE) WILL be taken, because the
right shift (LSR) will set the zero flag according to the right-most bit,
which is 1 in this case. This is better for the branch predictor and gives
better performance.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 9 / 26

Performance: good vs bad branch prediction

We now measure the performance of doing these two versions inside
two nested loops (0x10000 iterations, each).
Good Case: branch taken:

> hawopi[167](4.2)> as -o bonzo15.o bonzo15.s
> hawopi[168](4.2)> ld -o bonzo15 bonzo15.o
> hawopi[169](4.2)> time ./bonzo15
real 0m30.091s
user 0m29.980s
sys 0m0.000s

> hawopi[170](4.2)> echo $?
1

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 10 / 26

Performance: good vs bad branch prediction

We now measure the performance of doing these two versions inside
two nested loops (0x10000 iterations, each).
Bad Case: branch NOT taken:

> hawopi[171](4.2)> as -o bonzo15.o bonzo15.s
> hawopi[172](4.2)> ld -o bonzo15 bonzo15.o
> hawopi[173](4.2)> time ./bonzo15
real 0m36.188s
user 0m34.900s
sys 0m0.090s

> hawopi[174](4.2)> echo $?
0

NB: a difference in runtime of ca. 16.8%

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 11 / 26

Processing mispredicted branch instructions.

Predicting “branch taken”, instruction 0x014 is fetched in cycle 3,
and instruction 0x018 is fetched in cycle 4.
In cycle 4 the branch logic detects that the branch is not taken
It therefore abandons the execution of 0x014 and 0x018 by
injecting bubbles into the pipeline.
The result will be as expected, but performance is sub-optimal!

0Adapted from Bryant, Figure 4.62
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 12 / 26

The Current Program Status Register (CPSR)

The Current Program Status Register (CPSR) contains flags
(V,Z,N,C) that are set by certain assembler instructions.
For example, the CMP R0, R1 instruction compares the values of
registers R0 and R1 and sets the zero flag (Z) if R0 and R1 are equal.

0See ARM’s Programmer Guide, p. 3-8
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 13 / 26

Caches and Memory Hierarchy

Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,

and
cheaper
(per byte)
storage
devices

Remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers.

Main memory holds disk
blocks retrieved from local
disks.

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved from
cache memory.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and

costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
 retrieved from memory.

L6:

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 14 / 26

Discussion

As we move from the top of the hierarchy to the bottom, the devices
become slower, larger, and less costly per byte.

The main idea of a memory hierarchy is that storage at one level
serves as a cache for storage at the next lower level.

Using the different levels of the memory hierarchy efficiently is crucial
to achieving high performance.

Access to levels in the hierarchy can be explicit (for example when
using OpenCL to program a graphics card), or implicit (in most other
cases).

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 15 / 26

Importance of Locality

Being able to look at code and get a qualitative sense of its locality is a
key skill for a professional programmer!

Which of the following two version of sum-over-matrix has better
locality (and performance):

Traversal by rows: Traversal by columns:
int i, j; ulong sum;
for (i = 0; i<n; i++)

for (j = 0; j<n; j++)
sum += arr[i][j];

int i, j; ulong sum;
for (j = 0; j<n; j++)
for (i = 0; i<n; i++)
sum += arr[i][j];

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 16 / 26

The high-level picture

From the main chip of the RPi2 we want to control an (external)
device, here an LED.
We use one of the GPIO pins to connect the device.
Logically we want to send 1 bit to this device to turn it on/off.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 17 / 26

The low-level picture

Programmatically we achieve that, by
memory-mapping the address space of the GPIOs into user-space
now, we can directly access the device via memory read/writes
we need to pick-up the meaning of the peripheral registers from
the BCM2835 peripherals sheet

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 18 / 26

BCM2835 GPIO Peripherals

The meaning of the registers is (see p90ff of BCM2835 ARM
peripherals):

