F28HS Hardware-Software Interface:
Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

HERIOT
WAI |

UNIVERSITY

Semester 2 — 2025/26

°No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) 2025/26

Outline

0 Lecture 1: Introduction to Systems Programming
e Lecture 2: Systems Programming with the Raspberry Pi

© Lecture 3: Memory Hierarchy
@ Memory Hierarchy
@ Principles of Caches

e Lecture 4: Programming external devices
@ Basics of device-level programming

Lecture 5: Exceptional Control Flow

Lecture 6: Computer Architecture
@ Processor Architectures Overview
@ Pipelining

Lecture 7: Code Security: Buffer Overflow Attacks
Lecture 8: Interrupt Handling

Lecture 9: Miscellaneous Topics

Lecture 10: Revision

Hans-Wolfgang Loidl (Heriot-Watt Univ) 2025/26

Lecture 3:
Memory Hierarchy

HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 3/31

Memory Hierarchy: Introduction

@ Some fundamental and enduring properties of hardware and
software:

» Fast storage technologies cost more per byte, have less capacity,
and require more power (heat!).

» The gap between CPU and main memory speed is widening.

» Well-written programs tend to exhibit good locality.

@ These fundamental properties complement each other beautifully.

@ They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

°|_ecture based on Bryant & O’Hallaron, 3rd edition, Chapter 6
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 4/31

Memory Hierarchy

@ Our view of the main memory so far has been a flat one, ie.
@ access time to all memory locations is constant.
@ In modern architecture this is not the case.

@ In practice, a memory system is a hierarchy of storage devices
with different capacities, costs, and access times.

@ CPU registers hold the most frequently used data.

@ Small, fast cache memories nearby the CPU act as staging areas
for a subset of the data and instructions stored in the relatively
slow main memory.

@ The main memory stages data stored on large, slow disks, which

in turn often serve as staging areas for data stored on the disks or
tapes of other machines connected by networks HERIOT

BWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 5/31

Caches and Memory Hierarchy

Lo:
Smaller, Regs CPU registers hold words retrieved from
faster, cache memory.
and L1: / L1cache
cos:)ller (SRAM) L1 cache holds cache lines retrieved
('s’tec:ragtee) from the L2 cache.
devices L2: L2 cache
(SRAM)
L2 cache holds cache lines
retrieved from L3 cache
L3: L3 cache
(SRAM)
L3 cache holds cache lines
Larger, retrieved from memory.
slower, . "
and L4: Main memory
cheaper (DRAM) . X
(per byte) Main memory holds disk
storage blocks retrieved from local
devices disks.
L5: Local secondary storage
(local disks)
Local disks hold les
retrieved from disks on
remote network servers.
L6: Remote secondary storage
(distributed le systems, Web servers)
HERI(}T
BWALT

idl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 6/31

Discussion

As we move from the top of the hierarchy to the bottom, the devices
become slower, larger, and less costly per byte.

The main idea of a memory hierarchy is that storage at one level
serves as a cache for storage at the next lower level.

Using the different levels of the memory hierarchy efficiently is crucial
to achieving high performance.

Access to levels in the hierarchy can be explicit (for example when

using OpenCL to program a graphics card), or implicit (in most other
cases).

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 7/31

The importance of the memory hierarchy

@ For the programmer this is important because data access times
are very different:

» Register: 0 cycles
» Cache: 1-30 cycles
» Main memory: 50-200 cycles

@ We want to store data that is frequently accessed high in the
memory hierarchy

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 8/31

Locality

@ Principle of Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used recently

@ Temporal locality: Recently referenced items are likely to be
referenced again in the near future.

@ Spatial locality: ltems with nearby addresses tend to be
referenced close together in time

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 9/31

Locality Example: sum-over-array

ulong count; ulong sum;

for (count = 0, sum = 0; count<n; count++)
sum += arr[count];

resl->count = count;

resl—->sum = sum;

resl->avg = sum/count;

}
@ Data references
» Reference array elements in succession (stride-1 reference

pattern). spatial locality
» Reference variable sum each iteration. temporal locality
@ Instruction references
» Reference instructions in sequence. spatial locality
» Cycle through loop repeatedly. spatial locality

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 10/31

Importance of Locality

Being able to look at code and get a qualitative sense of its locality is a
key skill for a professional programmer!

