F28HS Hardware-Software Interface:
Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

HERIOT
WAI |

UNIVERSITY

Semester 2 — 2025/26

°No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) 2025/26

Outline

@ Lecture 1: Introduction to Systems Programming
e Lecture 2: Systems Programming with the Raspberry Pi

e Lecture 3: Memory Hierarchy
@ Memory Hierarchy
@ Principles of Caches

e Lecture 4: Programming external devices
@ Basics of device-level programming

Lecture 5: Exceptional Control Flow and Signals

Lecture 6: Computer Architecture
@ Processor Architectures Overview
@ Pipelining

Lecture 8: Interrupt Handling

Lecture 9: Miscellaneous Topics

Lecture 10: Revision 'g%r\'&ﬁ

Hans-Wolfgang Loidl (Heriot-Watt Univ) 2025/26 2/38

Lecture 1:
Introduction to Systems
Programming

HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 3/38

Introduction to Systems Programming

@ This course focuses on how hardware and systems software
work together to perform a task.

@ We take a programmer-oriented view and focus on software and
hardware issues that are relevant for developing fast, secure,
and portable code.

@ Performance is a recurring theme in this course.
@ You need to grasp a lot of low-level technical issues in this course.
@ In doing so, you become a “power programmer”.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 4/38

Why is this important?

You need to understand issues at the hardware/software interface, in
order to

@ understand and improve performance and resource consumption
of your programs, e.g. by developing cache-friendly code;

@ avoid progamming pitfalls, e.g. numerical overflows;
@ avoid security holes, e.g. buffer overflows;
@ understand details of the compilation and linking process.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 5/38

Questions to be addressed

For each of these issues we will address several common questions
on the hardware/software interface:

@ Optimizing program performance:

» Is a switch statement always more efficient than a sequence of

if-else statements?
How much overhead is incurred by a function call?
Is a while loop more efficient than a for loop?
Are pointer references more efficient than array indexes?
Why does our loop run so much faster if we sum into a local
variable instead of an argument that is passed by reference?
» How can a function run faster when we simply rearrange the

parentheses in an arithmetic expression?

vV vy VvYy

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 6/38

Questions to be addressed

@ Understanding link-time errors:

>

>

What does it mean when the linker reports that it cannot resolve a
reference?

What is the difference between a static variable and a global
variable?

What happens if you define two global variables in different C files
with the same name?

What is the difference between a static library and a dynamic
library?

Why does it matter what order we list libraries on the command
line?

Why do some linker-related errors not appear until run time?

@ Avoiding security holes:

>

How can an attacker exploit a buffer overflow vulnerability?

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 7/38

Compilation of hello world

printf.o

Pre-

hello.c processor nello.i | Compiler | nello.s |Assembler

hello.o Linker hello
(cpp) (ccl) (as) (1d)
Source Modi ed Assembly
program source program object object
(text) program (text) programs program
(text)

(binary) (binary)

@ We have seen individual phases in the compilation chain so far
(e.g. assembly)

@ Using gcc on top level picks the starting point, depending on the
file extension, and generates binary code

@ You can view the intermediate files of the compilation using the
gcc flag —save—-temps

@ This is useful in checking, e.g. which assembler code is generated
by the compiler

@ We will be using -D flags to control the behaviour of the HERIOT
pre-processor on the front end ATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 8/38

The Shell

Your window to the system is the shell, which is an interpreter for
commands issued to the system:

host> echo "Hello_world"
Hello world
host> 1s

The Linux Introduction in F27PX-Praxis gave you an overview of what
you can do in a shell. In this course, we make heavy usage of the
shell. Check the later sections in the on-line Linux Introduction, which
explain some of the more advanced concepts.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 9/38

http://www.macs.hw.ac.uk/~hwloidl/Courses/LinuxIntro/t1.html
http://www.macs.hw.ac.uk/~hwloidl/Courses/LinuxIntro/t1.html

