F28HS Hardware-Software Interface:
Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

HERIOT
EWAT 1

UNIVERSITY

Semester 2 — 2018/19

°No proprietary software has been used in producing these slides

Hans-Wolfgang Loidl (Heriot-Watt Univ) 2018/19 1/34

Tutorial 5: Performance Counters on the RPi 2

@ Performance counters are hardware support for monitoring basic
operations on the CPU

@ They are very accurate and useful for monitoring resource
consumption

@ |t is possible to count cycles, but also cache misses,
(mispredicted) branches etc

@ In this tutorial we will cover how to use performance counters to
get a precise measure of the runtime of a program

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 3/34

Outline

0 Tutorial 1: Using Python and the Linux FS for GPIO Control
9 Tutorial 2: Programming an LED

9 Tutorial 3: Programming a Button input device

o Tutorial 4: Inline Assembler with gcc

e Tutorial 5: Programming an LCD Display

© Tutorial 6: Performance Counters on the RPi 2

Hans-Wolfgang Loidl (Heriot-Watt Univ) 2018/19 2/34

Architecture Support

@ Both the BCM2835 (of the RPi 1) and BCM2836 (of the RPi 2)
provide a Performance Monitoring Unit (PMU) as a
co-processor on the chip

@ The unit supports in total 4 counter registers and a separate cycle
counter register.

@ These 4 registers can be configured to count a range of low-level
events.

@ There are 2 different interfaces for accessing this information.

» the APB interface, which uses memory mapping and access
registers on the PMU directly

» the CP15 interface, which uses special assembler instructions for
communicating between processor and PMU

@ The PMU operations are usually not available for user programs
(trying to run them directly will trigger an SIGILL exception)

@ However, we can write a simple Linux kernel module to enable this
functionality, and then use it through assembler instructions in ougio;
user code.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 4/34

Overview: How to use the PMU Step 1: Find out how to interact with the PMU

SUNAVCR
Ertsubt den Zugriff
aus dem Userland

We need to go through the following steps:
@ Find out how to interact with the PMU =
MCR TaktzyklerzShier

© Enable access to the PMU from “user space” AEM-CPU-Care = ERD
@ Define what we want to monitor HEE ﬁ

© Use access to the PMU to measure programs

Fonfiguriert die PMLU und
insbesondere CRO und CR)

System Control Coprocessor

The PMU is a co-processor, called CP15, separate from the main
processor, but on the same chip.
The special assembler instructions MRC and MCR transfer data between

e -processor (C). e
. °From Linux Magazin 05/2015: Kerntechnik S
Tutorial 5: Perf Counters 5/34 Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 6/34
Instructions for data transfer between processor and Step 2: Enabling PMU access through a kernel
CO-processor module

@ By default, the PMU can only be accessed in “privileged mode”,

. but this can be changed
@ The ARM instruction set provides 2 instructions for the W L K | " I
» MCR: Move to Coproc from ARM Reg @ We need to construct a small Linux kernel module that enables

» MRC: Move to ARM Reg from Coproc the access to the PMU
@ In essence, we need to embed some assembler instructions into

The technical reference manual describes the instructions like this: an AP pre-scribed by the Linux kernel

To access the PMCR, read or write the CP15 registers with: @ For details on how to build a Linux kernel module see
MRC pl5, 8, <Rt>, 9, cl2, 8; Read Performance Monitor Control Register » The Linux Kernel Module Programming Guide, Peter Jay Salzman
MCR p13, 8, <RE>, 3, cl2, 6; Write Performance Monitor Control Register » Building instructions from a course on “Introduction to Embedded
Computing” at Univ of California, San Diego, by Tajana Simunic
Rosing
@ Here, I'll just shortly summarise the steps needed, and how to use

OSee Cortex A7 MPcore Technical Reference Manual, Table 11-1 PMU register %\l\{&(l)i performance monitoring in a Simple example program L%“\‘\{&(I)i
summary, p 241 Foen PWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 7/34 Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 8/34

http://www.linux-magazin.de/static/listings/magazin/2015/05/kerntechnik/
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://linux.die.net/lkmpg/index.html
http://cseweb.ucsd.edu/classes/wi16/cse237A-a/project/part1/Part1.Instructions.pdf
http://cseweb.ucsd.edu/classes/wi16/cse237A-a/project/part1/Part1.Instructions.pdf