Which of the following two version of sum-over-matrix has better
locality (and performance):

Traversal by rows: Traversal by columns:
int i, Jj; wulong sum; int i, Jj; ulong sum;
for (i = 0; i<n; i++) for (j = 0; j<n; J++)

for (3 = 0; Jj<n; Jj++) for (i = 0; i<n; i++4)

sum += arr([i] [J]; sum += arr([i][J];

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 11/31

Caches

@ Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.
@ Fundamental idea of a memory hierarchy:
» For each k, the faster, smaller device at level k serves as a cache
for the larger, slower device at level k + 1.
@ Why do memory hierarchies work?

» Because of locality, programs tend to access the data at level k
more often than they access the data at level k + 1.

» Thus, the storage at level k + 1 can be slower, and thus larger and
cheaper per bit.

@ Big Idea: The memory hierarchy creates a large pool of storage
that costs as much as the cheap storage near the bottom, but that
serves data to programs at the rate of the fast storage near the
1:Op- HERIOT

EIWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 12/31

General Cache Concepts

Smaller, faster, more expensive

Cache |2][o

10 ” 3 I memory caches a subset of

the blocks

Data is copied in block-sized
transfer units

Larger, slower, cheaper memory

Memory I 0 ” 1 ” 2 ” 3 I viewed as partitioned into “blocks”
Ca]l s 1[e I[71
(e |l o |[20 [1]
L2z J[13 [1a |15 |
®0000sccseencsrece

°From Bryant and O’Hallaron, Ch 6

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Lec 3: Memory Hierarchy

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Cache [[& [s J[ma [s]| Fockbisimeache
Memory ([o J[1][2 J[3]
Lals |l e] 71
8 |9 ||l 10 J| 11 |
12 [13 [1 |[15
00 000000 OOGOOIOGOIOOIOOIOSIS

HER

101
GWATT

°From Bryant and O’Hallaron, Ch 6

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 14/31

General Cache Concepts: Miss

Request: 12 Data in block b is needed
Block b is not in cache:
Cache |[8 J[5 J[1][3] Miss!
E Block b is fetched from
Request: 12
memory
Memory |[o J[1][2][3]
Lalls I[e [7]
8 L9 |[10 || 11 |
12 [13 |[s [s
00000 0OCOOIOOIOPOIOIOINPOPIPOIDS

HERIOT
GWATT

°From Bryant and O’Hallaron, Ch 6
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 15/31

General Cache Concepts: Miss

Request: 12

Cache |[8 [22]| 14 |[3 |
III Request: 12

Memory |[o J[1][2][3]
La [s [e J[7]

8 |9 |10 [11

12 [138 |[1a J[s
eeeccccsccseccrnee

°From Bryant and O’Hallaron, Ch 6

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

+ Placement policy:
determines where b goes

+ Replacement policy:
determines which block
gets evicted (victim)

Lec 3: Memory Hierarchy 16/31

Types of Cache Misses

@ Cold (compulsory) miss:
» Cold misses occur because the cache is empty.

@ Conflict miss:

» Most caches limit blocks at level k+1 to a small subset (sometimes
a singleton) of the block positions at level k.

* E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

» Conflict misses occur when the level k cache is large enough, but
multiple data objects all map to the same level k block.

* E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
@ Capacity miss:
» Occurs when the set of active cache blocks (working set) is larger
than the cache.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 17/31

Examples of Caching in the Memory Hierarchy

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By

Registers 4-8 bytes words CPU core Compiler

TLB Address translations | On-Chip TLB Hardware

L1 cache 64-bytes block On-Chip L1 1 | Hardware

L2 cache 64-bytes block On/Off-Chip L2 10 | Hardware

Virtual Memory 4-KB page Main memory 100 | Hardware + 0S

Buffer cache Parts of files Main memory 100 | OS

Disk cache Disk sectors Disk controller 100,000 | Disk firmware

Network buffer Parts of files Local disk 10,000,000 | AFS/NFS client

cache

Browser cache Web pages Local disk 10,000,000 | Web browser

Web cache Web pages Remote server disks 1,000,000,000 | Web proxy
server

°From Bryant and O’Hallaron, Ch 6

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Lec 3: Memory Hierarchy

18/31

Summary

@ The speed gap between CPU, memory and mass storage
continues to widen.

