F28HS Hardware-Software Interface:
Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

HERIOT
WAI I

UNIVERSITY

Semester 2 — 2024/25

°No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) 2024/25

Outline

Lecture 1: Introduction to Systems Programming
Lecture 2: Systems Programming with the Raspberry Pi

Lecture 3: Memory Hierarchy
@ Memory Hierarchy
@ Principles of Caches

Lecture 4: Programming external devices
Lecture 5: Exceptional Control Flow

Lecture 6: Computer Architecture
@ Processor Architectures Overview
@ Pipelining

Lecture 7: Code Security: Buffer Overflow Attacks
Lecture 8: Interrupt Handling
Lecture 9: Miscellaneous Topics

Lecture 10: Revision

Hans-Wolfgang Loidl (Heriot-Watt Univ) 2024/25

Lecture 4.
Programming external devices

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 3/18

Basics of the I2C interface

@ So far we always used the GPIO interface to directly connect
external devices.

@ This is the easiest interface to use.

@ Itis however limited in the number of connections and devices you
can connect with.

@ A more general interface is the 1°C interface or the I°C bus.

%Based on the article The I°C-bus of the Raspberry Pi (Der I°C-Bus des Raspbelfi /'t
Pi) (in German), Raspberry Pi Geek 01/15

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 4/18

http://www.raspberry-pi-geek.de/Magazin/2015/01/Der-I2C-Bus-des-Raspberry-Pi-Teil-1
http://www.raspberry-pi-geek.de/Magazin/2015/01/Der-I2C-Bus-des-Raspberry-Pi-Teil-1

Basics of the I2C interface

I°C is a serial master-slave bus.

It is serial, i. e.communication is one bit at a time.

It allows to connect several masters (data-providers) with several
slaves (data-consumers)

It is designed for short-distance communication,

i. e.communication on a board

Therefore it is also used in the standard Linux kernel to monitor,
e. g.temperature and other system health information

I°C was originally developed by Philips in the 1980s, and has
become an industry standard.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 5/18

Technical detail on I2C

@ Communication uses 2 connections:
» a serial data line (SDA)
» a serial clock line (SCL) for synchronising the communication
@ Both connections use pull-up resistors to encode one bit (high
potential = 1)
@ The two sides of the communication are

» a master that sends the clock information and initiates
communication
» a slave that receives the data

@ Typical communication rates are between 100 kb/s (standard
mode) and 5 Mb/s (ultra fast mode)

@ NB: I°C was not designed for communicating large volumes of
data

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 6/18

Technical detail on I2C

@ I°C uses a 7-bit address space, i. e.128 possible addresses of
which 16 are reserved.

@ The 8-th bit indicates the direction of the data transfer between
master and slave.

@ The usable address-space is defined in the technical
documentation of the device. E.g.
PCF8574 Port-Expander 0x20 — 0x27
PCF8583 Clock/Calendar O0xAO — OxA2

@ The device PCF8583 is a chip that provides an external clock,
with three registers starting at 0x20

@ As an example we will now use the PCF8574 port-expander,
which is accessed through address 0x20.

@ This can be used to e. g. control an LCD display over just one data
HERIOT

channel. EWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 7/18

https://www.ti.com/lit/ds/symlink/pcf8574.pdf?ts=1740125740402&ref_url=https%253A%252F%252Fwww.mouser.de%252F

Block Diagram of the PCF8574 Port Expander

— 13
INT + ”“TL'g"“EF}EF'T LP FILTER
1 PCF8574
AO 2
Al 4
3 T PO
Az 1 + »Fi
soL—2 — o B
15 INPUT FC-BUS P
— r *
SDA ' | FILTER CONTROL |, | SHIFT BT [
REGISTER PORT .-
01 hps
1
+]
12
> P7
WRITE pulse T
v 18 READ pulse
oo & POWER-ON
Vgs ——1] RESET

MBCssr

NB: 1 input data channel (SDA), 8 output data channels (PO ... P7)

%From PCF8574 Data Sheet

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 8/18

https://www.nxp.com/docs/en/data-sheet/PCF8574_PCF8574A.pdf

What's happening on the wires?

===

i N /S pa

sCL | N\ / Y / | sCL
N P

[—— [——

START condifion STOP condifion PP

Fig.6 Definition of start and stop conditions.

@ signals start with HT1GH
@ a change in the SDA signal, with SCL H1GH, indicates start/stop

°From PCF8574 Data Sheet
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 9/18

https://www.nxp.com/docs/en/data-sheet/PCF8574_PCF8574A.pdf

How are the bits transferred?

SDA /

|

| data lina changa
| siabla of data
| data valid allowed

MECEST

Fig.5 Bittransfer.

@ one bit is transferred during each clock pulse
@ data is sampled while the SCL line is HIGH
@ the SDA line needs to be stable during this H1GH period

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 10/18

A typical system configuration using 12C

EDA

SCL

MASTER
) SLAVE , MASTER)
TRANSMITTER / TRANSMITTER / TRANSMITTER /
RECEIVER RECENER REGEIVER TRANSMITTER RECEIVER
MBAsDS

Fig.7 System configuration.