Hardware organisation of a typical system

CPU

Register le

aw

System bus MemtIer bus

ir
. o LT Man
e
< [HH=>
/O bus Expansion slots for
other devices such

usB Graphics Disk as network adapters
controller adapter controller

Pa—

Mouse Keyboard Display <
Disk hello executable
s stored on disk

HERIOT
Swalt

°From Bryant and O’Hallaron, Ch 1
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 10/38

Components

The picture on the previous slide, mentions several important
concepts:

@ Processor: the Central Processing Unit (CPU) is the engine that
executes instructions; modern CPUs are complicated in order to
provide additional performance (multi-core, pipelining, caches
etc);

@ Main Memory: temporary storage for both program and data;
arranged as a sequence of dynamic random access memory
(DRAM) chips;

@ Buses transmit information, as byte streams, between
components of the hardware; the Universal Serial Bus (USB) is
the most common connection for external devices;

@ 1/O devices are in charge of input/output and represent the
interface of the hardware to the external world SEWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 11/38

The Hello World Program

#include <stdio.h>

int main ()

{
printf ("hello, world\n");

}

What happens when we compile and execute this hello world
program?

HERIOT
Swalt

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 12/38

Compiling Hello World

When we compile the program by calling
gcc —-o hello hello.c

the compilation chain is executed. Note:

@ The source code of Hello World is represented in ASCII
characters and stored in a file.

@ The contents of the file is just a sequence of bytes

@ The context determines whether these bytes are interpreted as
text or as graphics etc.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg

13/38

Compiling Hello World

When we compile the program by calling
gcc —-o hello hello.c

the compilation chain is executed. Note:

@ The source code of Hello World is represented in ASCII
characters and stored in a file.

@ The contents of the file is just a sequence of bytes

@ The context determines whether these bytes are interpreted as
text or as graphics etc.

When we execute the resulting binary, the next slides show what'’s
happening

./hello

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 13/38

1. Reading the hel1lo program from the keyboard

CPU

Register le

— aw

- System bus Memory bus

1r

=

v
-~y L A N e P Dl Main | "hello”
e N 7 [brfige |\ 17 memory
< [HHE>
4 /O bus Expansion slots for
other devices such

Us| Graphics Disk as network adapters
controlgr adapter controller
Mouse Keyboard Display <
types
"hello”

The shell reads . /hel1lo from the keyboard, stores it in memory;

then, initiates to load the executable file from disk to memory. SEWALT
°From Bryant and O’Hallaron, Ch 1

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 14/38

2. Reading the executable from disk to main memory

CPU

Register le

— aw

Systgm bus Memqry bus

brifige |\ Y| hellocode
< HA=>
/O bus 4 ; Expansion slots for
other devices such

PR

usB Graphics Digk as network adapters
controller adapter contipller
Mouse Keyboard Display
pikk hello executable
- stored on disk

Using direct memory access (DMA) the data travels from disk directly

tomemaory. SEWALT
°From Bryant and O’Hallaron, Ch 1

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 15/38

3. Writing the output string from memory to display

CPU

Register le
33' ALU
B > iy System bus Memory bus

Bus int < 0 Mo Wain |"hello,worldin”
ue ~ TBMge |\ 1/ y

§ | -

@ 4 } I/0 bus {} Expansion slots for
other devices such

hello code

usB Gra[lhics Disk as network adapters
controller d: controller
Mouse Keyboard Displa —
Y Pay N hello executable
"hello,world\n™ Disk stored on disk

Once the code and data in the hello object file are loaded into memory,
the processor beglns executlng the machine-language instructions in
tine. SEWALT
°From Bryant and O’Hallaron, Ch 1
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 16/38

Caches

@ Copying data from memory to the CPU is slow compared to
performing an arithmetic or logic operation.

@ This difference is called processor-memory gap and it is
increasing with newer generations of processors.

@ Copying data from disk is even slower.
@ On the other hand, these slower devices provide more capacity.

@ To speed up the computation, smaller faster storage devices
called cache memories are used.