@ Well-written programs exhibit a property called locality.

@ Memory hierarchies based on caching close the gap by exploiting
locality.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 19/31

Principles of Caches

@ Cache memories are small, fast SRAM-based memories
managed automatically in hardware.
» Hold frequently accessed blocks of main memory

@ CPU looks first for data in caches (e.g., L1, L2, and L3), then in

main memory.

@ Typical system structure:

CPU chip

Register le
A
memories

«
o K

Hans-Wolfgang Loidl (Heriot-Watt Univ)

System bus Memory bus

N G—
bridge

Main
memory

HERIOT
GWATT

Lec 3: Memory Hierarchy 20/31

ARM Cortex A7 Cache Hierarchy

Core

Intemal cacha
(L1 Cache) Main memaory

§

Extemal cache
(L2 cache)

$!

| Bus

Figure 8-1 A basic cache arrangement

A cache is a small, fast block of memory that sits between the core and main memory. It holds
copies of items in main memory. Accesses to the cache memory happen significantly faster than
those to main memory. Because the cache holds only a subset of the contents of main memory,
it must store both the address of the item in main memory and the associated data. Whenever
the core wants to read or write a particular address, it will first look for it in the cache. If it finds
the address in the cache, it will use the data in the cache, rather than having to perform an
access to main memory. This significantly increases the potential performance of the system, by
reducing the effect of slow external memory access times. It also reduces the power
consumption of the system. NB: In many ARM-based systems, access to external memory williik?t
take 10s or 100s of cycles. Sl

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 21/31

ARMv7-A Memory Hierarchy

Wirtual)
address Address Physical address
translation
CP15 configuration
and control
¥ k.
Level 1 Level 2 Level 3
Processar ‘ * Cache Cache
R15 Instruction | - " DRAM
fetch SRAM
T T je—Load Flash Level 4
RO Store | «—» > —s | ROM (¢ forexample,
CF card, disk

Figure A3-6 Multiple levels of cache in a memory hierarchy

See ARM Architcture Reference, Ch A3, Fig A3.6, p.157

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 22/31

Caching policies: direct mapping

@ The caching policy determines how to map addresses (and their
contents) in main memory to locations in the chache.

@ Since the cache is much smaller, several main memory addresses
will be mapped to the same cache location.

@ The role of the caching policy is to avoid such clashes as much as
possible, so that the cache can be used for most memory
read/write operations.

@ The simplest caching policy is a direct mapped cache:

» each location in main memory always maps to a single location in
the cache

» this policy is simple to implement, and therefore requires little
hardware

» a weakness of the policy is, that if two frequently used memory
addresses map to the same cache address, this results in a lot of

cache misses (“cache thrashing”) SEWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 23/31

Direct mapped cache

Main memory Cache
0x0000.0000 [i | __ :ﬁ:|
0x0000. 0010 L __ 4
0x0000. 0020
0x0000. 0030
0x0000. 0040 |
0x0000. 0050
0x0000. 0060
0x0000. 0070

0x0000.0080

0x0000. 0090 i
]

||

1
[
Il
T
1
1
[
i
]
[
[
[l
1
1
I
i
L
I
[
1
T
1

I
I
|
T
|
I
1
i
|
I
|
|
I
|
i
i
L
I
I
i
T
I
T
I
|
I

Figure 8-4 Direct mapped cache operation

HERIOT
Swalt

°See ARM Programmer’s Guide, Ch 8, Fig 8.4, p 113

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 24/31

Caching policies: set-associative

@ To eliminate the weakness of the direct-mapped caches, a more
flexible set-associative cache can be used.

@ With this policy, one memory location can map to one of several
ways in the cache.

@ Conceptually, each way represents a slice of the cache.

@ Therefore, a main memory address can be mapped to any of
these slices in the cache.

@ Inside one such slice, however, the location is fixed.