Table 11-1: PMU registers Table 11-1: PMU registers

Table 11-1 PMU register summary

m‘:::r Offset CRn Op1 CRm Op2 Name Type Description 207 BxE0d o9 1] cl2 1] PMCR RW Performance Monitor Control
Register on page 11-7

0 P00 9 0 cld 2 PMXEVCNTRO RW Event Count Register, see the ARM 898 DxE08 @ 0 cld 0 PMUSERENR RW User Enable Register, sce the ARM
1 BxdRd © 0 o3 2 PMXEVONTRI RW Architecture Reference Manual Architecture Reference Manual
2 DxBOE 9 0 cl3 2 PMXEVCNTR2 RW 899903 OxEOC-ORELC - - - - - - Reserved
3 0x00C & 0 el 2 PMXEVCNTR3 RW
4-30 Bx010-0:7 8 - - - - - - Reserved . .
. o © 0 s o puconm RN Gyl Coost Begiamsoothe ARl @ The two main registers that we need to access are PMCR and

Architecture Reference Manual P MU S E RE NR
32-255 Ox0BO-03FC - - - - - Reserved . .

» PMCR: controls access to the PMU in general

256 Dxdd Y] 0 cl3 1 PMXEVTYPERD RW Event Type Selection Register, see L -

the ARM drehitecture Referone » PMUSERENR: is the User Enable Register that needs to be
257 0404 & 0 el3 1 PMXEVTYPERI ~ RW oo : .

configured to allow user code to access the PMU

258 0405 & 0 el3 1 PMXEVTYPERZ RW
259 oxdC @ 0 el3 1 PMXEVTYPER} ~ RW

9See Cortex A7 MPcore Technical Reference Manual, Table 11-1 PMU register %ﬁkl(Y 9See Cortex A7 MPcore Technical Reference Manual, Table 11-1 PMU register %F\l\% T
summary, p 237 h summary, p 237
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 9/34 Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 10/ 34

The bits in the PMCR

Table 11-2 PMCR bit assignments {continued)

Structure of the PMCR register

Bits Name Function

[4] X Export enable. This bit permits events tobe exported to another debug device, such as a trace macrocell. over
an event bus:
] Export of eventsis disabled. This is the reset value
. 1 Export of events is enabled. This bit is read write.
To enable access to the PMU, we need to access the PMCR register. 5 b Clock dvider
The Performance Monitor Control Register (PMCR) defines the 0 When enabled, PMCCNTR counts every clock cycle. This is the reset value.
. . 1 When enabled, PMCCNTR counts once every 64 clock cycles.
core behaviour of the PMU: This bit i readvrite.
[2] C Clock counter reset:
il 2423 16 15 110 | 6543210] Noaction. This is the reset value
1 Reset PMCCNTR to 0.
IMP IDCCDE N Reserved DA X|D|C|P|E . B
This bit is write-only, and always RAZ.
Figure 11-2 Perf Control Reg bit g [1] P Event counter reset:) B
] Noaction. This is the reset value
1 Reset all event counters, not including PMCCNTR, to 0.

In Non-secure modes other than Hyp mode. writing a | to this bit does not reset event counters that the
HDCRHPMN field reserves for Hyp mode use. See Hyp Debug Control Register on page 4-68.

In Secure state and Hyp mode, writing a | to this bit resets all event counters.

This bit is write-only, and always RAZ.

