F28HS Hardware-Software Interface: Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh

Semester 2 — 2019/20

⁰ No proprietary software	has been used in producing th	nese slides	HERIOT WATT
Hans-Wolfgang Loidl (Heriot-Watt Univ)	F28HS Hardware-Software Interface	2019/20	1 / 33

Lecture 2. Systems Programming with the Raspberry Pi

Lecture 1: Introduction to Systems Programming 2 Lecture 2: Systems Programming with the Raspberry Pi Lecture 3: Memory Hierarchy Memory Hierarchy Principles of Caches 4 Lecture 4: Programming external devices Basics of device-level programming Lecture 5: Exceptional Control Flow 5 Lecture 6: Computer Architecture Processor Architectures Overview Pipelining Lecture 7: Code Security: Buffer Overflow Attacks Lecture 8: Interrupt Handling Lecture 9: Miscellaneous Topics HERIOT WAT T Lecture 10: Revision Hans-Wolfgang Loidl (Heriot-Watt Univ) 2/33 2019/20

Outline

SoC: System-on-Chip

- A System-on-Chip (SoC) integrates all components of a computer or other electronic system into a single chip.
- One of the main advantages of SoCs is their low power consumption.
- Therefore they are often used in embedded devices.
- All versions of the Raspberry Pi are examples of SoCs

Note: In this course we are using the Raspberry Pi 2 Model B. The low-level code will only work with this version.

The Raspberry Pi Foundation: https://www.raspberrypi.org/ UK registered charity 1129409

Hans-Wolfgang Loidl (Heriot-Watt Univ)

HERIOT WATT HERIOT WATT

Raspberry Pi 1 vs 2

The Raspberry Pi version 2 was released on 2^{nd} February 2015. Its components are:

- the BCM2836 SoC (System-on-Chip) by Broadcom
- an ARM-Cortex-A7 CPU with 4 cores (clock frequency: 900MHz)
- 1 GB of DRAM
- a Videocore IV GPU
- 4 USB ports (sharing the one internal port together with the Ethernet connection)
- power supply through a microUSB port

NB: RPi2 is significantly more powerful than RPi1, which used an ARM1176JZ-F single-core at 700MHz clock frequency (as the BCM2835 SoC). However, its network bandwidth is unchanged.

NB: The A-series of the ARM architectures is for "application" usage and therefore more powerful than the M-series, which is mainly for small, embedded systems.

It is possible to *safely* over-clock the processor up to 950 MHz. ⁰Material from Baspherry Pi Goek 03/2015 Hans-Wolfgang Loid (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 2: Sys Prg on RPi

5/33

HERIO

7/33

Raspberry Pi 2

Software configuration

- RPi2 supports several major Linux distributions, including: Raspbian (Debian-based), Arch Linux, Ubuntu, etc
- The main system image provided for RPi2 can boot into several of these systems and provides kernels for both ARMv6 (RPi1) and ARMv7 (RPi2)
- The basic software configuration is almost the same as on a standard Linux desktop
- To tune the software/hardware configuration call

> sudo raspi-config

Updating your software under Raspbian

We are using **Raspbian 7**, which is based on Debian "Wheezy" with a Linux kernel 3.18.

There is a more recent version (2017-01-11) out: Raspbian 8, based on Debian "Jessie" with a Linux kernel 4.4. Highlights:

- Uses systemd for starting the system (changes to run-scripts, enabling services).
- Supports OpenGL and 3D graphics acceleration in an experimental driver (enable using the raspi-config)

To update the software under Raspbian, do the following:

- > sudo apt-get update
- > sudo apt-get upgrade
- > sudo rpi-update

To find the package foo in the on-line repository, do the following:

> sudo apt-cache search foo

To install the package f_{00} in the on-line repository, do the following:

