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Introduction to Systems Programming

@ This course focuses on how hardware and systems software
work together to perform a task.

@ We take a programmer-oriented view and focus on software and
hardware issues that are relevant for developing fast, secure,
and portable code.

@ Performance is a recurring theme in this course.
@ You need to grasp a lot of low-level technical issues in this course.
@ In doing so, you become a “power programmer”.
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Why is this important?

You need to understand issues at the hardware/software interface, in
order to

@ understand and improve performance and resource consumption
of your programs, e.g. by developing cache-friendly code;

@ avoid progamming pitfalls, e.g. numerical overflows;
@ avoid security holes, e.g. buffer overflows;
@ understand details of the compilation and linking process.
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Questions to be addressed

For each of these issues we will address several common questions
on the hardware/software interface:

@ Optimizing program performance:

» Is a switch statement always more efficient than a sequence of

if-else statements?
How much overhead is incurred by a function call?
Is a while loop more efficient than a for loop?
Are pointer references more efficient than array indexes?
Why does our loop run so much faster if we sum into a local
variable instead of an argument that is passed by reference?
» How can a function run faster when we simply rearrange the

parentheses in an arithmetic expression?

vV vy VvYy
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Questions to be addressed

@ Understanding link-time errors:

>

>

What does it mean when the linker reports that it cannot resolve a
reference?

What is the difference between a static variable and a global
variable?

What happens if you define two global variables in different C files
with the same name?

What is the difference between a static library and a dynamic
library?

Why does it matter what order we list libraries on the command
line?

Why do some linker-related errors not appear until run time?

@ Avoiding security holes:

>

How can an attacker exploit a buffer overflow vulnerability?
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Compilation of hello world
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@ We have seen individual phases in the compilation chain so far
(e.g. assembly)

@ Using gcc on top level picks the starting point, depending on the
file extension, and generates binary code

@ You can view the intermediate files of the compilation using the
gcc flag —save—-temps

@ This is useful in checking, e.g. which assembler code is generated
by the compiler

@ We will be using -D flags to control the behaviour of the HERIOT
pre-processor on the front end ATT
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The Shell

Your window to the system is the shell, which is an interpreter for
commands issued to the system:

host> echo "Hello_world"
Hello world
host> 1s

The Linux Introduction in F27PX-Praxis gave you an overview of what
you can do in a shell. In this course, we make heavy usage of the
shell. Check the later sections in the on-line Linux Introduction, which
explain some of the more advanced concepts.
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http://www.macs.hw.ac.uk/~hwloidl/Courses/LinuxIntro/t1.html
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Components

The picture on the previous slide, mentions several important
concepts:

@ Processor: the Central Processing Unit (CPU) is the engine that
executes instructions; modern CPUs are complicated in order to
provide additional performance (multi-core, pipelining, caches
etc);

@ Main Memory: temporary storage for both program and data;
arranged as a sequence of dynamic random access memory
(DRAM) chips;

@ Buses transmit information, as byte streams, between
components of the hardware; the Universal Serial Bus (USB) is
the most common connection for external devices;

@ 1/O devices are in charge of input/output and represent the
interface of the hardware to the external world SEWALT
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The Hello World Program

#include <stdio.h>

int main ()

{
printf ("hello, world\n");

}

What happens when we compile and execute this hello world
program?

HERIOT
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Compiling Hello World

When we compile the program by calling
gcc —-o hello hello.c

the compilation chain is executed. Note:

@ The source code of Hello World is represented in ASCII
characters and stored in a file.

@ The contents of the file is just a sequence of bytes

@ The context determines whether these bytes are interpreted as
text or as graphics etc.
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Compiling Hello World

When we compile the program by calling
gcc —-o hello hello.c

the compilation chain is executed. Note:

@ The source code of Hello World is represented in ASCII
characters and stored in a file.

@ The contents of the file is just a sequence of bytes

@ The context determines whether these bytes are interpreted as
text or as graphics etc.

When we execute the resulting binary, the next slides show what'’s
happening

./hello
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1. Reading the hel1lo program from the keyboard
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The shell reads . /hel1lo from the keyboard, stores it in memory;

then, initiates to load the executable file from disk to memory. SEWALT
°From Bryant and O’Hallaron, Ch 1
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2. Reading the executable from disk to main memory
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Using direct memory access (DMA) the data travels from disk directly

tomemaory. SEWALT
°From Bryant and O’Hallaron, Ch 1
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3. Writing the output string from memory to display
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Once the code and data in the hello object file are loaded into memory,
the processor beglns executlng the machine-language instructions in
tine. SEWALT
°From Bryant and O’Hallaron, Ch 1
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Caches

@ Copying data from memory to the CPU is slow compared to
performing an arithmetic or logic operation.

@ This difference is called processor-memory gap and it is
increasing with newer generations of processors.

@ Copying data from disk is even slower.
@ On the other hand, these slower devices provide more capacity.