[0] E Enable bit. Performance monitor overflow IRQs are only signaled when the enable bit is set to 1.
(1] All counters, mcluding PMCCNTR, are disabled. This is the reset value.
1 All counters are enabled

9See Cortex A7 MPcore Technical Reference Manual, Figure 11-2 Performance% 0T
Monitor Control Register bit assignments, p 240 This bit is readfwrite.
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 11/34 Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 12/34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf

Configuring the PMCR register The PMUSERENR register

We are almost there! The PMUSERENR bit assignments are:
31 | | | | 10
The encoding for the PMCR register is (see Table 11-1): c9, <12, 0 Resened, UNK/SEZP
ENJ
We now configure the PMCR by setting the E, P, C, and X bits. Bits|31:1] Reserved, UNK/SBZF.
These are bltS 0, 1, 2, and 4 In the PMCR reglster EN, bit[0] User mode access enable bit. The possible values of this bit are:
. .] User mode access to the Performance Monitors disabled.
Th|S means we need a bltmaSk Of Obo O O l O l l l or OX]— 7 - 1 User mode access to the Performance Monitors enabled,

Some MCR and MRC instruction accesses to the Performance Monitors are UNDEFINED in User mode when the EN bit
is set to 0. For more information, see Access permissions on page C12-2330,

Here is the code:

. . Accessing the PMUSERENR
mov r2, #0x17 @ store bitmask 0x17 in reg r2
To access the PMUSERENR , read or write the CP 135 registers with <opcl> set to 0, <CRn> set to ¢9, <CRm> setto cl4,

mcr pl5, 0, r2, c9, cl2, 0 @ transfer to PMCR and <ope2> set 1o 0. For example

MRC p15, 0, <R, €9, cl4, @ : Read PMUSERENR into Rt
WCR p15, 0, <Rt c8, cl4, @ : Write Rt to PMUSERENR

NB: For longer running programs you probably also want to enable the
D bit, which divides the cylce counter by 64!

See ARM Architecture Reference Manual Cortex-A7, Sec B6.1.81, PMUSERE@L&}\(R}
Performance Monitors User Enable Register, p 1924

Tutorial 5: Perf Counters 13/34 Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 14/34
Enabling access to the PMU Enabling access to the PMU

We also need to configure the following registers
@ PMCNTENSET: Count Enable Set Register’:

Purpose: The PMCNTENSET register enables the Cycle
Count Register, PMCCNTR, and any implemented event
counters, PMNXx. Reading this register shows which counters
are enabled. This register is a Performance Monitors register.

We can enable access to the PMU from “user space”, from normal
applications that are running outside the Linux “kernel space”, by
setting the lowest bit in the PMUSERENR:

mov r2, #0x01 € store biomesl 000 dn ceg 2 @ pMOVSR: Overflow Status Register PMCNTENSET: Count Enable
mcr pl5, 0, r2, c9, cl4, 0 @ transfer r2 to PMUSERENR Set Registerz:

Purpose: The PMOVSR holds the state of the overflow bits for:

The MCR instruction transfers a value in a register to the co-processor.

To find the encoding of the PMUSERENR we look up Table 11-1: > QG QUi (AL, A

» each of the implemented event counters, PMNX.

c9, cl4, O
’ ’ Software must write to this register to clear these bits.
This register is a Performance Monitors register.
9See also ARM Architecture Reference Manual Cortex-A7, Sec B5.8.2, Table %gmi}: 'See ARM Architecture Reference Manual Cortex-A7, Sec B6.1.74, p 1910 é‘é\‘&‘f}
B5-11: Summary of PMSA CP15 register descriptions, p 1796 c 2See ARM Architecture Reference Manual Cortex-A7, Sec B6.1.78, p 1908

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 15/34 Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 16/34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf

Table 11-1: PMCNTENSET and PMOVSR registers Bits in PMCNTENSET and PMOVSR registers

The PMCNTENSET register enables the Cycle Count Register,

We now have to find the register encodings for PMCNTENSET and
W hay ! d g PMCCNTR, and any implemented event counters, PMNx3