> sudo apt-get install foo Hans-Wolfgang Loid (Heriot-Watt Univ) F28HS Har

Virtualisation

- In this powerful, multi-core configuration, an RPi2 can be used as a server, running several VMs.
- To this end RPi2 under Raspbian runs a hypervisor process, mediating hardware access between the VMs.
- Virtualisation is hardware-supported for the ARMv6 and ARMv7 instruction set
- The ARMv7 instruction set includes a richer set of SIMD (single-instruction, multiple-data) instructions (the NEON extensions), to use parallelism and speed-up e.g. multi-media applications
- The NEON instruction allow to perform operations on up to 16 8-bit values at the same time, through the processor's support for 64-bit and 128-bit registers
- Performance improvements in the range of 8 − 16× have been reported for multi-media applications
- The usual power consumption of the Ri2 is between 3.5 -4 Wattern (compored to on 2 Wett for the PDi1) Hans-Wolfgang Loid (Heriot-Watt Univ)
 P28HS Hardware-Software Interface
 Lec 2: Sys Prg on RPi 9/33
 - To compare the (peak) performance of RPi2 with RPi1, the Dhrystone benchmark delievers 875 DMIPS on an RPi 1 and

CPU Performance Comparison: Hardware

Plattform	RAM	Chip	Technologie	Architektur	
Raspberry Pi					
Raspberry Pi 1	512 MByte	Broadcom BCM2835	65 nm	ARM1176JZ-F	
Raspberry Pi 2	1 GByte LPDDR2	Broadcom BCM2836	28 nm	Cortex A7	
Banana Pi					
Banana Pi	1 GByte	AllWinner A20	40 nm	Cortex A7	
Banana Pro	1 GByte	AllWinner A20	40 nm	Cortex A7	
Banana Pi M2	1 GByte	AllWinner A31S	40 nm	Cortex A7	
Andere Single Board Computer (SBC)					
Beaglebone Black	512 MByte	TI Sitara AM3358/9	45 nm	Cortex A8	
Hummingboard-i2	1 GByte	Freescale i.MX6 DualLite	40 nm	Cortex A9	
Cubox-i4Pro	2 GByte	Freescale i.MX6 Quad	40 nm	Cortex A9	
Odroid C1	1 GByte DDR3	Amlogic S805	28 nm	Cortex A5	
Smartphones					
Galaxy S3 Mini (GT-I8190)	1 GByte	ST-Ericsson NovaThor U8500	45 nm	Cortex A9	
iPhone 5	1 GByte	Apple A6	32 nm high-k metal gate	ARMv7s Swift [Apple]	
Spielekonsolen					
Playstation 2	36 MByte	EmotionEngine	250 nm	RISC, basiert auf MIPS R5900	
Apple-Computer					
Apple][e	64 KByte	MOS Technology 6502	8000 nm	MOS Technology	
Apple Macintosh 128 K	128 KByte	Motorola 68000	3500 nm	CISC	
iMac G3	32 MByte	PowerPC 750 G3	260 nm	PowerPC G3	
Intel- und AMD-PCs					
No Name PC 1	64 MByte	Pentium II, 300 MHz	350 nm	x86 Intel	
No Name PC 2	384 MByte	AMD Duron, 800 MHz	180 nm	AMD Spitfire	HERI
Dell Inspiron 7520	8 GByte	Intel Core i7-3632QM	22 nm	Intel Core i7	UNIVI
Hetres FO A Conver	72 CRido	Intel Core i7-3770	22 nm	Intel Core i7	
olfgang Loidl (Heriot-Watt Univ)	F28HS H	ardware-Software Interfac	e	Lec 2: Sys Prg on RPi	1

Raspberry Pi 4

Specification:

- ARMv8, BCM2837B0, ARM Cortex-A72 CPU 64-bit quad-core @ 1.5GHz
- Up to 1GB, 2GB or 4GB RAM (LPDDR4)
- On board dual-band 802.11.b/g/n/ac wireless LAN
- On board Bluetooth 5.0, low-energy (BLE)
- Gigabit Ethernet
- 2 × USB 3.0 ports, 2 × USB 2.0 ports
- Extended 40-pin GPIO header
- 2 × micro-HDMI ports (supporting up to 4Kp60)

⁰ See RPi 4 spec on NewIT pages				
Hans-Wolfgang Loidl (Heriot-Watt Univ)	F28HS Hardware-Software Interface	Lec 2: Sys Prg on RPi	10 / 33	

