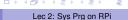

F28HS Hardware-Software Interface: Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences. Heriot-Watt University, Edinburgh

Semester 2 — 2023/24


Outline

- Lecture 1: Introduction to Systems Programming
- Lecture 2: Systems Programming with the Raspberry Pi
- Lecture 3: Memory Hierarchy
 - Memory Hierarchy
 - Principles of Caches
- 4 Lecture 4: Programming external devices
 - Basics of device-level programming
- 5 Lecture 5: Exceptional Control Flow
 - Lecture 6: Computer Architecture
 - Processor Architectures Overview
 - Pipelining
- Lecture 7: Code Security: Buffer Overflow Attacks
- Lecture 8: Interrupt Handling
- 9 Lecture 9: Miscellaneous Topics
 - 0 Lecture 10: Revision

Lecture 2. Systems Programming with the Raspberry Pi

SoC: System-on-Chip

- A System-on-Chip (SoC) integrates all components of a computer or other electronic system into a single chip.
- One of the main advantages of SoCs is their low power consumption.
- Therefore they are often used in embedded devices.
- All versions of the Raspberry Pi are examples of SoCs

Note: In this course we are using the Raspberry Pi 2 or 3 Model B. The low-level code will only work with these versions.

Note: Raspberry Pi 4 works with a different GPIO memory base address. Raspberry Pi 5 is untested.

The Raspberry Pi Foundation: https://www.raspberrypi.org/ UK registered charity 1129409

Raspberry Pi 2

The Raspberry Pi version 2 was released on 2nd February 2015. Its components are:

- the BCM2836 SoC (System-on-Chip) by Broadcom
- an ARM-Cortex-A7 CPU with 4 cores (clock frequency: 900MHz)
- 1 GB of DRAM
- a Videocore IV GPU
- 4 USB ports (sharing the one internal port together with the Ethernet connection)
- power supply through a microUSB port

NB: RPi2 is significantly more powerful than RPi1, which used an ARM1176JZ-F single-core at 700MHz clock frequency (as the BCM2835 SoC). However, its network bandwidth is unchanged.

NB: The A-series of the ARM architectures is for "application" usage and therefore more powerful than the M-series, which is mainly for small, embedded systems.

It is possible to *safely* over-clock the processor up to 950 MHz.

⁰Material from Raspberry Pi Geek 03/2015

Raspberry Pi 2

Software configuration

- RPi2 supports several major Linux distributions, including: Raspberry OS (former Raspbian; Debian-based), Ubuntu, Arch Linux, etc
- The main system image provided for RPi2 can boot into several of these systems and provides kernels for both ARMv6 (RPi1), ARMv7 (RPi2), and probably more recent versions
- The basic software configuration is almost the same as on a standard Linux desktop
- To tune the software/hardware configuration call

```
> sudo raspi-config
```


Updating your software under Raspbian

We are using the latest version of Raspbian (now called Raspberry OS), which is a fork from the Debian distribution of a Linux OS.

To update the software under Raspbian, do the following:

```
> sudo apt-get update
> sudo apt-get upgrade
> sudo rpi-update
```

To find the package foo in the on-line repository, do the following:

```
> sudo apt-cache search foo
```

To install the package foo in the on-line repository, do the following:

```
> sudo apt-get install foo
```


Virtualisation

- In this powerful, multi-core configuration, an RPi2 can be used as a server, running several VMs.
- To this end RPi2 under Raspbian runs a hypervisor process, mediating hardware access between the VMs.
- Virtualisation is hardware-supported for the ARMv6 and ARMv7 instruction set
- The ARMv7 instruction set includes a richer set of SIMD (single-instruction, multiple-data) instructions (the NEON extensions), to use parallelism and speed-up e.g. multi-media applications
- The NEON instruction allow to perform operations on up to 16
 8-bit values at the same time, through the processor's support for
 64-bit and 128-bit registers
- Performance improvements in the range of $8 16 \times$ have been reported for multi-media applications
- The usual power consumption of the Ri2 is between 3.5 4 Watton (compared to ca 3 Watt for the RPi1)