PMOVSR.
Table 111 PMU register summary (continued) The PMCNTENSET register bit assignments are:
mi::rr Offset CRn Op1 CRm Op2 Name Type Description 3130 - il il . . . LA
C| Reserved, RAZMWI| Ewent counter enable bits, Px, for x =0 to (N=1)
R00 BCED @ o cl2 3 PMOVSR RW Overflow Flag Status Register, see
the ARM Architecture Reference
Manual
801-807 OxCB4-0xCOC - - - - - . Reserved
5 e@ @ 0 e 1 PMONIENSET RW Cou Bl Set Reshtar s e The PMOVSR holds the state of the overflow bit for: (i) the Cycle
— ’f“”j:'”“"“"'R""‘“”"“"“""‘“” Count Register, PMCCNTR,; (ii) each of the implemented event
- x04-0CIC - - - - - . eser 4
776 axC20 9 0 cl2 2 PMCNTENCLR RW Count Enable Clear Register, see the CounterS’ PMNX'
ARM Architeciure Reference Manual
- P . . .) . Reserved The PMOVSER bit assignments are:
3130 N N=1 1]
2See either Cortex A7 MPcore Technical Reference Manual, Figure 11-2 G| Reserved, RAZ/W! Event counter overflow bits, Px, for x = 0 to (N-1)
Performance Monitor Control Register bit assignments, p 240
or ARM Architecture Reference Manual Cortex-A7, Sec B5.8.2, Table B5-11: HERIOT 3 : HERIOT
Summary of PMSA CP15 register descriptions, p 1796 D en See ARM Arch!tecture Reference Manual Cortex-A7, Sec E41 1 1? p 19Z§ N
Tutorial 5: Perf Counters 17 /34 Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counteré 18/34
Enabling access to the PMU Step 3: Defining what to monitor

Almost there!

Both registers hold bitmasks over the event counters, to enable them

and to control overflow. @ Now that the PMU is enabled we need to decide what we want to

We want to turn on the bit for every counter. monitor
We have 4 counters in total, so we need to set the 4 least significant @ The PMU contains one cycle counter register, which we can use
bits: we need a bitmask of 0b1111 or 0x0f without special configuration: PMCCNTR
@ The PMU contains 4 configurable counter registers
Finally, here is th he PMCNTENSET and PMOVSR registers: . .
ally, here is the code to set the and el @ For each of these registers we need to specify an event type to
monitor
mov r2, #0xO0f @ store bitmask 0x0f in reg r2
mcr pl5, 0, r2, c9, cl2, 1 @ transfer to PMCNTENSET
mov r2, #0xO0f @ store bitmask O0x0f in reg r2
mcr pl5, 0, r2, c9, cl2, 3 @ transfer to PMOVSR
HERIOT HERIOT
GWATT GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 19/34 Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 20/34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf

Table 16-1: PMU monitor events Table 16-1: PMU monitor events

Table 16-1 Performance monitor events

Number Event counted

L] Software increment of the Sofiware Increment Register ddl Cyele count; the register is incremented on every cycle
Bedl Instruction fetch that causes a Level 1 instruction cache refill 012 Predictable branch speculatively executed
Bxd2 Instruction fetch that causes a Level 1 instruction TLE refill 13 Data memory access
B3 Data Read or Write operation that causes a Level | instruction TLB refill 14 Level | instruction cache access
B Data Read or Write operation that causes a Level | data cache access x5 Level | data cache write-back
805 Data Read or Write operation that causes a Level | data TLE refill x16 Level | data cache write-back
L Memory-reading instruction executed w17 Level 2 data cache refill
Bxd7 Memory-writing instruction executed 18 Level 2 data cache write-back
Lk Exception taken [ESL] Bus access
L Exception return executed 1A Local memory error
L Instruction that writes to the Context 1D register 1B Instruction speculatively executed
[Software change of program counter w10 Instruction write to TTBR
Bx0D Immediate branch instruction executed dx 10 Bus cycle
BxdF Unaligned load or store B 1E-Bx3F Reserved
dxld Branch mispredicted or not predicted
il Cyele count; the register is incremented on every cycle
@

*From ARM Cortex-A Programmer’s Guide, Table 16-1, p222 *From ARM Cortex-A Programmer’s Guide, Table 16-1, p222

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 21/34 Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 22/34

The complete kernel module
// 1. Enable "User Enable Register"
asm volatile ("mcr _pl5,,.0,,.%0, .9, _,c14,_0\n\t" :: "r" (O
x00000001)) ;