CPU Performance Comparison: Measurements

DMIPS/MHz	Kerne	MHz	DMIPS	Vgl. RPi 1	Vgl. RPi 2	
						Note
1,25	1	700	875	100%	13%	DDi0 as 7 00 stantasthan DDid
1,90	4	900	6840	782%	100%	RPi2 ca. 7.82× faster than RPi1
1,90	2	1000	3800	434%	56%	
1,90	2	1000	3800	434%	56%	
1,90	4	1000	7600	869%	111%	Banana Pi M2 is 1.11 × faster than
2,00	1	1000	2000	229%	29%	RPi2
2,50	2	1000	5000	571%	73%	
2,50	4	1000	10000	1143%	146%	Cubox i4Pro is 1.46 × faster
1,57	4	1500	9420	1077%	138%	ODroid C1 is 1.38 × faster
2,50	2	1000	5000	571%	73%	
3,50	2	1300	9100	1040%	133%	
20,34	1	295	6000	686%	88%	
0,43	1	1	0,43	0,05%	0,01%	
0,23	1	6	1,4	0,16%	0,02%	
2,25	1	233	525	60%	8%	
0,91	1	300	273,6	31%	4%	Intel i7 PC is 15.5× faster than RPi2
2,81	1	800	2250	257%	33%	
14,19	4	2200	99750	11400%	1458%	UNIVERSIT
14.19	4	3400	106530	12175%	1557%	

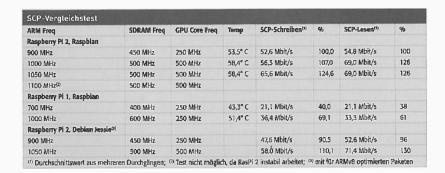
Network performance Measurements

Network performance comparison: RPi 1 vs RPi 2

- To compare network performance, encrypted data-transfer through scp is used.
- This profits from the quad-core architecture, because one core can be dedicated to encryption, another core to the actual data transfer.
- An increase in network performance by a factor of 2.5× is reported.
- The highest observed bandwidth on the RPi 2 (with overclocking to 1.05 GHz) is 70 Mbit/s.
- The theoretcial peak performance of the LAN-port is ca 90 MBit/s.
- The SunSpider benchmark for rendering web pages, reports up to 5× performance improvement.

HERIOT WATI

HERIOT


15/33

Lec 2: Sys Prg on RPi

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Har

High-performance Alternatives

- There are several single-board computers that provide a **high-performance** alternative to the RPi.
- These are of interest if you have applications with high computational demands and you want to run it on a low-cost and low-power device.
- It's possible to build for example a cluster of such devices as a parallel programming platform: see The Glasgow University Raspberry Pi Cloud
- Here we give an overview of the main **performance characteristics** of three RPi2 alternatives:
 - the CuBox i4Pro by SolidRun
 - the Banana Pi M3 by Sinovoip
 - the Lemaker HiKey by Lemaker

HERIOT WATT UNIVERSITY

Lec 2: Sys Prg on RPi

Core Specs of the CuBox i4-Pro

- Freescale i.MX6 (SoC) quad-core, containing an ARM Cortex A9 (ARMv7 instruction set) with 4 cores
- GC2000 GPU (supports OpenGL etc)
- 4 GB RAM and a micro-SD card slot
- 10/100/1000 Mb/s Ethernet (max 470Mb/s)
- WLAN (802.11b/g/n)
- Bluetooth 4.0

Hans-Wolfgang Loidl (Heriot-Watt Univ)

- 1 USB port and eSATA (3Gb/s) interface
- Price: 124\$

Software

Debian Linux, Kodi Linux, XBMC Linux

HERIOT WATT

Core Specs of the Banana Pi M3

- Allwinner A83T (SoC) chip, containing an ARM Cortex-A7 (ARMv7 instruction set) with 8 cores
- PowerVR SGX544MP1 GPU (supports OpenGL etc)
- 2 GB LPDDR3 RAM plus 8 GB eMMC memory and a micro-SD card slot
- Gigabit Ethernet
- WLAN (802.11b/g/n)
- Bluetooth 4.0
- 2 USB ports and SATA interface
- 40 GPIO pins (not compatible with RPi2)
- Price: 90€

Software

- BPI-Berryboot (allegedly with GPU support), or Ubuntu Mate Experiences
 - SATA shares the the USB bus connection and is therefore slow HERIOT WATT
 - Problems accessing the on-board micro-phone
- Hans-Wolfgang Loidl (Heriot-Watt Univ)

