F28HS Hardware-Software Interface: Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh

Semester 2 - 2019/20

2019/20

1/33

⁰No proprietary software has been used in producing these slides = > <

Outline

(1	
2	2	

 Lecture 1: Introduction to Systems Programming
 Lecture 2: Systems Programming with the Raspberry Pi

- Lecture 3: Memory Hierarchy
 - Memory Hierarchy
 Principles of Caches
- Lecture 4: Programming external devices
 - Basics of device-level programming
 - Lecture 5: Exceptional Control Flow
 - Lecture 6: Computer Architecture
 - Processor Architectures Overview
 Pipelining
- 7 Lecture 7: Code Security: Buffer Overflow Attacks
 8 Lecture 8: Interrupt Handling
 9 Lecture 9: Miscellaneous Topics
 - Lecture 10: Revision

Lecture 2. Systems Programming with the Raspberry Pi

SoC: System-on-Chip

- A System-on-Chip (SoC) integrates all components of a computer or other electronic system into a single chip.
- One of the main advantages of SoCs is their low power consumption.
- Therefore they are often used in embedded devices.
- All versions of the Raspberry Pi are examples of SoCs

Note: In this course we are using the Raspberry Pi 2 Model B. The low-level code will only work with this version.

The Raspberry Pi Foundation: https://www.raspberrypi.org/ UK registered charity 1129409

イロト イポト イラト イラト

Raspberry Pi 1 vs 2

The Raspberry Pi version 2 was released on 2nd February 2015. Its components are:

- the BCM2836 SoC (System-on-Chip) by Broadcom
- an ARM-Cortex-A7 CPU with 4 cores (clock frequency: 900MHz)
- 1 GB of DRAM
- a Videocore IV GPU
- 4 USB ports (sharing the one internal port together with the Ethernet connection)
- power supply through a microUSB port

NB: RPi2 is significantly more powerful than RPi1, which used an ARM1176JZ-F single-core at 700MHz clock frequency (as the BCM2835 SoC). However, its network bandwidth is unchanged.
NB: The A-series of the ARM architectures is for "application" usage and therefore more powerful than the M-series, which is mainly for small, embedded systems.

It is possible to *safely* over-clock the processor up to 950 MHz.

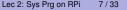
Raspberry Pi 2

⁰Source: https://en.wikipedia.org/wiki/Raspberry_Pi

HERIOT WATT

э

Hans-Wolfgang Loidl (Heriot-Watt Univ)


F28HS Hardware-Software Interface

ヘロト 人間 とくほとくほど

Software configuration

- RPi2 supports several major Linux distributions, including: Raspbian (Debian-based), Arch Linux, Ubuntu, etc
- The main system image provided for RPi2 can boot into several of these systems and provides kernels for both ARMv6 (RPi1) and ARMv7 (RPi2)
- The basic software configuration is almost the same as on a standard Linux desktop
- To tune the software/hardware configuration call

```
> sudo raspi-config
```


E N 4 E N

Updating your software under Raspbian

We are using **Raspbian 7**, which is based on Debian "Wheezy" with a Linux kernel 3.18.

There is a more recent version (2017-01-11) out: Raspbian 8, based on Debian "Jessie" with a Linux kernel 4.4. Highlights:

- Uses systemd for starting the system (changes to run-scripts, enabling services).
- Supports OpenGL and 3D graphics acceleration in an experimental driver (enable using the raspi-config)

To update the software under Raspbian, do the following:

- > sudo apt-get update
- > sudo apt-get upgrade
- > sudo rpi-update

To find the package foo in the on-line repository, do the following:

> sudo apt-cache search foo

To install the package foo in the on-line repository, do the following HERIO

> sudo apt-get install foo

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Virtualisation

- In this powerful, multi-core configuration, an RPi2 can be used as a server, running several VMs.
- To this end RPi2 under Raspbian runs a hypervisor process, mediating hardware access between the VMs.
- Virtualisation is hardware-supported for the ARMv6 and ARMv7 instruction set
- The ARMv7 instruction set includes a richer set of SIMD (single-instruction, multiple-data) instructions (the NEON extensions), to use parallelism and speed-up e.g. multi-media applications
- The NEON instruction allow to perform operations on up to 16 8-bit values at the same time, through the processor's support for 64-bit and 128-bit registers
- Performance improvements in the range of 8 16× have been reported for multi-media applications
- The usual power consumption of the Ri2 is between 3.5 -4 Watt