@ To speed up the computation, smaller faster storage devices
called cache memories are used.

@ These cache memories (or just caches) serve as temporary
staging areas for information that the processor is likely to need in
the near future.

IIF_RI()'}‘
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Cache memories
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@ An L1 cache on the processor chip holds tens of thousands of
bytes and can be accessed nearly as fast as the register file.

@ A larger L2 cache with hundreds of thousands to millions of bytes
is connected to the processor by a special bus.

@ It might take 5 times longer for the process to access the L2 cache
than the L1 cache, but this is still 5 to 10 times faster than
accessing the main memory.

@ The L1 and L2 caches are implemented with a hardware
technology known as static random access memory (SRAM). | ...or
Newer systems even have three levels of cache: L1, L2, and L3."""
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Caches and Memory Hierarchy
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The Role of the Operating System

Application programs

Operating system

Processor

Main memory

1/O devices

} Software

} Hardware

@ We can think of the operating system as a layer of software
interposed between the application program and the hardware.

@ All attempts by an application program to manipulate the hardware
must go through the operating system.

@ This enhances the security of the system, but also generates
some overhead.

@ In this course we are mainly interested in the interface between
the Software and Hardware layers in the picture above. s

°From Bryant and O’Hallaron, Ch 1
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Goals of the Operating System

The operating system has two primary purposes:
@ to protect the hardware from misuse by runaway applications, and
@ to provide applications with simple and uniform mechanisms for
manipulating complicated and often wildly different low-level
hardware devices.
The operating system achieves both goals via three fundamental
abstractions: processes, virtual memory, and files.

Processes

Virtual memory

Files
P

Processor Main memory | 1/0 devices
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Basic Concepts

In this overview we will cover the following basic concepts:
@ Processes
@ Threads
@ Virtual memory
@ Files

HERIOT
Swalt
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Processes

@ A process is the operating system’s abstraction for a running
program.

@ It provides the illusion of having exclusive access to the entire
machine.

@ Multiple processes can run concurrently.

@ The OS mediates the access to the hardware, and prevents
processes from overwriting each other's memory.

HERIOT
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Concurrency vs Parallelism vs Threads

@ Concurrent execution means that the instructions of one
process are interleaved with the instructions of another process.

@ The operating system performs this interleaving with a mechanism
known as context switching.

@ The context of a process consists of: the program counter (PC),
the register file, and the contents of main memory.

@ They appear to run simultaneously, but in reality at each point the
CPU is executing just one process’ operation.

@ On multi-core systems, where a CPU contains several
independent processors, the two processes can be executed in
parallel, running on separate cores.

@ In this case, both processes are genuinely running simultaneously.
@ The main goal of parallelism is to make programs run faster.
@ A process can itself consist of multiple threads.

HERIOT
EIWATT
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Example of Context Switching

This example shows the context switching that is happening between
the shell process and the he 110 process, when running our hello
world example.

Process A Process B
Time 1 User code
read —* Context
~—— Kernel code } switch
Disk interrupt ---» /l User code Context
Return ___, | Kernel code } switch
from read 1 User code

HERIOT
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Different Forms of Concurrency

Concurrency can be exploited at different levels:

@ Thread-level concurrency: A program explicitly creates several
threads with independent control flows. Each thread typically
represents a large piece of computation. Shared memory, or
message passing can be used to exchange data.

@ Instruction-Level Parallelism: The components of the CPU can
be arranged in a way so that the CPU executes several
instructions at the same time. For example, while one instruction
is performing an ALU operation, the data for the next instruction
can be loaded from memory (“pipelining”).

@ Single-Instruction, Multiple-Data (SIMD) Parallelism: Modern
processor architectures provide vector-operations, that allow to
execute an operation such as addition, over a sequence of values
(“vectors”), rather than just two values. Graphic cards make heayy
use of this form of parallelism to speed-up graphics operations. “**'*
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Categorizing different processor configurations

All processors

Uniprocessors

Multiprocessors

@ Uniprocessors, with only one CPU, need to context-switch in

order to run several processes seemingly at the same time
@ Multiprocessors replicate certain components of the hardware to

genuinely run processes at the same time:

» Muticores replicate the entire CPU, as several “cores”, each of can
run a process.
» Hyperthreaded machines replicate hardware to store the context
of several processes to speed-up context-switching.
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Virtual Memory

Virtual memory is an abstraction that provides each process with the
illusion that it has exclusive use of the main memory. Each process

has the same uniform view of memory, which is known as its virtual
address space.

Memory

Kernel virtual memory [ invisible to
user code

User stack
(created at runtime)

t

Memory mapped region for
shared libraries

printf function

I

Run-time heap
(created by malloc)

Read/write data
Loaded from the
hello executable le

Read-only code and data
0x08048000 (32)
000400000 (§4)
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Virtual Memory
The lower region holds the data for the user.