Lec 2: Sys Prg on RPi 17 / 33

19/33

Banana Pi M3 and Lemaker Hikey: Specs

	Banana Pi M3	Lemaker Hikey
PU	A83T ARM Cortex-A7, ARMv7, 8 Kerne, max. 2 GHz	ARM Cortex-A53, ARMv8, 8 Keme
PU	PowerVR SGX544MP1 (OpenGL ES 2.0, OpenCL 1.x, DX 9_3)	ARM Mali450-MP4 (OpenGL ES 1.1/2.0, OpenVG 1.1)
AM	2 GByte LPDDR3	1 oder 2 GByte LPDDR3
peicher	8 GByte eMMC	8 GByte eMMC
chnittstellen		
lassenspeicher	Micro-SD-Card, SATA (USB-to-SATA; GL830)	Micro-SD-Card
SB Ports	2 USB 2.0, USB OTG	2 USB 2.0, USB OTG
PIO	40 Pins (GPI0, UART, I2C, I2S, SPI, PWM, +3.3V, +5V, GND)	40 Pins (GPIO, UART, I2C, SPI, PWM, PCM, SYS_DCIN,
		+1.8V, +5V, GND); 60 Pins (SDIO, MIPI_DSI, MIPI_CSI)
letzwark		
thernet	10/100/1000 Mbit/s (Realtek RTL8211E/D)	optional (via USB-Adapter)
VLAN	802.11b/g/n	802.11b/g/n
luetooth	Bluetooth 4.0	Bluetooth 4.1 LE
udio, Video		
udio Out	3,5mm Klinke, HDMI	HDMI
udio In	Onboard-Mikrofon	HDMI
ideo Out	HDMI 1.4 (HDCP 1.2, max. 1920x1080), MIPI DSI	HDMI 1.4 (max. FHD 1080p), 2 MIPI DSI
ideo In	Parallele 8-Bit-Kameraschnittstelle, MIPI CSI	2 MIPL CSI
onstiges		
chalter	Power, Reset, U-Boot	Power/Reset
EDs	Power, RJ45, benutzerdefiniert	WLAN, Bluetooth, 4 benutzerdefiniert
trom	Micro-USB, optional 5V-Klinke	8V~18V/3A Klinke
)S	Android, Linux	Android, Linux
bmessung	92mm x 60mm	85mm x 55mm
traßenpreis	90 Euro	120 Euro

Core Specs of the Lemaker Hikey

- Kirin 620 (SoC) chip with ARM Cortex A53 and 8 cores
- ARM Mali450-MP4 (supports OpenGL etc) GPU
- 1 or 2 GB LPDDR3 RAM plus 8 GB eMMC memory and a micro-SD card slot
- WLAN (802.11b/g/n)
- Bluetooth 4.1
- 2 USB ports
- 40 GPIO pins (not compatible with RPi2)
- Audio and Video via HDMI connectors
- Board-layout matches the 96-board industrial standard for embedded devices
- Price: 120€

Software

- Android variant (part of 96-board initiative)
- Linaro (specialised Linux version for embedded devices)

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Lec 2: Sys Prg on RPi 18 / 33

HERIOT WATT

Raspberry Pi 3 and Lemaker Hikey: Performance

Performance as runtime (of sysbench benchmark) and network bandwidth (using lperf benchmark):

	Perf	. (runti	me)	Max	Network I	oandwidth
	numbe	er of th	reads	power	Ethernet	WLAN
	1	4	8			
Raspberry Pi 2	297s	75s				
Raspberry Pi 3	182s	45s				45 Mb/s
Cubox i4Pro	296s	75s				
Banana Pi M3	159s	40s	21s	1.1A	633 Mb/s	2.4 Mb/s
Lemaker Hikey	12s	3s	2s	1.7A	—	37.3 Mb/s

Summary: In terms of performance, the Lemaker Hikey is the best choice.