Defining what to monitor

// 2. Reset Performance Monitor Control Register (PMCR), Count

We can define the events we want to monitor like this: umEOlE BEE RECRSEcE, and QvemElen Dlay S Segpsies
asm volatile ("mcr_pl5,,.0,.%0,,.c9, .12, _0\n\t" :: "r" (0

mov r2, #0x00 @ counter #0 x00000017)) ; h

mer pl5, 0, r2, c9, cl2, 5 @ transfer to PMSELR asm volatile ("mcr,_pl5,.0,.%0,.c9,.c12,_1\n\t" :: "r" (0
mov r2, #0x11 @ event type #11: cycle count x8000000f)) ;

mcr pl5, 0, r2, c9, cl3, 1 @ transfer to PMXEVTYPER asm volatile ("mecr,_pl5,_0,.%0,.c9,.c12,.3\n\t" :: "r" (0

The first 2 lines identify counter no. 0 (0x00) as the counter we are *80000006)) 7

configuring. // 3. Disable Interrupt Enable Clear Register
The next 2 lines specify that this counter should monitor event no. asm volatile("mer_pl5,.0,.%0,_c9,,cl4, 2\n\t" :: "r" (70));

0x11: instruction cycles.
// 4. Read how many event counters exist

asm volatile ("mrc_pl5,.0,.%0,.,c9,.,c12,_0\n\t" : "=r" (v)); //
Read PMCR

printk ("pmon_init () : _have_%d_configurable_event counters.\n", (g$
v >> 11) & 0x1f); i

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 23/34 Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 24/34

L

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DEN0013D_cortex_a_series_PG.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DEN0013D_cortex_a_series_PG.pdf

Build the module

You first need to download the kernel sources.
To build the module, get the sample sources from PMU_pmuon and do
this:

sudo make clean

sudo make

sudo insmod ./pmuon.ko
dmesg | tail

sudo rmmod pmuon

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 25/34

Measuring a simple C loop

The core of our user program is a counting loop:

armv/_reset_counters;
armv7/_read_ccr(before_ccr);
armv7/_read_cr0(before_cr0);

for (i=0; i<n; i++) /* nothing %/ ; // code to measure

armv/_read_ccr(after_ccr);
armv7/_read_cr0(after_cr0);

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 27/34

Step 4: Use the PMU in a user program

First we define macros for assembler 1-liners, which reset all counters
(by writing to PMCR) and read the counters from the PMU:

#define armv7_reset_counters \
asm volatile ("mcr_pl5, . 0,.,%0,_,c9, ,c12,_0\n\t" :: "r" (0
x00000017)) /* write to PMCR =%/

#define armv7_read_ccr(val) \

asm volatile ("mrc__ pl5,_0,.%0,_c9,_c13,_0" : "=r"(val)
)
#define armv7_read_cr0(val) \
asm volatile("mcr__, pl5,_0,.%0,_,.c9,_c12, 5" :: "r" (0x00
)); /x select counter #0 =%/ \
asm volatile("mrc_ p15,.0,.%0,_.c9,_.c13,_2" : "=r"(val)
) /* read its value */
HERIOT
GWALT
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 26/34
Example: running the measurement
> gcc -DCP15 -0 rpi2-pmull rpi2-pmull.c
> sudo ./rpi2-pmul0l 10
Raspberry Pi 2 performance monitoring, using CP15 interface
The result is: 10
ccr: 338 (before: 0 after: 338) CYCLES
cr0: 338 (before: 6 after: 344) CYCLES
crl: 12 (before: 0 after: 12) BRANCHES
cr2: 48 (before: 3 after: 51) CACHE HITS (Data read or write
operation that causes a cache access at (at least) the
lowest level of data or unified cache)
cr3: 32 (before: 0 after: 32) CACHE MISSES (Data read
architecturally executed)
PMCR=41072011
Done.
HERIOT
GWALT
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 28/34

Measuring assembler code Output
This is an assembler version of the counting loop:
armv/_reset_counters;

armv7_read_ccr(before_ccr);
armv7_read_cr0(before_cr0);