Raspberry Pi 4

Specification:

- ARMv8, BCM2837B0, ARM Cortex-A72 CPU 64-bit guad-core @ 1.5GHz
- Up to 1GB, 2GB or 4GB RAM (LPDDR4)
- On board dual-band 802.11.b/g/n/ac wireless LAN
- On board Bluetooth 5.0, low-energy (BLE)
- Gigabit Ethernet
- 2 × USB 3.0 ports, 2 × USB 2.0 ports
- Extended 40-pin GPIO header

⁰See RPi 4 spec on NewIT pages

• 2 × micro-HDMI ports (supporting up to 4Kp60)

Hans-Wolfgang Loid (Heriot-Watt Univ)

F28HS Hardware-Software Interface

3

CPU Performance Comparison: Hardware

Plattform	RAM	Chip	Technologie	Architektur
Raspberry Pi				
Raspberry Pi 1	512 MByte	Broadcom BCM2835	65 nm	ARM1176JZ-F
Raspberry Pi 2	1 GByte LPDDR2	Broadcom BCM2836	28 nm	Cortex A7
Banana Pi				
Banana Pi	1 GByte	AllWinner A20	40 nm	Cortex A7
Banana Pro	1 GByte	AllWinner A20	40 nm	Cortex A7
Banana Pi M2	1 GByte	AllWinner A31S	40 nm	Cortex A7
Andere Single Board Computer (SBC)				
Beaglebone Black	512 MByte	TI Sitara AM3358/9	45 nm	Cortex A8
Hummingboard-i2	1 GByte	Freescale i.MX6 DualLite	40 nm	Cortex A9
Cubox-i4Pro	2 GByte	Freescale i.MX6 Quad	40 nm	Cortex A9
Odroid C1	1 GByte DDR3	Amlogic S805	28 nm	Cortex A5
Smartphones				
Galaxy S3 Mini (GT-I8190)	1 GByte	ST-Ericsson NovaThor U8500	45 nm	Cortex A9
iPhone 5	1 GByte	Apple A6	32 nm high-k metal gate	ARMv7s Swift [Apple]
Spielekonsolen				
Playstation 2	36 MByte	EmotionEngine	250 nm	RISC, basiert auf MIPS R5900
Apple-Computer				
Apple][e	64 KByte	MOS Technology 6502	8000 nm	MOS Technology
Apple Macintosh 128 K	128 KByte	Motorola 68000	3500 nm	CISC
iMac G3	32 MByte	PowerPC 750 G3	260 nm	PowerPC G3
Intel- und AMD-PCs				
No Name PC 1	64 MByte	Pentium II, 300 MHz	350 nm	x86 Intel
No Name PC 2	384 MByte	AMD Duron, 800 MHz	180 nm	AMD Spitfire
Dell Inspiron 7520	8 GByte	Intel Core i7-3632QM	22 nm	Intel Core i7
Ustrang Loid (Heriot-Watt Liniv)	72 CBido	Intel Core i7-3770	22 nm	Intel Core i7

Hans-Wolfgang Loidl (Heriot-Watt Univ)

28HS Hardware-Software Interface

Lec 2: Sys Prg on RPi

11/33

CPU Performance Comparison: Measurements

DMIPS/MHz	Kerne	MHz	DMIPS	Vgl. RPi 1	Vgl. RPi 2
1,25	1	700	875	100%	13%
1,90	4	900	6840	782%	100%
1,90	2	1000	3800	434%	56%
1,90	2	1000	3800	434%	56%
1,90	4	1000	7600	869%	111%
2,00	1	1000	2000	229%	29%
2,50	2	1000	5000	571%	73%
2,50	4	1000	10000	1143%	146%
1,57	4	1500	9420	1077%	138%
2,50	2	1000	5000	571%	73%
3,50	2	1300	9100	1040%	133%
20,34	1	295	6000	686%	88%
0,43	1	1	0,43	0,05%	0,01%
0,23	1	6	1,4	0,16%	0,02%
2,25	1	233	525	60%	8%
0,91	1	300	273,6	31%	4%
2,81	1	800	2250	257%	33%
14,19	4	2200	99750	11400%	1458%
14.19	4	3400	106530	121759h	1557%