⁰Material from Raspberry Pi Geek 04/2016

Hans-Wolfgang Loidl (Heriot-Watt Univ)

HERIOT WATT

Raspberry Pi 3 and Lemaker Hikey: Performance comparison

	1 Thread	4 Threads	8 Threads
Raspberry Pi 3	182 Sekunden	45 Sekunden	-
Banana Pi M3	159 Sekunden	40 Sekunden	21 Sekunden
Lemaker Hikey	12 Sekunden	3 Sekunden	2 Sekunden

To run the (CPU) performance benchmark on the RPi2 do:

- > sudo apt-get update
- > sudo apt-get install sysbench
- > sysbench --num-threads=1 --cpu-max-prime=10000 --test=cpu
 run

⁰ Material from Raspberry Pi Geek 04/20	016

Lec 2: Sys Prg on RPi

HERIO WAT

21/33

HERIOT WATT

23/33

RPi3 vs Odroid-XU4: Specs

	Qdroid-XU4	RasPi 3
SoC	Exynos 5422 Octa big.LITTLE ARM	Broadcom BCM2837
CPU	Cortex-A15 (2.0 GHz) Quad-Core und Cortex-A7 Quad-Core	ARM Cortex-A53 Quad-Core (1,2 GHz)
GPU	Mali-T628 MP5	Broadcom Dual Core VideoCore IV
RAM	2 GByte LPDDR3 (933 MHz)	1 GByte LPDDR2 (900 MHz)
Speicher	Micro-SD, eMMC 5.0	Micro-SD
Netzwerk	T0/100/1000-Mbit/s-Ethernet	10/100-Mbit/s-Ethemet, WLAN 802.11b/g/n
USB	USB 2.0 A, 2 USB 3.0	4 USB 2.0 (über Hub)
Videoausgang	HDMI	HDMI
Schnittstellen	12\$, I ² C, GPIO	SPI, I²C, UART
Größe	83 x 59 x 18 mm	85,6 x 56 x 21 mm
Preis (ca.)	95 Euro	35 Euro

Core Specs of Odroid-XU4

- Exynos 5422 (SoC) Octa big.LITTLE ARM with an ARM Cortex-A15 quad-core and an ARM Cortex-A7 quad-core
- Mali-T628 MP6 GPU
- 2 GB LPDDR3 RAM plus eMMC memory and a micro-SD card slot
- Gigabit Ethernet
- 1 USB 2.0A and 1 USB 3.0 port
- Video via HDMI connectors
- 40 GPIO pins (not compatible with RPi2)
- Price: 95€

The CPU is the same as in high-end smartphones such as the Samsug Galaxy S5.

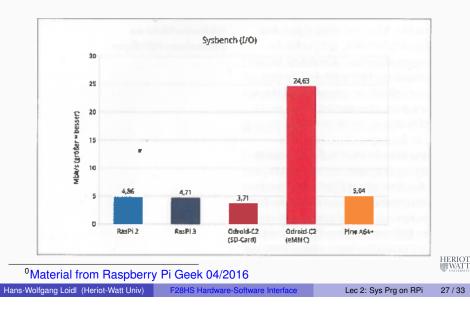
The big.LITTLE architecture dynamically switches from (faster) Cortex-A15 to (slower) Cortex-A7 to save power.


Software: Ubuntu 14.04 or Ubuntu 16.04; Android 4.4.4; OpenMediaVault 2.2.13, Kali Linux, Debian.

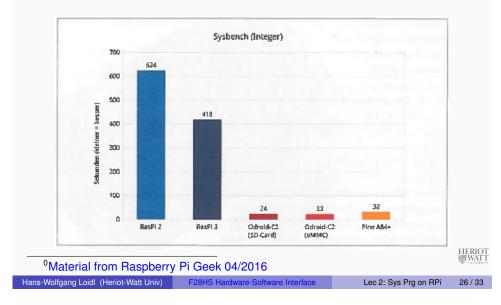
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Softw

Lec 2: Sys Prg on RPi 22 / 33

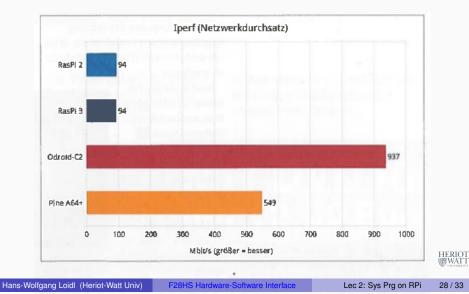
HERIOT WAT T


Network performance: RPi3 vs Odroid-XU4

	Raspherry Pi 3	Odroid-XU4
Samba		
Datenrate (Upload)	87,80 Mbit/s	418,88 Mbit/s
Datenrate (Download)	89,63 Mbit/s	469,45 Mbit/s
FTP		
Datenrate (Upload)	B4,14 Mbit/s	404,15 Mbit/s
Datenrate (Download)	86,18 Mbit/s	439,46 Mbit/s
SSH		
Datenrate (Upload)	86,90 Mbit/s	305,34 Mbit/s
Datenrate (Download)	88,91 Mbit/s	299,59 Mbit/s
Iperf		
Datenrate	94,73 Mbit/s	511,33 Mbit/s


