
F28HS Hardware-Software Interface:
Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

Semester 2 — 2019/20

0No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2019/20 1 / 36

Outline

1 Lecture 1: Introduction to Systems Programming

2 Lecture 2: Systems Programming with the Raspberry Pi

3 Lecture 3: Memory Hierarchy
Memory Hierarchy

Principles of Caches

4 Lecture 4: Programming external devices
Basics of device-level programming

5 Lecture 5: Exceptional Control Flow
6 Lecture 6: Computer Architecture

Processor Architectures Overview
Pipelining

7 Lecture 7: Code Security: Buffer Overflow Attacks

8 Lecture 8: Interrupt Handling

9 Lecture 9: Miscellaneous Topics

10 Lecture 10: Revision

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2019/20 2 / 36

Lecture 5.
Exceptional Control Flow and

Signals

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 3 / 36

What are interrupts and why do we need them?

In order to deal with internal or external events, abrupt changes in
control flow are needed.
Such abrupt changes are also called exceptional control flow
(ECF).
Informally, these are known as hardware- and
software-interrupts.
The system needs to take special action in these cases (call
interrupt handlers, use non-local jumps)

0Lecture based on Bryant and O’Hallaron, Ch 8
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 4 / 36

ECF on different levels

ECF occurs at different levels:
hardware level: e.g. arithmetic overflow events detected by the
hardware trigger abrupt control transfers to exception handlers
operating system: e.g. the kernel transfers control from one user
process to another via context switches.
application level: a process can send a signal to another process
that abruptly transfers control to a signal handler in the recipient.

In this class we will cover an overview of ECF with examples from
the operating system level.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 5 / 36

Handling ECF on different levels

ECF is dealt with in different ways:
hardware level: call an interrupt routine, typ. in Assembler
operating system: call a signal handler, typ. in C
application level: call an exception handler, e.g. in a Java
catch block

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 6 / 36

Exceptions

Definition
An exception is an abrupt change in the control flow in response to
some change in the processor’s state.

A change in the processor’s state (event) triggers an abrupt control transfer
(an exception) from the application program to an exception handler. After it
finishes processing, the handler either returns control to the interrupted
program or aborts.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 7 / 36

Exceptions (cont’d)

When the processor detects that the event has occurred, it makes an
indirect procedure call (the exception), through a jump table called an
exception table, to an operating system subroutine (the exception
handler) that is specifically designed to process this particular kind of
event.
When the exception handler finishes processing, one of three things
happens, depending on the type of event that caused the exception:

The handler returns control to the current instruction, i.e. the
instruction that was executing when the event occurred.
The handler returns control to the instruction that would have
executed next had the exception not occurred.
The handler aborts the interrupted program.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 8 / 36

Interrupt handling

The interrupt handler returns control to the next instruction in the
application program’s control flow.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 9 / 36

Exception Handling

Exception Handling requires close cooperation between software and
hardware.

Each type of possible exception in a system is assigned a unique
nonnegative integer exception number.
Some of these numbers are assigned by the designers of the
processor. Other numbers are assigned by the designers of the
operating system kernel.
At system boot time (when the computer is reset or powered on),
the operating system allocates and initializes a jump table called
an exception table, so that entry k contains the address of the
handler for exception k .
At run time (when the system is executing some program), the
processor detects that an event has occurred and determines the
corresponding exception number k . The processor then triggers
the exception by making an indirect procedure call, through
entry k of the exception table, to the corresponding handler.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 10 / 36

Exception table

Exception
table

0
1

2 ...

n-1

 Code for
exception handler 0

 Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler 2

Code for
exception handler n-1

Code for
exception handler n-1

...

The exception table is a jump table where entry k contains the address
of the handler code for exception k .

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 11 / 36

Differences between exception handlers and
procedure calls

Calling an exception handler is similar to calling a procedure/method,
but there are some important differences:

Depending on the class of exception, the return address is either
the current instruction or the next instruction.
The processor also pushes some additional processor state onto
the stack that will be necessary to restart the interrupted program
when the handler returns.
If control is being transferred from a user program to the kernel, all
of these items are pushed onto the kernel’s stack rather than onto
the user’s stack.
Exception handlers run in kernel mode, which means they have
complete access to all system resources.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 12 / 36

Classes of exceptions

Exceptions can be divided into four classes: interrupts, traps, faults,
and aborts:

Class Cause (A)Sync Return behavior
Interrupt Signal from I/O device Async Always returns to next instr
Trap Intentional exception Sync Always returns to next instr
Fault Potent. recoverable error Sync Might return to current instr
Abort Nonrecoverable error Sync Never returns

It is useful to distinguish 2 reasons for an exceptional control flow:
an exception is any unexpected change in control flow;
e.g. arithmetic overflow, using an undefined instruction, hardware
timer
an interrupt is an unexpected change in control flow triggered by
an external event;
e.g. I/O device request, hardware malfunction