Hans-Wolfgang Loidl (Heriot-Watt Univ)

CPU Performance Comparison: Measurements

DMIPS/MHz	Kerne	MHz	DMIPS	Vgl. RPi 1	Vgl. RPi 2	
1,25	1	700	875	100%	13%	
1,90	4	900	6840	782%	100%	
1,90	2	1000	3800	434%	56%	
1,90	2	1000	3800	434%	56%	
1,90	4	1000	7600	869%	111%	
2,00	1	1000	2000	229%	29%	
2,50	2	1000	5000	571%	73%	
2,50	4	1000	10000	1143%	146%	
1,57	4	1500	9420	1077%	138%	
2,50	2	1000	5000	571%	73%	
3,50	2	1300	9100	1040%	133%	
20,34	1	295	6000	686%	88%	
0,43	1	1	0,43	0,05%	0,01%	
0,23	1	6	1,4	0,16%	0,02%	
2,25	1	233	525	60%	8%	
0,91	1	300	273,6	31%	4%	
2,81	1	800	2250	257%	33%	
14,19	4	2200	99750	11400%	1458%	
14.19	4	3400	106530	121759h	1557%	

Vote

RPi2 ca. **7.82**× faster than RPi1

Banana Pi M2 is 1.11imes faster than RPi2

Cubox i4Pro is 1.46× faster ODroid C1 is 1.38× faster

Inte	I i7 PC is 15.5× faster than	n RPi2
•	ㅁ › 《遼 › 《혼 › 《혼 › 문	
ce	Lec 2: Sys Prg on RPi	12/33

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Network performance comparison: RPi 1 vs RPi 2

- To compare network performance, encrypted data-transfer through scp is used.
- This profits from the quad-core architecture, because one core can be dedicated to encryption, another core to the actual data transfer.
- An increase in network performance by a factor of $2.5 \times$ is reported.
- The highest observed bandwidth on the RPi 2 (with overclocking to 1.05 GHz) is 70 Mbit/s.
- The theoretcial peak performance of the LAN-port is ca 90 MBit/s.
- The SunSpider benchmark for rendering web pages, reports up to 5× performance improvement.

∃ ► < ∃ ►</p>

Network performance Measurements

ARM Freq	SDRAM Freq	GPU Core Freq	Temp	SCP-Schreiben ⁽⁾	%	SCP-Lesen ⁽¹⁾	%
Raspberry Pi 2, Raspblan							
900 MHz	450 MHz	250 MHz	53,5° C	52,6 Mbit/s	100,0	54,8 Mbit/s	100
1000 MHz	500 MHz	500 MHz	58,4° C	56,3 Mbit/s	107,0	69,0 Mbit/s	125
1050 MHz	500 MHz	500 MHz	58,4° C	65,6 Mbit/s	124,6	69,0 Mbit/s	126
1100 MHz ⁽²⁾	500 MHz	500 MHz					
Raspbeny Pi 1, Raspbian							
700 MHz	400 MHz	250 MHz	43,3° C	21,1 Mbit/s	40,0	21,1 Mbit/s	38
TODO MHz	600 MHz	250 MHz	51,4° C	36,4 Mbit/s	69,1	33,3 Mbit/s	61
Raspberry Pi 2, Debian Jessie ⁽³⁾							
900 MHz	450 MHz	250 MHz		47,6 Mbit/s	90,5	52,6 Mbit/s	96
1050 MHz	500 MHz	500 MHz		58,0 Mbit/s	110,1	71,4 Mbit/s	130