Raspberry Pi 4

Specification:

- ARMv8, BCM2837B0, ARM Cortex-A72 CPU 64-bit quad-core
 1.5GHz
- Up to 1GB, 2GB or 4GB RAM (LPDDR4)
- On board dual-band 802.11.b/g/n/ac wireless LAN
- On board Bluetooth 5.0, low-energy (BLE)
- Gigabit Ethernet
- 2 × USB 3.0 ports, 2 × USB 2.0 ports
- Extended 40-pin GPIO header
- 2 × micro-HDMI ports (supporting up to 4Kp60)

Raspberry Pi 5

Chipset:

- ARM Cortex-A76 (quad-core) 2.4 GHz
- Broadcom BCM2712 chipset
- Broadcom Video Core VII
- 4GB or 8GB DDR4 RAM
- 2 MIPI interfaces (Camera / Display Serial Interface)

Interfaces:

- 40 GPIO pins, PCIe 2.0 MicroSD slot
- 2 USB 2.0 ports, 2 USB 3.0 ports
- 10/100/1000 MBit/s Ethernet
- WLAN IEEE 802.11b/g/n/ac, Bluetooth
- 2 HDMI ports
- USB-C power

11/35

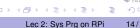
Raspberry Pi 5 as Desktop

README Der im Oktober erschienene Raspberry Pi 5 wartet mit derart guten Leistungsdaten auf, dass wir die Überlegung anstellten, ihn als Desktop-PC-Ersatz zu verwenden. Softwareseitig gab es dabei erfreulich wenig Probleme. Als limitierendes Element erwies sich jedoch der knapp bemessene Hauptspeicher.

- RPi5 is suitable as a desktop alternative
- Main limitation is main memory: use the 8GB option
- Graphics apps, streaming (YouTube) work fine
- Standalone and browser-based CAD apps work fine
- Avoid running web-browsers all the time, though
- PCle interface for NVMe-SSD memory!
- PCle data transfer rate: ca 500 MB/s
- New RP1 controller for interfaces to e.g. GPIO memory

F28HS Hardware-Software Interface

probably not compatible with code in our course


CPU Performance Comparison: Hardware

Plattform	RAM	Chip	Technologie	Architektur
Raspberry Pi				
Raspberry Pi 1	512 MByte	Broadcom BCM2835	65 nm	ARM1176JZ-F
Raspberry Pi 2	1 GByte LPDDR2	Broadcom BCM2836	28 nm	Cortex A7
Banana Pi				
Banana Pi	1 GByte	AllWinner A20	40 nm	Cortex A7
Banana Pro	1 GByte	AllWinner A20	40 nm	Cortex A7
Banana Pi M2	1 GByte	AllWinner A31S	40 nm	Cortex A7
Andere Single Board Computer (SI	BC)			
Beaglebone Black	512 MByte	TI Sitara AM3358/9	45 nm	Cortex A8
Hummingboard-i2	1 GByte	Freescale i.MX6 DualLite	40 nm	Cortex A9
Cubox-i4Pro	2 GByte	Freescale i.MX6 Quad	40 nm	Cortex A9
Odroid C1	1 GByte DDR3	Amlogic S805	28 nm	Cortex A5
Smartphones				
Galaxy S3 Mini (GT-I8190)	1 GByte	ST-Ericsson NovaThor U8500	45 nm	Cortex A9
iPhone 5	1 GByte	Apple A6	32 nm high-k	ARMv7s Swift [Apple]
Spielekonsolen			metal gate	
Playstation 2	36 MByte	EmotionEngine	250 nm	RISC, basiert auf MIPS R590
Apple-Computer	50 1115/10			
Apple I[e	64 KByte	MOS Technology 6502	8000 nm	MOS Technology
Apple Macintosh 128 K	128 KByte	Motorola 68000	3500 nm	CISC
iMac G3	32 MByte	PowerPC 750 G3	260 nm	PowerPC G3
Intel- und AMD-PCs	-			
No Name PC 1	64 MByte	Pentium II, 300 MHz	350 nm	x86 Intel
No Name PC 2	384 MByte	AMD Duron, 800 MHz	180 nm	AMD Spitfire
Dell Inspiron 7520	8 GByte	Intel Core i7-3632QM	22 nm	Intel Core i7
Hetzner EO-4 Server	32 GByte	Intel Core i7-3770	22 nm	Intel Core i7