The user space is separated into several areas, with different roles:

@ The code and data area: contains the progam code and
initialised data, starting at a fixed address. The program code is
read only, the data is read/write.

@ The heap contains dynamically allocated data during the
execution of the program. In high-level languages, such as Java,
any new will allocate in the heap. In low-level languages, such as
C, you can use the library function ma1l1oc to dynamically allocate
data in the heap.

@ The shared data section holds dynamically allocated data,
managed by shared libraries.

@ The stack is a dynamic area at the top of the memory, growing
downwards. It is used to hold the local data of functions whenever
a function is called during program execution.

@ The topmost section of the virtual memory is allocated to kerne,lnklm,
virtual memory, and only accessible to the OS kernel. o
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Virtual Memory

@ Virtual memory gives the illusion of a continuous address space,
exceeding main memory, with exclusive access.

@ |t abstracts over the limitations of physical main memory and
allows for several parallel threads to access the same address
space.

@ We will discuss this aspect in more detail in the Lecture on
“Memory Hierarchy”.

HERIOT
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Aside The Linux project

In August 1991, a Finnish graduate student named Linus Torvalds modestly announced a new Unix-like
operating system kernel:

From: torvalds@klaava.Helsinki.FI {Linus Benedict Torvalds)
Newsgroups: comp.os.minix

Subject: What would you like to see most in minix?
Summary: small poll for my new cperating system

Date: 25 Aug 591 20:57:08 GMT

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be big and

professional like gmi) for 386(486) AT clones. This has been brewing
since April, and is starting to get ready. I'd like any feedback on

things pecple like/dislike in minix, as my 05 resembles it somewhat

{same physical layout of the file-system (due to practical reascons}

among other things).

I've currently ported bash(1.08) and gcc(1.40), and things seem to work.
This implias that I'll get something practical within a few months, and
I'd 1ike to know what features most people would want. Any suggestions
are welceme, but I won't promise I'll implement them :-)}

Linus (torvalds@krumma.helsinki.fi)
L ERIOT
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Files

@ Afile is a sequence of bytes.

@ A file can be used to model any I/O device: disk, keyboard,
mouse, network connections etc.

@ Files can also be used to store data about the hardware (/proc/
filesystem), or to control the system, e.g. by writing to files.

@ Thus, the concept of a file is a very powerful abstraction that can
be used for many different purposes.
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External Devices

@ An important task of the OS/code is to interact with external
devices.

@ We will see this in detail on the Rpi2

@ From the OS point of view, external devices and network
connections are files that can be written to and read from.

@ When writing to such a special file, the OS sends the data to the
corresponding network device

@ When reading from such a special file, the OS reads data from the
corresponding network device

@ This file abstraction simplifies network communication, but is also
a source of additional communication overhead.

@ Therefore, high performance libraries tend to avoid this “software
stack” of implementing file read/write in the OS, but rather directly
read to and write from the device (in the same way that we will be, .
using these devices) FWALT
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A network is another I/O device
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The Role of Abstraction

@ In order to tackle system complexity abstraction is a key concept.

@ For example, an application program interface (API), abstracts
from the internals of an implementation, and only describes its
core functionality.

@ Java class declaration or C prototypes are programming language
features to facilitate abstraction.

@ The instruction set architecture abstracts over details of the
hardware, so that the same instructions can be used for different
realisations of a processor.

@ On the level of the operating system, key abstractions are

» processes (as abstractions of a running program),
» files (as abstractions of 1/0), and
» virtual memory (as an abstraction of main memory).

@ A newer form of abstraction is a virtual machine, which abstracts

over an entire computer. PR
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Some abstractions provided by a computer system

Virtual machine

Processes

Instruction set
architecture

Virtual memory

Files

Operating system

Processor

Main memory I I/O devices

A major theme in computer systems is to provide abstract
representations at different levels to hide the complexity of the actual

implementations.
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Reading List: Systems Programming

¥ David A. Patterson, John L. Hennessy. “Computer Organization
and Design: The Hardware/Software Interface”,
ARM edition, Morgan Kaufmann, Apr 2016. ISBN-13:
978-0128017333.

® Randal E. Bryant, David R. O’'Hallaron “Computer Systems: A
Programmers Perspective”,
3rd edition, Pearson, 7 Oct 2015. ISBN-13: 978-1292101767.

® Bruce Smith “Raspberry Pi Assembly Language: Raspbian”,
CreateSpace Independent Publishing Platform; 2 edition, 19 Aug
2013. ISBN-13: 978-1492135289.
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Other Online Resources

¥ Gordon Henderson et al “WiringPi library: GPIO Interface library
for the Raspberry Pi’,

¥ Valvers “Bare Metal Programming in C”,
http://www.valvers.com/open-software/raspberry-pi/step01-bare-
metal-programming-in-cpt1/

¥ Alex Chadwick, Univ of Cambridge “Baking Pi”,
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os
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