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2

3 + 4 = +

High-performance Alternatives

- There are several single-board computers that provide a high-performance alternative to the RPi.
- These are of interest if you have applications with high computational demands and you want to run it on a low-cost and low-power device.
- It's possible to build for example a cluster of such devices as a parallel programming platform: see The Glasgow University Raspberry Pi Cloud
- Here we give an overview of the main performance characteristics of three RPi2 alternatives:
 - the CuBox i4Pro by SolidRun
 - the Banana Pi M3 by Sinovoip
 - the Lemaker HiKey by Lemaker

3

Core Specs of the CuBox i4-Pro

- Freescale i.MX6 (SoC) quad-core, containing an ARM Cortex A9 (ARMv7 instruction set) with 4 cores
- GC2000 GPU (supports OpenGL etc)
- 4 GB RAM and a micro-SD card slot
- 10/100/1000 Mb/s Ethernet (max 470Mb/s)
- WLAN (802.11b/g/n)
- Bluetooth 4.0
- I USB port and eSATA (3Gb/s) interface
- Price: 124\$

Debian Linux, Kodi Linux, XBMC Linux

э.

Core Specs of the CuBox i4-Pro

- Freescale i.MX6 (SoC) quad-core, containing an ARM Cortex A9 (ARMv7 instruction set) with 4 cores
- GC2000 GPU (supports OpenGL etc)
- 4 GB RAM and a micro-SD card slot
- 10/100/1000 Mb/s Ethernet (max 470Mb/s)
- WLAN (802.11b/g/n)
- Bluetooth 4.0
- I USB port and eSATA (3Gb/s) interface
- Price: 124\$

Software

Debian Linux, Kodi Linux, XBMC Linux

э.

Core Specs of the Banana Pi M3

- Allwinner A83T (SoC) chip, containing an ARM Cortex-A7 (ARMv7 instruction set) with 8 cores
- PowerVR SGX544MP1 GPU (supports OpenGL etc)
- 2 GB LPDDR3 RAM plus 8 GB eMMC memory and a micro-SD card slot
- Gigabit Ethernet
- WLAN (802.11b/g/n)
- Bluetooth 4.0
- 2 USB ports and SATA interface
- 40 GPIO pins (not compatible with RPi2)
- Price: 90€

Software

• BPI-Berryboot (allegedly with GPU support), or Ubuntu Mate Experiences

- SATA shares the the USB bus connection and is therefore slow HERIOT WATT
- Problems accessing the on-board micro-phone approximation accessing the on-board micro-phone approximation appr

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Core Specs of the Banana Pi M3

- Allwinner A83T (SoC) chip, containing an ARM Cortex-A7 (ARMv7 instruction set) with 8 cores
- PowerVR SGX544MP1 GPU (supports OpenGL etc)
- 2 GB LPDDR3 RAM plus 8 GB eMMC memory and a micro-SD card slot
- Gigabit Ethernet
- WLAN (802.11b/g/n)
- Bluetooth 4.0
- 2 USB ports and SATA interface
- 40 GPIO pins (not compatible with RPi2)
- Price: 90€

Software

• BPI-Berryboot (allegedly with GPU support), or Ubuntu Mate

Experiences

- SATA shares the the USB bus connection and is therefore slow HERIOT WATT
- Problems accessing the on-board micro-phone approximation accessing the on-board micro-phone approximation appr

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Core Specs of the Banana Pi M3

- Allwinner A83T (SoC) chip, containing an ARM Cortex-A7 (ARMv7 instruction set) with 8 cores
- PowerVR SGX544MP1 GPU (supports OpenGL etc)
- 2 GB LPDDR3 RAM plus 8 GB eMMC memory and a micro-SD card slot
- Gigabit Ethernet
- WLAN (802.11b/g/n)
- Bluetooth 4.0
- 2 USB ports and SATA interface
- 40 GPIO pins (not compatible with RPi2)
- Price: 90€

Software

• BPI-Berryboot (allegedly with GPU support), or Ubuntu Mate

Experiences

- SATA shares the the USB bus connection and is therefore slow HERIOT
- Problems accessing the on-board micro-phone

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Core Specs of the Lemaker Hikey