CPU Performance Comparison: Measurements

DMIPS/MHz	Kerne	MHz	DMIPS	Vgl. RPi 1	Vgl. RPi 2
1,25	1	700	875	100%	13%
1,90	4	900	6840	782%	100%
1,90	2	1000	3800	434%	56%
1,90	2	1000	3800	434%	56%
1,90	4	1000	7600	869%	111%
2,00	1	1000	2000	229%	29%
2,50	2	1000	5000	571%	73%
2,50	4	1000	10000	1143%	146%
1,57	4	1500	9420	1077%	138%
2,50	2	1000	5000	571%	73%
3,50	2	1300	9100	1040%	133%
20,34	1	295	6000	686%	88%
0,43	1	1	0,43	0,05%	0,01%
0,23	1	6	1,4	0,16%	0,02%
2,25	1	233	525	60%	8%
0,91	1	300	273,6	31%	4%
2,81	1	800	2250	257%	33%
14,19	4	2200	99750	11400%	1458%
14,19	4	3400	106530	12175%	1557%

CPU Performance Comparison: Measurements

DMIPS/MHz	Kerne	MHz	DMIPS	Vgl. RPi 1	Vgl. RPi 2	
1,25	1	700	875	100%	13%	Note
1,90	4	900	6840	782%	100%	
1,50		300	00-10	702-10	10040	RPi2 ca. 7.82× faster than RPi1
1,90	2	1000	3800	434%	56%	
1,90	2	1000	3800	434%	56%	
1,90	4	1000	7600	869%	111%	
						Banana Pi M2 is 1.11 × faster than
2,00	1	1000	2000	229%	29%	RPi2
2,50	2	1000	5000	571%	73%	11112
2,50	4	1000	10000	1143%	146%	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1,57	4	1500	9420	1077%	138%	Cubox i4Pro is 1.46× faster
						ODroid C1 is 1.38× faster
2,50	2	1000	5000	571%	73%	
3,50	2	1300	9100	1040%	133%	
20,34	1	295	6000	686%	88%	
0,43	1	1	0,43	0,05%	0,01%	
0,23	1	6	1,4	0,16%	0,02%	
2,25	1	233	525	60%	8%	
0,91	1	300	273,6	31%	4%	
2,81	1	800	2250	257%	33%	Intel i7 PC is 15.5× faster than RPi2
14,19	4	2200	99750	11400%	1458%	智WAI I
14.19	4	3400	106530	12175%	1557%	

Network performance comparison: RPi 1 vs RPi 2

- To compare network performance, encrypted data-transfer through scp is used.
- This profits from the quad-core architecture, because one core can be dedicated to encryption, another core to the actual data transfer.
- An increase in network performance by a factor of 2.5x is reported.
- The highest observed bandwidth on the RPi 2 (with overclocking to 1.05 GHz) is 70 Mbit/s.
- The theoretcial peak performance of the LAN-port is ca 90 MBit/s.
- The SunSpider benchmark for rendering web pages, reports up to 5× performance improvement.

Network performance Measurements

ARM Freq	SDRAM Freq	GPU Core Freq	Temp	SCP-Schreiben(*)	96	SCP-Lesen(1)	%
Raspberry Pi 2, Raspbian							
900 MHz	450 MHz	250 MHz	53,5° C	52,6 Mbit/s	100,0	54,8 Mbit/s	100
1000 MHz	500 MHz	500 MHz	58,4° C	56,3 Mbit/s	107,0	69,0 Mbit/s	126
1050 MHz	500 MHz	500 MHz	58,4° C	65,6 Mbit/s	124,6	69,0 Mbit/s	126
1100 MHz ⁽²⁾	500 MHz	500 MHz					
Raspberry Pi 1, Raspbian							
700 MHz	400 MHz	250 MHz	43,3° C	21,1 Mbit/s	40,0	21,1 Mbit/s	38
1000 MHz	600 MHz	250 MHz	51,4° C	36,4 Mbit/s	69,1	33,3 Mbit/s	61
Raspberry Pi 2, Debian Jessie ^{0]}							
900 MHz	450 MHz	250 MHz		47,6 Mbit/s	90,5	52,6 Mbit/s	96
1050 MHz	500 MHz	500 MHz		58,0 Mbit/s	110,1	71,4 Mbit/s	130