@ These cache memories (or just caches) serve as temporary
staging areas for information that the processor is likely to need in
the near future.

IIF_RI()'}‘

LG

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 17/38

Cache memories

CPU chip

Register le

Cache -

EEAS=S

I : System bus Memory bus

— <j o Main
us interface bridge memory

@ An L1 cache on the processor chip holds tens of thousands of
bytes and can be accessed nearly as fast as the register file.

@ A larger L2 cache with hundreds of thousands to millions of bytes
is connected to the processor by a special bus.

@ It might take 5 times longer for the process to access the L2 cache
than the L1 cache, but this is still 5 to 10 times faster than
accessing the main memory.

@ The L1 and L2 caches are implemented with a hardware
technology known as static random access memory (SRAM). | ...or
Newer systems even have three levels of cache: L1, L2, and L3."""

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 18/38

Caches and Memory Hierarchy

Lo:
Smaller, Regs CPU registers hold words retrieved from
faster, cache memory.
and L1: / L1cache
cos:)ller (SRAM) L1 cache holds cache lines retrieved
('s’tec:ragtee) from the L2 cache.
devices L2: L2 cache
(SRAM)
L2 cache holds cache lines
retrieved from L3 cache
L3: L3 cache
(SRAM)
L3 cache holds cache lines
Larger, retrieved from memory.
slower, . "
and L4: Main memory
cheaper (DRAM) . X
(per byte) Main memory holds disk
storage blocks retrieved from local
devices disks.
L5: Local secondary storage
(local disks)
Local disks hold les
retrieved from disks on
remote network servers.
L6: Remote secondary storage
(distributed le systems, Web servers)
HERI(}T
BWALT

idl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 19/38

The Role of the Operating System

Application programs

Operating system

Processor

Main memory

1/O devices

} Software

} Hardware

@ We can think of the operating system as a layer of software
interposed between the application program and the hardware.

@ All attempts by an application program to manipulate the hardware
must go through the operating system.

@ This enhances the security of the system, but also generates
some overhead.

@ In this course we are mainly interested in the interface between
the Software and Hardware layers in the picture above. s

°From Bryant and O’Hallaron, Ch 1
Hans-Wolfgang Loidl (Heriot-Watt Univ)

Lec 1: Intro to Sys Prg 20/38

Goals of the Operating System

The operating system has two primary purposes:
@ to protect the hardware from misuse by runaway applications, and
@ to provide applications with simple and uniform mechanisms for
manipulating complicated and often wildly different low-level
hardware devices.
The operating system achieves both goals via three fundamental
abstractions: processes, virtual memory, and files.

Processes

Virtual memory

Files
P

Processor Main memory | 1/0 devices

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 21/38

Basic Concepts

In this overview we will cover the following basic concepts:
@ Processes
@ Threads
@ Virtual memory
@ Files

HERIOT
Swalt

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 22/38

Processes

@ A process is the operating system’s abstraction for a running
program.

@ It provides the illusion of having exclusive access to the entire
machine.

@ Multiple processes can run concurrently.

@ The OS mediates the access to the hardware, and prevents
processes from overwriting each other's memory.

HERIOT

LG

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 23/38

Concurrency vs Parallelism vs Threads

@ Concurrent execution means that the instructions of one
process are interleaved with the instructions of another process.

@ The operating system performs this interleaving with a mechanism
known as context switching.

@ The context of a process consists of: the program counter (PC),
the register file, and the contents of main memory.

@ They appear to run simultaneously, but in reality at each point the
CPU is executing just one process’ operation.

@ On multi-core systems, where a CPU contains several
independent processors, the two processes can be executed in
parallel, running on separate cores.

@ In this case, both processes are genuinely running simultaneously.
@ The main goal of parallelism is to make programs run faster.
@ A process can itself consist of multiple threads.

HERIOT
EIWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 24/38

Example of Context Switching

This example shows the context switching that is happening between
the shell process and the he 110 process, when running our hello
world example.