GPFSEL: function select registers (3 bits per pin); set it to 0 for
input, 1 for output; 6 more alternate functions available
GPSET: set the corresponding pin
GPCLR: clear the corresponding pin
GPLEV: return the value of the corresponding pin

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 19 / 26

GPIO Register Assignment

The GPIO has 48 32-bit registers (RPi2; 41 for RPi1).
0See BCM Peripherals Manual, Chapter 6, Table 6.1

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 20 / 26

https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

GPIO Register Assignment

GPIO registers (Base address: 0x3F200000)

12:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
11:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
10:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
9: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
8: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
7: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
6: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
5: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
4: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
3: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
2: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
1: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
0: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12GPFSEL0

GPFSEL1
GPFSEL2
GPFSEL3
GPFSEL4
GPFSEL5

—
GPFSET0
GPFSET1

—
GPFCLR0
GPFCLR1

—

0See BCM Peripherals, Chapter 6, Table 6.1
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 21 / 26

Locating the GPFSEL register for pin 47 (ACT)

This table explains the meaning of the bits in register GPFSEL4.
0See BCM Peripherals Manual, Chapter 6, Table 6.1

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 22 / 26

Accessing a GPIO Pin

Now we want to control the on-chip LED, called ACT, that normally
indicates activity.
The pin number of this device on the RPi2 is: 47
We need to calculate registers and bits corresponding to this pin
The GPFSEL register for pin 47 is 4 (per docu, this register covers
pins 40-49 (Tab 6-6, p. 94)
For each register 3 bits are used to select the function of that pin:
bits 0–2 for register 40 etc
Thus, bits 21–23 cover register 47 (7 × 3)
The function that we need to select is OUTPUT, which is encoded
as the value 1
We need to write the value 0x01 into bits 21–23 of register 4

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 23 / 26

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio? Answer: gpio+4
How do we read the current value from this register?
Answer: *(gpio+4)
How do we blank out bits 21–23 from this register?
Answer: *(gpio + 4) & ˜(7 << 21)

C code: 7

0 1 1 1
28 24 20 16 12 8 4 0

C code: 7 << 21

0 0 0 0 0 0 0 0 1 1 1 0
28 24 20 16 12 8 4 0

C code: ˜(7 << 21)

1 1 1 1 1 1 1 1 0 0 0 1
28 24 20 16 12 8 4 0

C code: (*(gpio + 4) & ˜(7 << 21))

&1 1 1 1 1 1 1 1 0 0 0 1
28 24 20 16 12 8 4 0

C code: (*(gpio + 4) & ˜(7 << 21))

0 0 0
28 24 20 16 12 8 4 0

How do we get the value 0x01 into bits 21–23 of a 32-bit word?
Answer: (1 << 21)

(*(gpio + 4) & ˜(7 << 21)) | (1 << 21)

0 0 1
28 24 20 16 12 8 4 0

How do we put only these bits into the contents of register 4?

(gpio + 4) = ((gpio + 4) & ˜(7 << 21)) | (1 << 21)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 24 / 26

GPIO programming

The previous slides discussed how to control an LED with a GPIO
pin.
Similar code is used to use a button as an input device, and to
read a bit from the right GPIO pin
For the exam you need to understand the main steps that are
needed
You must be able to perform the above steps to explain, e.g. how
to set the mode of a pin
The LCD device is controlled in a similar way, but always sending
8 bits as the byte to be displayed.
You should expect specific code questions about GPIO
programming, either in C or Assembler

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 25 / 26

Summary

Check the detailed tutorial slides about controlling external
devices
Look-up the sample sources (both C and Asm) for the tutorials
You need to have a solid understanding of this code and be
able to answer questions about it!
Focus on the main concepts that we covered in the lectures:

I Computer architecture, in particular pipelining
I Memory hierarchy, in particular caching

You need to be able to explain how these concepts impact
performance of some sample programs.
Be prepared for small-scale coding questions

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 26 / 26

	Lecture 10: Revision