High-performance Alternatives

- There are several single-board computers that provide a high-performance alternative to the RPi.
- These are of interest if you have applications with high computational demands and you want to run it on a low-cost and low-power device.
- It's possible to build for example a cluster of such devices as a parallel programming platform: see The Glasgow University Raspberry Pi Cloud
- Here we give an overview of the main performance characteristics of three RPi2 alternatives:
 - ▶ the Rock 5 by OKdo
 - the CuBox i4Pro by SolidRun
 - the Banana Pi M3 by Sinovoip
 - the Lemaker HiKey by Lemaker

Core Specs of the OKdo Rock

- Rockchip RK3588
- Quad-core ARM Cortex-A76 MPCore processor and quad-core ARM Cortex-A55 MPCore processor (big.LITTLE)
- Embedded ARM Mali-G610 MP4 3D GPU
- 4GB / 8GB / 16GB RAM; 4224Mhz memory bus frequency
- WLAN (802.11b/g/n), Bluetooth 4.1
- several USB ports
- 40 GPIO pins (not compatible with RPi2)
- HDMI connectors
- Price: 135£

A good high performance alternative to but more expensice than the Raspberry Pi 4.

See: https://wiki.radxa.com/Rock5/hardware/5b

Core Specs of the CuBox i4-Pro (older)

- Freescale i.MX6 (SoC) quad-core, containing an ARM Cortex A9 (ARMv7 instruction set) with 4 cores
- GC2000 GPU (supports OpenGL etc)
- 4 GB RAM and a micro-SD card slot
- 10/100/1000 Mb/s Ethernet (max 470Mb/s)
- WLAN (802.11b/g/n)
- Bluetooth 4.0
- 1 USB port and eSATA (3Gb/s) interface
- Price: 124£

Software

Debian Linux, Kodi Linux, XBMC Linux

Core Specs of the CuBox i4-Pro (older)

- Freescale i.MX6 (SoC) quad-core, containing an ARM Cortex A9 (ARMv7 instruction set) with 4 cores
- GC2000 GPU (supports OpenGL etc)
- 4 GB RAM and a micro-SD card slot
- 10/100/1000 Mb/s Ethernet (max 470Mb/s)
- WLAN (802.11b/g/n)
- Bluetooth 4.0
- 1 USB port and eSATA (3Gb/s) interface
- Price: 124£

Software

Debian Linux, Kodi Linux, XBMC Linux

Core Specs of the Banana Pi M3 (older)

- Allwinner A83T (SoC) chip, containing an ARM Cortex-A7 (ARMv7 instruction set) with 8 cores
- PowerVR SGX544MP1 GPU (supports OpenGL etc)
- 2 GB LPDDR3 RAM plus 8 GB eMMC memory and a micro-SD card slot
- Gigabit Ethernet
- WLAN (802.11b/g/n)
- Bluetooth 4.0
- 2 USB ports and SATA interface
- 40 GPIO pins (not compatible with RPi2)
- Price: 90€

Software

- BPI-Berryboot (allegedly with GPU support), or Ubuntu Mate Experiences
 - SATA shares the the USB bus connection and is therefore slow
 - Problems accessing the on-board micro-phone

Core Specs of the Banana Pi M3 (older)