Process A Process B
Time 1 User code
read —* Context
~—— Kernel code } switch
Disk interrupt ---» /l User code Context
Return ___, | Kernel code } switch
from read 1 User code

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 25/38

Different Forms of Concurrency

Concurrency can be exploited at different levels:

@ Thread-level concurrency: A program explicitly creates several
threads with independent control flows. Each thread typically
represents a large piece of computation. Shared memory, or
message passing can be used to exchange data.

@ Instruction-Level Parallelism: The components of the CPU can
be arranged in a way so that the CPU executes several
instructions at the same time. For example, while one instruction
is performing an ALU operation, the data for the next instruction
can be loaded from memory (“pipelining”).

@ Single-Instruction, Multiple-Data (SIMD) Parallelism: Modern
processor architectures provide vector-operations, that allow to
execute an operation such as addition, over a sequence of values
(“vectors”), rather than just two values. Graphic cards make heayy
use of this form of parallelism to speed-up graphics operations. “**'*

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 26/38

Categorizing different processor configurations

All processors

Uniprocessors

Multiprocessors

@ Uniprocessors, with only one CPU, need to context-switch in

order to run several processes seemingly at the same time
@ Multiprocessors replicate certain components of the hardware to

genuinely run processes at the same time:

» Muticores replicate the entire CPU, as several “cores”, each of can
run a process.
» Hyperthreaded machines replicate hardware to store the context
of several processes to speed-up context-switching.

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Lec 1: Intro to Sys Prg

HERIOT
GWALT

27/38

Virtual Memory

Virtual memory is an abstraction that provides each process with the
illusion that it has exclusive use of the main memory. Each process

has the same uniform view of memory, which is known as its virtual
address space.

Memory

Kernel virtual memory [invisible to
user code

User stack
(created at runtime)

t

Memory mapped region for
shared libraries

printf function

I

Run-time heap
(created by malloc)

Read/write data
Loaded from the
hello executable le

Read-only code and data
0x08048000 (32)
000400000 (§4)

HERIOT
SWATT
avarad far tha N 1 lear

Lec 1: Intro to Sys Prg 28/38

\IR -
Hans-Wolfgal

ng Loidl (Heriot-Watt Univ)

Virtual Memory
The lower region holds the data for the user.

The user space is separated into several areas, with different roles:

@ The code and data area: contains the progam code and
initialised data, starting at a fixed address. The program code is
read only, the data is read/write.

@ The heap contains dynamically allocated data during the
execution of the program. In high-level languages, such as Java,
any new will allocate in the heap. In low-level languages, such as
C, you can use the library function ma1l1oc to dynamically allocate
data in the heap.

@ The shared data section holds dynamically allocated data,
managed by shared libraries.

@ The stack is a dynamic area at the top of the memory, growing
downwards. It is used to hold the local data of functions whenever
a function is called during program execution.

@ The topmost section of the virtual memory is allocated to kerne,lnklm,
virtual memory, and only accessible to the OS kernel. o

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 29/38

Virtual Memory

@ Virtual memory gives the illusion of a continuous address space,
exceeding main memory, with exclusive access.

@ |t abstracts over the limitations of physical main memory and
allows for several parallel threads to access the same address
space.

@ We will discuss this aspect in more detail in the Lecture on
“Memory Hierarchy”.

HERIOT

LG

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 30/38

Aside The Linux project

In August 1991, a Finnish graduate student named Linus Torvalds modestly announced a new Unix-like
operating system kernel:

From: torvalds@klaava.Helsinki.FI {Linus Benedict Torvalds)
Newsgroups: comp.os.minix

Subject: What would you like to see most in minix?
Summary: small poll for my new cperating system

Date: 25 Aug 591 20:57:08 GMT

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be big and

professional like gmi) for 386(486) AT clones. This has been brewing
since April, and is starting to get ready. I'd like any feedback on

things pecple like/dislike in minix, as my 05 resembles it somewhat

{same physical layout of the file-system (due to practical reascons}

among other things).