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 13 / 36

Traps and System Calls

Traps are intentional exceptions that occur as a result of
executing an instruction.
Traps are often used as an interface between application program
and OS kernel.
Examples: reading a file (read), creating a new process (fork),
loading a new program (execve), or terminating the current
process (exit).
Processors provide a special “syscall n” instruction.
This is exactly the SWI instruction on the ARM processor.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 14 / 36

Trap Handling

The trap handler returns control to the next instruction in the
application program’s control flow.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 15 / 36

Faults

Faults result from error conditions that a handler might be able
to correct.
Note that after fault handling, the processor typically reexecutes
the same instruction.
Example: page fault exception.

I Assume an instruction references a virtual address whose
corresponding physical page is not in memory.

I In this case page fault is triggered.
I The fault handler loads the required page into main memory.
I After that the same instruction needs to be executed again.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 16 / 36

Fault handling

Depending on whether the fault can be repaired or not, the fault
handler either reexecutes the faulting instruction or aborts.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 17 / 36

Aborts

Aborts result from unrecoverable fatal errors, typically hardware errors
such as parity errors that occur when DRAM or SRAM bits are
corrupted. Abort handlers never return control to the application
program.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 18 / 36

Common system calls

Number Name Description
1 exit Terminate process
2 fork Create new process
3 read Read file
4 write Write file
5 open Open file
6 close Close file
7 waitpi Wait for child to terminate
11 execve Load and run program
19 lseek Go to file offset
20 getpid Get process ID

0For a more complete list see Smith, Appendix B “Raspbian System Calls”
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 19 / 36

Common system calls

Number Name Description
27 alarm Set signal delivery alarm clock
29 pause Suspend process until signal arrives
37 kill Send signal to another process
48 signal Install signal handler
63 dup2 Copy file descriptor
64 getppid Get parent’s process ID
65 getpgrp Get process group
67 sigaction Install portable signal handler
90 mmap Map memory page to file
106 stat Get information about file

0For the truly complete list see /usr/include/sys/syscall.h
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 20 / 36

Signal handlers in C

UNIX signals are a higher-level software form of exceptional control
flow, that allows processes and the kernel to interrupt other processes.

Signals provide a mechanism for exposing the occurrence of such
exceptions to user processes.
For example, if a process attempts to divide by zero, then the
kernel sends it a SIGFPE signal (number 8).
Other signals correspond to higher-level software events in the
kernel or in other user processes.

0From Bryant and O’Hallaron, Sec 8.5
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 21 / 36

Signal handlers in C (cont’d)

For example, if you type a ctrl-c (i.e. press the ctrl key and the
c key at the same time) while a process is running in the
foreground, then the kernel sends a SIGINT (number 2) to the
foreground process.
A process can forcibly terminate another process by sending it a
SIGKILL signal (number 9).
When a child process terminates or stops, the kernel sends a
SIGCHLD signal (number 17) to the parent.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 22 / 36

Signal handling

Receipt of a signal triggers a control transfer to a signal handler. After
it finishes processing, the handler returns control to the interrupted
program.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 23 / 36

Example: handling ctrl-c

// header files
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

void ctrlc_handler(int sig) {
fprintf(stderr, "Received signum %d; thank you for pressing

CTRL-C\n", sig);
exit(1);

}

int main() {
signal(SIGINT, ctrlc_handler); // install the signal handler
while (1) { } ; // infinite loop

}

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 24 / 36

Example: handling ctrl-c in more detail

See signal2.c

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 25 / 36

Example: sending SIGALARM by the kernel

/* signal handler, i.e. the fct called when a signal is
received */

void handler(int sig)
{

static int beeps = 0;

printf("BEEP %d\n", beeps+1);
if (++beeps < 5)

alarm(1); /* Next SIGALRM will be delivered in 1 second

*/
else {

printf("BOOM!\n");
exit(1);

}
}

int main() {
signal(SIGALRM, handler); /* install SIGALRM handler; see:

man 2 signal */
alarm(1); /* Next SIGALRM will be delivered in 1s; see: man

2 alarm */

while (1) { /* nothing */ ; /* Signal handler returns
control here each time */

}
exit(0);

}

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 26 / 36

Timers

We now want to use timers, i.e. setting up an interrupt in regular
intervals.
The BCM2835 chip as an on-board timer for time-sensitive
operations.
We will explore three ways of achieving this:

I using C library calls (on top of Raspbian)
I using assembler-level system calls (to the kernel running inside

Raspbian)
I by directly probing the on-chip timer available on the RPi2

In this section we will cover how to use the on-chip timer to
implement a simple timeout function in C