- Allwinner A83T (SoC) chip, containing an ARM Cortex-A7 (ARMv7 instruction set) with 8 cores
- PowerVR SGX544MP1 GPU (supports OpenGL etc)
- 2 GB LPDDR3 RAM plus 8 GB eMMC memory and a micro-SD card slot
- Gigabit Ethernet
- WLAN (802.11b/g/n)
- Bluetooth 4.0
- 2 USB ports and SATA interface
- 40 GPIO pins (not compatible with RPi2)
- Price: 90€

Software

BPI-Berryboot (allegedly with GPU support), or Ubuntu Mate

Experiences

- SATA shares the the USB bus connection and is therefore slow
- Problems accessing the on-board micro-phone

Core Specs of the Banana Pi M3 (older)

- Allwinner A83T (SoC) chip, containing an ARM Cortex-A7 (ARMv7 instruction set) with 8 cores
- PowerVR SGX544MP1 GPU (supports OpenGL etc)
- 2 GB LPDDR3 RAM plus 8 GB eMMC memory and a micro-SD card slot
- Gigabit Ethernet
- WLAN (802.11b/g/n)
- Bluetooth 4.0
- 2 USB ports and SATA interface
- 40 GPIO pins (not compatible with RPi2)
- Price: 90€

Software

BPI-Berryboot (allegedly with GPU support), or Ubuntu Mate

Experiences

- SATA shares the the USB bus connection and is therefore slow
- Problems accessing the on-board micro-phone

Core Specs of the Lemaker Hikey (older)

- Kirin 620 (SoC) chip with ARM Cortex A53 and 8 cores
- ARM Mali450-MP4 (supports OpenGL etc) GPU
- 1 or 2 GB LPDDR3 RAM plus 8 GB eMMC memory and a micro-SD card slot
- WLAN (802.11b/g/n)
- Bluetooth 4.1
- 2 USB ports
- 40 GPIO pins (not compatible with RPi2)
- Audio and Video via HDMI connectors
- Board-layout matches the 96-board industrial standard for embedded devices
- Price: 120€

Software

- Android variant (part of 96-board initiative)
- Linaro (specialised Linux version for embedded devices)

Latest version: HiKey 960, with Kirin 960 chipset and a BIGlittle CPUATT (Cortex A74 quad-core + Cortex A53 quad-coré)

Banana Pi M3 and Lemaker Hikey: Specs

	Banana Pi M3	Lemaker Hikey
CPU	A83T ARM Cortex-A7, ARMv7, 8 Kerne, max. 2 GHz	ARM Cortex-A53, ARMv8, 8 Kerne
GPU	PowerVR SGX544MP1 (OpenGL ES 2.0, OpenCL 1.x, DX 9_3)	ARM Mali450-MP4 (OpenGL ES 1.1/2.0, OpenVG 1.1)
RAM	2 GByte LPDDR3	1 oder 2 GByte LPDDR3
Speicher	8 GByte eMMC	8 GByte eMMC
Schnittstellen		
Massenspeicher	Micro-SD-Card, SATA (USB-to-SATA; GL830)	Micro-SD-Card
USB Ports	2 USB 2.0, USB OTG	2 USB 2.0, USB OTG
GPIQ	40 Pins (GPIO, UART, I2C, I2S, SPI, PWM, +3.3V, +5V, GND)	40 Pins (GPIO, UART, I2C, SPI, PWM, PCM, SYS_DCIN,
		+1.8V, +5V, GND); 60 Pins (SDIO, MIPI_DSI, MIPI_CSI)
Netzwark		
Ethernet	10/100/1000 Mbit/s (Realtek RTL8211E/D)	optional (via USB-Adapter)
WLAN	802.11b/g/n	802.11b/g/n
Bluetooth	Bluetooth 4.0	Bluetooth 4.1 LE
Audio, Video		
Audio Out	3,5mm Klinke, HDMI	HDMI
Audio In	Onboard-Mikrofon	HDMI
Video Out	HDMI 1.4 (HDCP 1.2, max. 1920x1080), MIPI DSI	HDMI 1.4 (max. FHD 1080p), 2 MIPI DSI
Videa In	Parallele 8-Bit-Kameraschnittstelle, MIPI CSI	2 MIPL CSI
Sonstiges		
Schalter	Power, Reset, U-Boot	Power/Reset
LEDs	Power, RJ45, benutzerdefiniert	WLAN, Bluetooth, 4 benutzerdefiniert
Strom	Micro-USB, optional 5V-Klinke	8V~18V/3A Klinke
OS	Android, Linux	Android, Linux
Abmessung	92mm x 60mm	85mm x 55mm
Straßenpreis	90 Euro	120 Euro