- Kirin 620 (SoC) chip with ARM Cortex A53 and 8 cores
- ARM Mali450-MP4 (supports OpenGL etc) GPU
- 1 or 2 GB LPDDR3 RAM plus 8 GB eMMC memory and a micro-SD card slot
- WLAN (802.11b/g/n)
- Bluetooth 4.1
- 2 USB ports
- 40 GPIO pins (not compatible with RPi2)
- Audio and Video via HDMI connectors
- Board-layout matches the 96-board industrial standard for embedded devices
- Price: 120€

Software

- Android variant (part of 96-board initiative)
- Linaro (specialised Linux version for embedded devices)

Banana Pi M3 and Lemaker Hikey: Specs

	Banana Pi M3	Lemaker Hikey
CPU	A83T ARM Cortex-A7, ARMv7, 8 Kerne, max. 2 GHz	ARM Contex-A53, ARMv8, 8 Kerne
GPU	PowerVR SGX544MP1 (OpenGL ES 2.0, OpenCL 1.x, DX 9_3)	ARM Mali450-MP4 (OpenGL ES 1.1/2.0, OpenVG 1.1)
RAM	2 GByte LPDDR3	1 oder 2 GByte LPDDR3
Speicher	8 GByte eMMC	8 GByte eMMC
Schnittstellen		
Massenspeicher	Micro-SD-Card, SATA (USB-to-SATA; GL830)	Micro-SD-Card
USB Ports	2 USB 2.0, USB OTG	2 USB 2.0, USB OTG
GPIQ	40 Pins (GPIO, UART, I2C, I2S, SPI, PWM, +3.3V, +5V, GND)	40 Pins (GPIO, UART, I2C, SPI, PWM, PCM, SYS_DCIN,
		+1.8V, +5V, GND); 60 Pins (SDIO, MIPI_DSI, MIPI_CSI)
Netzwark		
Ethernet	10/100/1000 Mbit/s (Realtek RTL6211E/D)	optional (via USB-Adapter)
WLAN	802.11b/g/n	802.11b/g/n
Bluetooth	Bluetooth 4.0	Bluetooth 4.1 LE
Audio, Video		
Audio Qut	3,5mm Klinke, HDMI	HDMI
Audio In	Onboard-Mikrofon	HDMI
Video Out	HDMI 1.4 (HDCP 1.2, max. 1920x1080), MIPI DSI	HDMI 1.4 (max. FHD 1080p), 2 MIPI DSI
Video In	Parallele 8-Bit-Kameraschnittstelle, MIPI CSI	2 MIPL CSI
Sonstiges		
Schalter	Power, Reset, U-Boot	Power/Reset
LEDs	Power, RJ45, benutzerdefiniert	WLAN, Bluetooth, 4 benutzerdefiniert
Strom	Micro-USB, optional 5V-Klinke	8V~18V/3A Klinke
OS	Android, Linux	Android, Linux
Abmessung	92mm x 60mm	85mm x 55mm
Straßenpreis	90 Euro	120 Euro

⁰Material from Raspberry Pi Geek 04/2016

Hans-Wolfgang Loidl (Heriot-Watt Univ)

F28HS Hardware-Software Interface

ъ.

Raspberry Pi 3 and Lemaker Hikey: Performance

Performance as runtime (of sysbench benchmark) and network bandwidth (using lperf benchmark):

	Perf	. (runti	me)	Max	Network I	bandwidth
	numbe	er of th	reads	power	Ethernet	WLAN
	1	4	8			
Raspberry Pi 2	297s	75s				
Raspberry Pi 3	182s	45s				45 Mb/s
Cubox i4Pro	296s	75s				
Banana Pi M3	159s	40s	21s	1.1A	633 Mb/s	2.4 Mb/s
Lemaker Hikey	12s	3s	2s	1.7A	—	37.3 Mb/s

Summary: In terms of performance, the Lemaker Hikey is the best choice.