I've currently ported bash(1.08) and gcc(1.40), and things seem to work.
This implias that I'll get something practical within a few months, and
I'd 1ike to know what features most people would want. Any suggestions
are welceme, but I won't promise I'll implement them :-)}

Linus (torvalds@krumma.helsinki.fi)
L ERIOT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 31/38

Files

@ Afile is a sequence of bytes.

@ A file can be used to model any I/O device: disk, keyboard,
mouse, network connections etc.

@ Files can also be used to store data about the hardware (/proc/
filesystem), or to control the system, e.g. by writing to files.

@ Thus, the concept of a file is a very powerful abstraction that can
be used for many different purposes.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 32/38

External Devices

@ An important task of the OS/code is to interact with external
devices.

@ We will see this in detail on the Rpi2

@ From the OS point of view, external devices and network
connections are files that can be written to and read from.

@ When writing to such a special file, the OS sends the data to the
corresponding network device

@ When reading from such a special file, the OS reads data from the
corresponding network device

@ This file abstraction simplifies network communication, but is also
a source of additional communication overhead.

@ Therefore, high performance libraries tend to avoid this “software
stack” of implementing file read/write in the OS, but rather directly
read to and write from the device (in the same way that we will be, .
using these devices) FWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 33/38

A network is another I/O device

CPU chip
Register le
l ALU

System bus Memory bus

it | |
. o (| Man
[K
Expansion slots
|
1/0 bus

‘ usB ‘ ‘ Graphics Disk Network
controller adapter controller adapter
Molse Keyloard Mor{'itor -
==
The network can be viewed as just another I/O device. Hior

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 34/38

The Role of Abstraction

@ In order to tackle system complexity abstraction is a key concept.

@ For example, an application program interface (API), abstracts
from the internals of an implementation, and only describes its
core functionality.

@ Java class declaration or C prototypes are programming language
features to facilitate abstraction.

@ The instruction set architecture abstracts over details of the
hardware, so that the same instructions can be used for different
realisations of a processor.

@ On the level of the operating system, key abstractions are

» processes (as abstractions of a running program),
» files (as abstractions of 1/0), and
» virtual memory (as an abstraction of main memory).

@ A newer form of abstraction is a virtual machine, which abstracts

over an entire computer. PR

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 35/38

Some abstractions provided by a computer system

Virtual machine

Processes

Instruction set
architecture

Virtual memory

Files

Operating system

Processor

Main memory I I/O devices

A major theme in computer systems is to provide abstract
representations at different levels to hide the complexity of the actual

implementations.

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Lec 1: Intro to Sys Prg

HERIOT
GWALT

36/38

Reading List: Systems Programming

¥ David A. Patterson, John L. Hennessy. “Computer Organization
and Design: The Hardware/Software Interface”,
ARM edition, Morgan Kaufmann, Apr 2016. ISBN-13:
978-0128017333.

® Randal E. Bryant, David R. O’'Hallaron “Computer Systems: A
Programmers Perspective”,
3rd edition, Pearson, 7 Oct 2015. ISBN-13: 978-1292101767.

® Bruce Smith “Raspberry Pi Assembly Language: Raspbian”,
CreateSpace Independent Publishing Platform; 2 edition, 19 Aug
2013. ISBN-13: 978-1492135289.

HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 37/38

Other Online Resources

¥ Gordon Henderson et al “WiringPi library: GPIO Interface library
for the Raspberry Pi’,

¥ Valvers “Bare Metal Programming in C”,
http://www.valvers.com/open-software/raspberry-pi/step01-bare-
metal-programming-in-cpt1/

¥ Alex Chadwick, Univ of Cambridge “Baking Pi”,
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 1: Intro to Sys Prg 38/38

http://www.valvers.com/open-software/raspberry-pi/step01-bare-metal-programming-in-cpt1/
http://www.valvers.com/open-software/raspberry-pi/step01-bare-metal-programming-in-cpt1/
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os

	Lecture 1: Introduction to Systems Programming
	Reading List