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 27 / 36

Overview

Features of the different approaches:
C library calls (on top of Raspbian)

I are portable across hardware and OS
I require a (system) library for handling the timer

assembler-level system calls (to the kernel running inside
Raspbian)

I depend on the OS, but are portable across hardware
I require a support for software-interrupts in the OS kernel

directly probing the on-chip timer available on the RPi2
I depend on both hardware and OS
I the instructions for probing a hardware timer are specific to the

hardware

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 28 / 36

Example: C library functions for controlling timers

getitimer, setitimer - get or set value of an interval timer
#include <sys/time.h>

int getitimer(int which, struct itimerval *curr_value);
int setitimer(int which, const struct itimerval *

new_value,
struct itimerval *old_value);

setitimer sets up an interval timer that issues a signal in an interval
specified by the new value argument, with this structure:
struct itimerval {

struct timeval it_interval; /* next value */
struct timeval it_value; /* current value */

};
struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */

};

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 29 / 36

C library functions for controlling timers

There are three kinds of timers, specified by the which argument:
ITIMER REAL decrements in real time, and delivers SIGALRM
upon expiration.
ITIMER VIRTUAL decrements only when the process is
executing, and delivers SIGVTALRM upon expiration.
ITIMER PROF decrements both when the process executes and
when the system is executing on behalf of the process. Coupled
with ITIMER VIRTUAL, this timer is usually used to profile the
time spent by the application in user and kernel space. SIGPROF
is delivered upon expiration.

0See: man getitimer
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 30 / 36

Programming a C-level signal handler

Signals (or software interrupts) can be programmed on C level by
associating a C function with a signal sent by the kernel.
sigaction - examine and change a signal action
#include <signal.h>
int sigaction(int signum, const struct sigaction *act,

struct sigaction *oldact);

The sigaction structure is defined as something like:
struct sigaction {

void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *,

void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

};NB: the sa handler or sa sigaction fields define the action to be
performed when the signal with the id signum is sent.

0See man sigaction
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 31 / 36

Programming Timers using C library calls

We need the following headers:

#include <signal.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <sys/time.h>

// in micro-sec
#define DELAY 250000

0Sample source in itimer11.c
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 32 / 36

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/itimer11.c

Programming Timers using C library calls

int main ()
{
struct sigaction sa;
struct itimerval timer;

fprintf(stderr, "configuring a timer with a delay of %d
micro-seconds ...\n", DELAY);

/* Install timer_handler as the signal handler for
SIGALRM. */

memset (&sa, 0, sizeof (sa));
sa.sa_handler = &timer_handler;
sigaction (SIGALRM, &sa, NULL);

Calling sigaction like this, causes the function timer handler to
be called whenever signal SIGALRM arrives.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 33 / 36

Programming Timers using C library calls

Now, we need to set-up a timer to send SIGALRM every DELAY
micro-seconds:

/* Configure the timer to expire after 250 msec... */
timer.it_value.tv_sec = 0;
timer.it_value.tv_usec = DELAY;
/* ... and every 250 msec after that. */
timer.it_interval.tv_sec = 0;
timer.it_interval.tv_usec = DELAY;
/* Start a real timer. It counts down whenever this

process is executing. */
setitimer (ITIMER_REAL, &timer, NULL);

/* A busy loop, doing nothing but accepting signals */
while (1) {} ;

}

0Sample source in itimer11.c
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 34 / 36

Further Reading & Hacking

Randal E. Bryant, David R. O’Hallaron “Computer Systems: A
Programmers Perspective”,
3rd edition, Pearson, 7 Oct 2015. ISBN-13: 978-1292101767.
Chapter 8: Exceptional Control Flow

David A. Patterson, John L. Hennessy. “Computer Organization
and Design: The Hardware/Software Interface”,
ARM edition, Morgan Kaufmann, Apr 2016. ISBN-13:
978-0128017333.
Section 4.9: Exceptions

tewart Weiss. “UNIX Lecture Notes”
Chapter 5: Interactive Programs and Signals
Department of Computer Science, Hunter College, 2011

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 35 / 36

Summary

Interrupts trigger an exceptional control flow, to deal with
special situations.
Interrupts can occur at several levels:

I hardware level, e.g. to report hardware faults
I OS level, e.g. to switch control between processes
I application level, e.g. to send signals within or between processes

The concept is the same on all levels: execute a short sequence
of code, to deal with the special situation.
Depending on the source of the interrupt, execution will continue
with the same, the next instruction or will be aborted.
The mechanisms how to implement this behaviour are different:
in software on application level, in hardware with jumps to entries
in the interrupt vector table on hardware level

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 5: Exceptional Control Flow 36 / 36

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/itimer11.c
http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/unix_lecture_notes/chapter_05.pdf

	Lecture 5: Exceptional Control Flow and Signals