⁰Material from Raspberry Pi Geek 04/2016

Raspberry Pi 3 and Lemaker Hikey: Performance comparison

Benchmark-Erge	ebnisse				
	1 Thread	4 Threads	8 Threads		
Raspberry Pi 3	182 Sekunden	45 Sekunden	-		
Banana Pi M3	159 Sekunden	40 Sekunden	21 Sekunden		
Lemaker Hikey	12 Sekunden	3 Sekunden	2 Sekunden		

To run the (CPU) performance benchmark on the RPi2 do:

```
> sudo apt-get update
> sudo apt-get install sysbench
> sysbench --num-threads=1 --cpu-max-prime=10000 --test=cpu
    run
```

⁰Material from Raspberry Pi Geek 04/2016

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Core Specs of Odroid-XU4

- Exynos 5422 (SoC) Octa big.LITTLE ARM with an ARM Cortex-A15 quad-core and an ARM Cortex-A7 quad-core
- Mali-T628 MP6 GPU
- 2 GB LPDDR3 RAM plus eMMC memory and a micro-SD card slot
- Gigabit Ethernet
- 1 USB 2.0A and 1 USB 3.0 port
- Video via HDMI connectors
- 40 GPIO pins (not compatible with RPi2)
- Price: 95€

The CPU is the same as in high-end smartphones such as the Samsug Galaxy S5.

The big.LITTLE architecture dynamically switches from (faster) Cortex-A15 to (slower) Cortex-A7 to save power.

Software: Ubuntu 14.04 or Ubuntu 16.04; Android 4.4.4;

OpenMediaVault 2.2.13, Kali Linux, Debian.

Hans-Wolfgang Loidl (Heriot-Watt Univ)

RPi3 vs Odroid-XU4: Specs

Odroid-XU4 vs.	I-XU4 vs. Raspberry Pi 3			
	Odroid-XU4	RasPi 3		
SoC	Exyrtos 5422 Octa big.LITTLE ARM	Broadcom BCM2837		
CPU	Cortex-A15 (2.0 GHz) Quad-Core und Cortex-A7 Quad-Core	ARM Cortex-A53 Quad-Core (1,2 GHz)		
GPU	Mali-T628 MP6	Broadcom Dual Core VideoCore IV		
RAM	2 GByte LPDDR3 (933 MHz)	1 GByte LPDDR2 (900 MHz)		
Speicher	Micro-SD, eMMC 5.0	Micro-SD		
Netzwerk	T0/100/1000-Mbit/s-Ethernet	10/100-Mbit/s-Ethemet, WLAN 802.11b/g/n		
USB	USB 2.0 A, 2 USB 3.0	4 USB 2.0 (über Hub)		
Videoausgang	НДМІ	HDMI		
Schnittstellen	125, I ² C, GPIO	SPI, I²C, UART		
Größe	83 x 59 x 18 mm	85,6 x 56 x 21 mm		
Preis (ca.)	95 Euro	35 Euro		

⁰Material from Raspberry Pi Geek 02/2017

Hans-Wolfgang Loidl (Heriot-Watt Univ)

F28HS Hardware-Software Interface

A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >
 A I >

э

Odroid-XU4

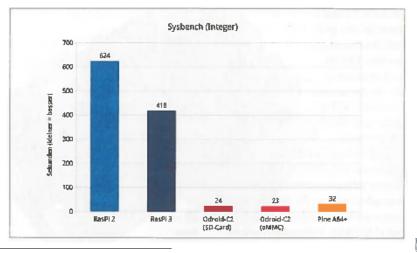
Odroid-XU4

ich also nicht n den XU4 anchließen. Der 4 Zenmeter große Luftquirl ührt dle Abwärme des Chipsates zuverlässig ab; anders als beim lautsen RasPi müssen Sie jedoch mit dem aufgeräusch leben. Laut Angaben des lerstellers springt der Lüfter jedoch nur

1 In den Dimensionen unterscheiden

Open Hardware

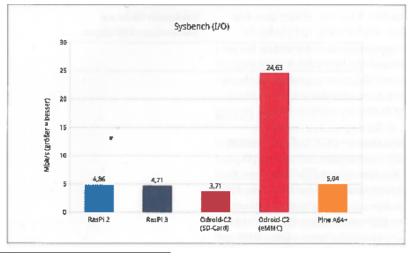
Hans-Wolfgang Loidl (Heriot-Watt Univ)