Raspberry Pi 3 and Lemaker Hikey: Performance

Performance as runtime (of sysbench benchmark) and network bandwidth (using lperf benchmark):

		. (runti er of th	me) reads	Max power	Network Ethernet	bandwidth WLAN
	1	4	8	•		
Raspberry Pi 2	297s	75s	_			
Raspberry Pi 3	182s	45s	_			45 Mb/s
Cubox i4Pro	296s	75s	_			
Banana Pi M3	159s	40s	21s	1.1A	633 Mb/s	2.4 Mb/s
Lemaker Hikey	12s	3s	2s	1.7A	_	37.3 Mb/s

Summary: In terms of performance, the Lemaker Hikey is the best choice (of these devices).

⁰Material from Raspberry Pi Geek 04/2016

Raspberry Pi 3 and Lemaker Hikey: Performance comparison

Benchmark-Erge	ebnisse				
	1 Thread	4 Threads	8 Threads		
Raspberry Pi 3	182 Sekunden	45 Sekunden	-		
Banana Pi M3	159 Sekunden	40 Sekunden	21 Sekunden		
Lemaker Hikey	12 Sekunden	3 Sekunden	2 Sekunden		

To run the (CPU) performance benchmark on the RPi2 do:

- > sudo apt-get update
- > sudo apt-get install sysbench
- > sysbench --num-threads=1 --cpu-max-prime=10000 --test=cpu
 run

Core Specs of Odroid-XU4

- Exynos 5422 (SoC) Octa big.LITTLE ARM with an ARM Cortex-A15 quad-core and an ARM Cortex-A7 quad-core
- Mali-T628 MP6 GPU
- 2 GB LPDDR3 RAM plus eMMC memory and a micro-SD card slot
- Gigabit Ethernet
- 1 USB 2.0A and 1 USB 3.0 port
- Video via HDMI connectors
- 40 GPIO pins (not compatible with RPi2)
- Price: 95€

The CPU is the same as in high-end smartphones such as the Samsug Galaxy S5.

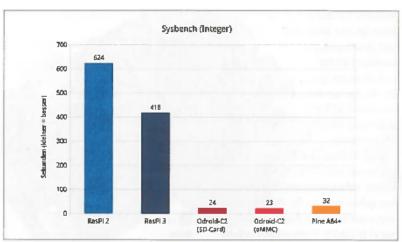
The big.LITTLE architecture dynamically switches from (faster) Cortex-A15 to (slower) Cortex-A7 to save power.

Software: Ubuntu 14.04 or Ubuntu 16.04; Android 4.4.4; OpenMediaVault 2.2.13, Kali Linux, Debian.

RPi3 vs Odroid-XU4: Specs

Odroid-XU4 vs.	Raspberry Pi 3	
	Odroid-XU4	RasPi 3
SoC	Exyrios 5422 Octa big.LITTLE ARM	Broadcom BCM2837
CPU	Cortex-A15 (2.0 GHz) Quad-Core und Cortex-A7 Quad-Core	ARM Cortex-A53 Quad-Core (1,2 GHz)
GPU	Mali-T628 MP6	Broadcom Dual Core VideoCore IV
RAM	2 GByte LPDDR3 (933 MHz)	1 GByte LPDDR2 (900 MHz)
Speicher	Micro-SD, eMMC 5.0	Micro-SD
Netzwerk	TO/100/1000-Mbit/s-Ethernet	10/100-Mbit/s-Ethernet, WLAN 802.11b/g/r
USB	USB 2.0 A, 2 USB 3.0	4 USB 2.0 (über Hub)
Videoausgang	HDMI	HDMI
Schnittstellen	12S, I ² C, GPIO	SPI, I ² C, UART
Größe	83 x 59 x 18 mm	85,6 x 56 x 21 mm
Preis (ca.)	95 Euro	35 Euro