 Note: Raw network performance is ca. 5× faster on the ODroid-XU4

 Hans-Wolfgang Loid (Heriot-Watt Univ)
 F28HS Hardware-Software Interface
 Lec 2: Sys Prg on RPi
 25 / 33


Raspberry Pi 3 and ODroid C2: I/O Performance Comparison

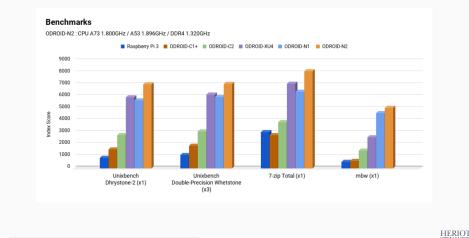
Raspberry Pi 3 and ODroid C2: CPU Performance Comparison

Raspberry Pi 3 and ODroid C2: Network Performance Comparison

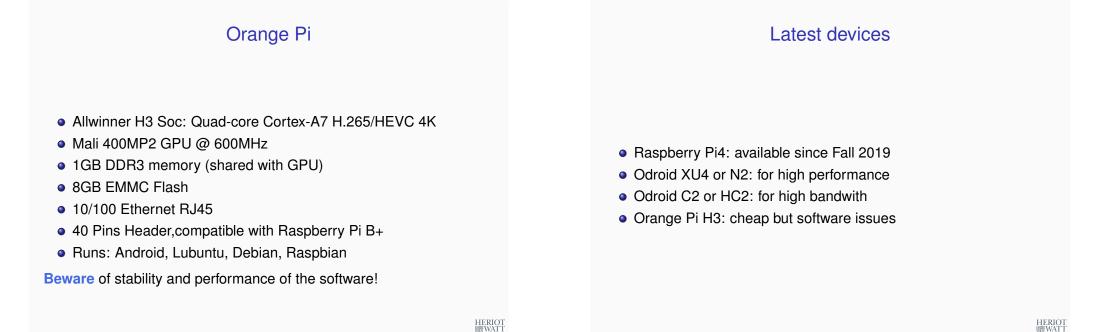
Ethernet-bestückte Konkurrenz in Sachen Geschwindigkeit nicht mehr punkten.

RPi3 vs Odroid-XU4: Experience

- In terms of network-performance, the ODroid-XU4 is much faster.
- It is a good basis for a NAS (Network attached Storage).
- In terms of CPU-performance, the Odroid is slightly faster: Cortex-A15 (2.0 GHz) vs Cortex-A53 (1.2 GHz).
- However, in practice, the GUI is much slower.


Hans-Wolfgang Loidl (Heriot-Watt Univ)

- \bullet Based on the <code>gtkperf</code> GUI benchmark, the ODroid is ca. 3× slower.
- The reason for this difference is more optimisation in the device drivers for RPi's VideoCore IV GPU (compared to ODroid's Mali GPU).
- Note: To assess performance and usability, one has to consider the entire software stack, not just the raw performance of the hardware!


Lec 2: Sys Prg on RPi

29/33

Performance comparison: Odroid vs RPi4

⁰ From RPi4 vs Odroid on MightyGadget pages				
Hans-Wolfgang Loidl (Heriot-Watt Univ)	F28HS Hardware-Software Interface	Lec 2: Sys Prg on RPi	30 / 33	

Summary

- The Raspberry Pi is one of the most widely-used single-board computers.
- The RPi comes in several version (1,2,3); we are using the **Raspberry Pi 2 model B**.
- There is a rich software eco-system for the RPis and excellent, detailed documentation.
- A good high-CPU-performance alternatives is: Lemaker HiKey
- A good high-network-performance alternative is: Odroid-XU4
- Check out the Raspberry Pi projects available online.