Network performance: RPi3 vs Odroid-XU4

	Raspherry Pi 3	Odroid-XU4
Samba		
Datenrate (Upload)	87,80 Mbit/s	418,88 Mbit/s
Datenrate (Download)	89,63 Mbit/s	469,45 Mbit/s
FTP		
Datenrate (Upload)	B4,14 Mbit/s	404,15 Mbit/s
Datenrate (Download)	86,18 Mbit/s	439,46 Mbit/s
SSH		
Datenrate (Upload)	86,90 Mbit/s	305,34 Mbit/s
Datenrate (Download)	88,91 Mbit/s	299,59 Mbit/s
Iperf		
Datenrate	94,73 Mbit/s	511,33 Mbit/s

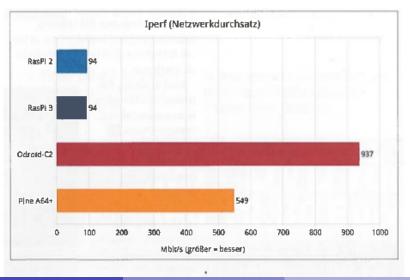
Note: Raw network performance is ca. $5 \times$ faster on the ODroid-XU4

Hans-Wolfgang Loidl (Heriot-Watt Univ)


Raspberry Pi 3 and ODroid C2: CPU Performance Comparison

⁰Material from Raspberry Pi Geek 04/2016

Hans-Wolfgang Loidl (Heriot-Watt Univ)


Raspberry Pi 3 and ODroid C2: I/O Performance Comparison

⁰Material from Raspberry Pi Geek 04/2016

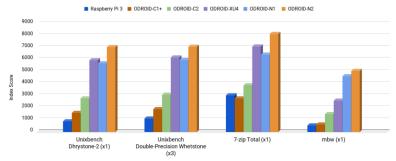
Hans-Wolfgang Loidl (Heriot-Watt Univ)

Raspberry Pi 3 and ODroid C2: Network Performance Comparison

Hans-Wolfgang Loidl (Heriot-Watt Univ)

F28HS Hardware-Software Interface

Lec 2: Sys Prg on RPi


RPi3 vs Odroid-XU4: Experience

- In terms of network-performance, the ODroid-XU4 is much faster.
- It is a good basis for a NAS (Network attached Storage).
- In terms of CPU-performance, the Odroid is slightly faster: Cortex-A15 (2.0 GHz) vs Cortex-A53 (1.2 GHz).
- However, in practice, the GUI is much slower.
- \bullet Based on the <code>gtkperf</code> GUI benchmark, the ODroid is ca. 3× slower.
- The reason for this difference is more optimisation in the device drivers for RPi's VideoCore IV GPU (compared to ODroid's Mali GPU).
- Note: To assess performance and usability, one has to consider the entire software stack, not just the raw performance of the hardware!

Performance comparison: Odroid vs RPi4

Benchmarks

⁰From RPi4 vs Odroid on MightyGadget pages

Hans-Wolfgang Loidl (Heriot-Watt Univ)

F28HS Hardware-Software Interface

■ ▶ < ■ ▶ < ■ ▶ Lec 2: Sys Prg on RPi

э

Orange Pi

- Allwinner H3 Soc: Quad-core Cortex-A7 H.265/HEVC 4K
- Mali 400MP2 GPU @ 600MHz
- 1GB DDR3 memory (shared with GPU)
- 8GB EMMC Flash
- 10/100 Ethernet RJ45
- 40 Pins Header, compatible with Raspberry Pi B+
- Runs: Android, Lubuntu, Debian, Raspbian

Beware of stability and performance of the software!

3

BA 4 BA

Latest devices

- Raspberry Pi4: available since Fall 2019
- Odroid XU4 or N2: for high performance
- Odroid C2 or HC2: for high bandwith
- Orange Pi H3: cheap but software issues

12 N A 12

Summary

- The Raspberry Pi is one of the most widely-used single-board computers.
- The RPi comes in several version (1,2,3); we are using the Raspberry Pi 2 model B.
- There is a rich software eco-system for the RPis and excellent, detailed documentation.
- A good high-CPU-performance alternatives is: Lemaker HiKey
- A good high-network-performance alternative is: Odroid-XU4
- Check out the Raspberry Pi projects available online.

33/33

3

Lec 2: Sys Prg on RPi