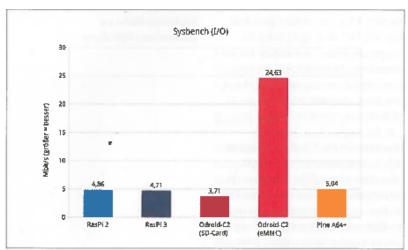
Odroid-XU4

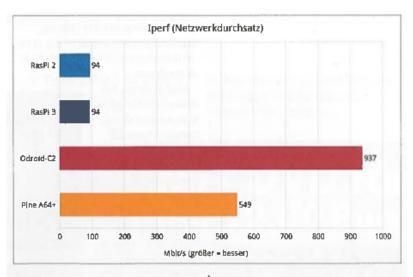

HERIOT WATT

Network performance: RPi3 vs Odroid-XU4

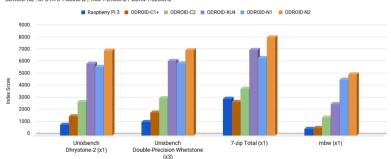
	Raspherry Pi 3	Odroid-XU4
Samba		
Datenrate (Upload)	87,80 Mbit/s	418,88 Mbit/s
Datenrate (Download)	89,63 Mbit/s	469,45 Mbit/s
FTP		
Datenrate (Upload)	84,14 Mbit/s	404,15 Mbit/s
Datenrate (Download)	86,18 Mbit/s	439,46 Mbit/s
SSH		
Datenrate (Upload)	86,90 Mbit/s	305,34 Mbit/s
Datenrate (Download)	88,91 Mbit/s	299,59 Mbit/s
Iperf		
Datenrate	94,73 Mbit/s	511,33 Mbit/s

Note: Raw network performance is ca. 5× faster on the ODroid-XU4!


Raspberry Pi 3 and ODroid C2: CPU Performance Comparison


Raspberry Pi 3 and ODroid C2: I/O Performance Comparison

Raspberry Pi 3 and ODroid C2: **Network Performance Comparison**


RPi3 vs Odroid-XU4: Experience

- In terms of network-performance, the ODroid-XU4 is much faster.
- It is a good basis for a NAS (Network attached Storage).
- In terms of CPU-performance, the Odroid is slightly faster: Cortex-A15 (2.0 GHz) vs Cortex-A53 (1.2 GHz).
- However, in practice, the GUI is much slower.
- Based on the gtkperf GUI benchmark, the ODroid is ca. 3× slower.
- The reason for this difference is more optimisation in the device drivers for RPi's VideoCore IV GPU (compared to ODroid's Mali GPU).
- Note: To assess performance and usability, one has to consider the entire software stack, not just the raw performance of the hardware!

Performance comparison: Odroid vs RPi4

Benchmarks

ODROID-N2 : CPU A73 1.800GHz / A53 1.896GHz / DDR4 1.320GHz

Orange Pi

- Allwinner H3 Soc: Quad-core Cortex-A7 H.265/HEVC 4K
- Mali 400MP2 GPU @ 600MHz
- 1GB DDR3 memory (shared with GPU)
- 8GB EMMC Flash
- 10/100 Ethernet RJ45
- 40 Pins Header, compatible with Raspberry Pi B+
- Runs: Android, Lubuntu, Debian, Raspbian

Beware of stability and performance of the software!

Lec 2: Svs Pra on RPi

Summary

- The Raspberry Pi is one of the most widely-used single-board computers.
- The RPi comes in several version (1,2,3,4,5); we are using the Raspberry Pi 2 or 3 model B.
- There is a rich software eco-system for the RPis and excellent, detailed documentation.
- A good high-CPU-performance alternatives is: Okdo Rock 5 (new) or Lemaker HiKey (older)
- A good high-network-performance alternative is: Odroid-XU4 (old)
- Check out the Raspberry Pi projects available online.