@ lines are (quasi-)bidirectional
@ a device generating a message is a “transmitter”
@ a device receiving is the “receiver”
@ the controller of the message is the “master”
@ the receivers of the message are the “slaves”

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Lec 4: Prging ext devices

I2C on the Raspberry Pi 2

@ On the RPi2 the following pins provide an I°C interface: physical
Pin 03 (SDA) and Pin 05 (SCL) (these are pins 2 and 4 in the
BCM numbering)

@ In the following example we will use these pins to connect a
PCF8574 device.

@ In our configuration we connect the device with four buttons and
LEDs as shown in the picture below.

HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 12/18

Test configuration

°From The 12C-bus of the Raspberry Pi (Der I°C-Bus des Raspberry Pi) (in
German), Raspberry Pi Geek 01/15 o S =) <=

Hans-Wolfgang Loidl (Heriot-Watt Univ)

http://www.raspberry-pi-geek.de/Magazin/2015/01/Der-I2C-Bus-des-Raspberry-Pi-Teil-1
http://www.raspberry-pi-geek.de/Magazin/2015/01/Der-I2C-Bus-des-Raspberry-Pi-Teil-1

Software configuration

@ We use the wiringPi library that we have installed and
discussed before.

@ We also need the i2c-tools package for the drivers
communicating over the 1°C bus

@ Toinstall i2c-tools do the following:
> sudo apt—-get install i2c-tools
> sudo adduser pi i2c
> gpio load iZ2c

@ We can now use i2cdetect to check the connection between
our RPi2 and the external device:

> i2cdetect -y 1

@ This shows that we can reach the device through address 0x20
@ The 4 high-bits in that address refer to the LEDs, the 4 low-bits Eor

EBWATT
refer to the buttons
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 14/18

Software configuration

@ Initially all lines are at high, so all LEDs should light up
@ To turn LEDs off, one-by-one we execute:

0x20 0x00
0x20 0x10
0x20 0x20
0x20 0x40
0x20 0x80

i2cset -y
i2cset -y
i2cset -y
i2cset -y
i2cset -y

vV V. V V V
e

@ Now we want to configure the button as an input device:
> i2cset -y 1 0x20 0xO0f
> watch ’"i2cget -y, 1,_0x20"

@ Using watch we continously get output about the current value
issued by the button

@ Pressing the button will change the observed value ey

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 15/18

A C API for I12C

@ Now we want to use the 1°C-bus to programmatically control
external devices
@ We use the following API provided by Gordon Henderson’s
wiringPi library:
int wiringPiI2CSetup (const int devId)
Open the 12C device, and register the target device
int wiringPiI2CRead (int £fd)
Simple device read
int wiringPiI2CWrite (int fd, int data)
Simple device write
int wiringPiI2CReadReg8 (int £fd, int req)
Read an 8-bit value from a regsiter on the device
int wiringPiI2CWriteReg8 (int fd, int reg, int wval
Write a 8-bit value to the given register B
and similar read/write interface for 16-bit values. AT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 16/18

Sample Source for 12C

Using this interface we can make the LEDs blink one-by-one:

#include <wiringPiI2C.h>

int main (void) {
int handle = wiringPiI2CSetup (0x20) ;
wiringPiI2CWrite (handle, 0x10);
delay (5000) ;
wiringPiI2CWrite (handle, 0x20);
delay (5000) ;
wiringPiI2CWrite (handle, 0x40);
delay (5000) ;
wiringPiI2CWrite (handle, 0x80);
delay (5000) ;
wiringPiI2CWrite (handle, 0x00);
return 0;

}

NB: We access the LEDs as a bitmask on the high 4-bits, setting the
low 4-bits to zero in each case. Lor

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 17/18

Further Reading & Hacking

@ The I°C-bus of the Raspberry Pi (Der I°C-Bus des Raspberry Pi)
(in German), Raspberry Pi Geek 01/15

@ Data sheet of the PCF8574 port-expander

@ |>CTutorial

@ Configuring 1°C, SMBus on Raspbian Linux

@ Using wiringPi on the PCF8574

@ Using an PCF8574 to control an LCD display

@ Another guide how to use an PCF8574 to control an LCD display

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 4: Prging ext devices 18/18

http://www.raspberry-pi-geek.de/Magazin/2015/01/Der-I2C-Bus-des-Raspberry-Pi-Teil-1
http://www.raspberry-pi-geek.de/Magazin/2015/01/Der-I2C-Bus-des-Raspberry-Pi-Teil-1
https://www.nxp.com/docs/en/data-sheet/PCF8574_PCF8574A.pdf
http://www.robot-electronics.co.uk/i2c-tutorial
https://www.abelectronics.co.uk/kb/article/1/i2c--smbus-and-raspbian-linux
http://wiringpi.com/extensions/i2c-pcf8574/
https://arthurguy.co.uk/blog/2014/6/mini-lcd-adapter-backpack
http://www.circuitbasics.com/raspberry-pi-i2c-lcd-set-up-and-programming/

	Lecture 4: Programming external devices
	Basics of device-level programming