@ If the system uses n such slices (“ways”) it is called an n-way
associative cache.
@ This avoids cache thrashing in cases where no more than n
frequently used variables (memory locations) occur.
NB: The ARM Cortex A7 uses a 4-way set associative data cache, o
with cache size of 32kB, and a cache line size of 8 words o

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 25/31

0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000

L0000
L0010
.0020
.0030
.0040
.0050
.0060
.0070
.0080
L0090

°See ARM Programmer’s Guide, Ch 8, Fig 8.5, p 115

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Set-associative cache

Cache way 0

|

Cache way 1

|

Figure 8-6 A 2-way set-associative cache

Lec 3: Memory Hierarchy

HERIOT
Swalt

26/31

ARM cache features

Table 8-1 Cache features of Cortex-A series processors

Processor
Cortex-A5 Cortex-AT Cortex-A8 Cortex-A9 Cortex-A12 Cortex-A15
L2 Cache External Inte grated Integrated External Integrated Integrated
L2 Cache size - 128KB 10 OKBto IMB* - 256KB 1w BMB 512KB to 4MB*
IMB®
Cache FIFT PIPT PIFT PIPT PIPT PIFT
Implementation
{Data)
Cache VIPT VIPT VIPT VIPT VIPT PIPT
Implementation
{Instruction)
Ll Cachesize 4K1o64K* BKB1o64KB* 16/32KB* I6KB32KB/64KB: 12KB KB
(datay
Cache size 4K w0 64K* SKB1loodKB* 16/3ZKB* 16KB/32KB/64KB* 32KBor 64KB 32KB
(Inst)
L1 Cache Joway set D-way set Away set A-way set Away set Zoway set
Structure associative assoviative associative associative {Inst) associative associative
(Insty (Inst) 4-way set (Inst) (Inst)
doway set A-way set associative (Data) 4-way set Zway set
associative associative associative associative
{Data) (Data} (Data) (Data}
L2 Cache - B-way set B-way sel - T6-way set 16-way
Structure associative associative associative associative
HERIOT
PwaLr

12N Ge

ARM cache features

Table 8-1 Cache features of Cortex-A series processors {continued)

Processor
Cortex-AS5 Cortex-A7 Cortex-A8 Cortex-A9 Cortex-A12 Cortex-A15

Cache ling & 8 16 8 - 16

{words)

Cache line 32 64 hd a2 64 64

Abyles)

Eror protection None None L2 ECC None LI None, L2 Optional for L1

ECC and L2

a. Configurable

idl (Heriot-Watt

HERIOT
GEWAIT

ARM Cortex A7 Structure

| ARM CoreSight Multicore Debug and Trace |

Generic Interrupt Controller |

NEON
Data Engine
Cortex-A7 pr
Floating-point
unit
4
Instruction 3
Cache Data Cache i
Core 1
’ scu ‘ | L2 Cache W/ECC ‘

| 128-bit AMBAACE Coherent Bus Interface l

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Figure 24 Cortex-A7 processor

Lec 3: Memory Hierarchy

HERIOT
Swalt

29/31

Example: Cache friendly code

See the background reading material on the web page:
Web aside on blocking in matrix multiplication

HERIOT
Swalt

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 30/31

http://csapp.cs.cmu.edu/2e/waside/waside-blocking.pdf

Summary: Memory Hierarchy

@ In modern architectures the main memory is arranged in a
hierarchy of levels (“memory hierarchy”).

@ Levels higher in the hierarchy (close to the processor) have fast
access time but small capacity.

@ Levels lower in the hierarchy (further from the processor) have
slow access time but large capacity.

@ Modern systems provide hardware (caches) and software
(paging; configurable caching policies) support for managing the
different levels in the hierarchy.

@ The simplest caching policy uses direct mapping

@ Modern ARM architectures use a more sophisticated set
associative cache, that reduces “cache thrashing”.

@ For a programmer it’s important to be aware of the impact of
spatial and temporal locality on the performance of the program.

@ Making good use of the cache can reduce runtime by a factor ofnkm
ca. 3 as in our example of blocked matrix multiplication.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 3: Memory Hierarchy 311/31

	Lecture 3: Memory Hierarchy
	Memory Hierarchy