> gcc -DCP15 -o rpi2-pmuOl rpi2-pmuOl.c

> sudo ./rpi2-pmu0l 10

Raspberry Pi 2 performance monitoring, using CP15 interface
The result is: 10

ccr: 249 (before: 0 after: 249) CYCLES

cr0: 249 (before: 6 after: 255) CYCLES

asm volatile(/* inline assembler version of a counting loop =/
" measure_me_asm_%=:\n"

"\t oo MoOVS, L R3, #0x00,, ... @ initialise_counter, crl: 12 (before: 0 after: 12) BRANCHES

. register\n ., ST & mmeond. S umon cr2: 7 (before: 3 after: 10) CACHE HITS (Data read or write
"LOBEE:T””””””” . - éuioop over counter R3\ operation that causes a cache access at (at least) the

- I CANLLole) < o o lomest Level of cata or mmiflec cache)

. cr3: 1 (before: 0 after: 1) CACHE MISSES (Data read

"\t ADD W R3, UR3, L #1 .. @_increment counter B T IYmu } P ——"

o \P PMCR=41072011
"TEST%=:_CMP_R3,.%[n]Q test _end value\n"

Done.

"\ BLT L LOOPS=\n"

"Moo MOV B [res], (R3 @ done \n" NB: we get precise runtime in machine-cycles; because we execute
[res] "=r" (1) : [n] "r" (n) @ "r3%, feeh); the loop 10 times (plus entry and exit), the branch counter shows 12;
el set (| after e) o or most operations work in registers, only a few memory access are %r\%)}
armv/_read _cr0(after_cr0); needed and most of them can use the cache

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 29/34 Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 30/34

armv7_reset_counters; C)Utan

armv7_read_ccr (before_ccr);
armv7_read_cr0(before_cr0);
> gcc -DCP15 -o rpi2-pmuOl rpi2-pmull.c

asm volatile(/+ inline assembler version of a counting loop > sudo ./rpi2-pmul0l 10
with bad branch prediction =*/ Raspberry Pi 2 performance monitoring, using CP15 interface
" _measure_me_asm_%=:\n" The result is: 10
"\t oo MOVS L R3, #0x00_,.,.,....Q initialise_counter_ ccr: 116 (before: 0 after: 116) CYCLES
register\n" cr0: 116 (before: 6 after: 122) CYCLES
"TEST%=:_ ..o CMP_ R3, %[n]_Q test_end value\n" crl: 21 (before: 0 after: 21) BRANCHES
"\t eseseseuuBGE oL LEAVES= 0@ leave loop,, (BAD, cr2: 7 (before: 3 after: 10) CACHE HITS (Data read or write
BRANCH_PRED!) \n" operation that causes a cache access at (at least) the
"\t ADD W R3, UR3, L #1 @ increment counter lowest level of data or unified cache)
oo \n" cr3: 1 (before: 0 after: 1) CACHE MISSES (Data read
"\t oBe e TESTS = e n@ unconditional, Jump,,\ architecturally executed)
n" PMCR=41072011
"LEAVES=:_,MOV__ %[res], _R3.,...@ done \n" Done.
"w_.-m 1 . n " . " A\l n " .
SIS Sl ey e NB: In this case we have 21 rather than 12 branches, for the same
armv7_read_ccr(after_ccr); kind of counting loop; this is because each iteration resulted in a
armv7_read_cr0(after_cr0); - mis-predicted branch, which was partially executed by the

> .,I,
processor-pipeline, but then had to be aborted. B
Tutorial 5: Perf Counters 31/34 Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 32/34

A larger user program: sum-and-average Summary

@ The ARM Cortex-A7 has an on-chip co-processor for hardware
performance monitoring (PMU)

@ The PMU can be configured to count a range of low-level events,
e.g. cycles, branches, cache hits

@ The PMU needs to be enabled from within a kernel module, so
that user space programs can access it

@ Once configured, inline assember instructions can be used to
start/stop counting and read values

@ The relevant assembler instructions are MCR and MRC, with a
bespoke formatting of specifying registers on the CP15
co-processor (and on other on-chip co-processor)

Code example: sumav3 asm pmu.c

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 33/34 Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 5: Perf Counters 34 /34

	Tutorial 5: Performance Counters on the RPi 2

