
F28HS Hardware-Software Interface:
Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

Semester 2 — 2018/19

0No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2018/19 1 / 18



Outline

1 Lecture 1: Introduction to Systems Programming

2 Lecture 2: Systems Programming with the Raspberry Pi

3 Lecture 3: Memory Hierarchy
Memory Hierarchy

Principles of Caches

4 Lecture 4: Programming external devices
Basics of device-level programming

5 Lecture 5: Exceptional Control Flow

6 Lecture 6: Computer Architecture
Processor Architectures Overview

Pipelining

7 Lecture 7: Code Security: Buffer Overflow Attacks

8 Lecture 8: Interrupt Handling

9 Lecture 9: Miscellaneous Topics

10 Lecture 10: Revision

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2018/19 2 / 18



Lecture 4.
Programming external devices

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 4: Prging ext devices 3 / 18



Basics of the I2C interface

So far we always used the GPIO interface to directly connect
external devices.
This is the easiest interface to use.
It is however limited in the number of connections and devices you
can connect with.
A more general interface is the I2C interface or the I2C bus.

0Based on the article The I2C-bus of the Raspberry Pi (Der I2C-Bus des Raspberry
Pi) (in German), Raspberry Pi Geek 01/15

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 4: Prging ext devices 4 / 18

http://www.raspberry-pi-geek.de/Magazin/2015/01/Der-I2C-Bus-des-Raspberry-Pi-Teil-1
http://www.raspberry-pi-geek.de/Magazin/2015/01/Der-I2C-Bus-des-Raspberry-Pi-Teil-1


Basics of the I2C interface

I2C is a serial master-slave bus.
It is serial, i. e.communication is one bit at a time.
It allows to connect several masters (data-providers) with several
slaves (data-consumers)
It is designed for short-distance communication,
i. e.communication on a board
Therefore it is also used in the standard Linux kernel to monitor,
e. g.temperature and other system health information
I2C was originally developed by Philips in the 1980s, and has
become an industry standard.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 4: Prging ext devices 5 / 18



Technical detail on I2C

Communication uses 2 connections:
I a serial data line (SDA)
I a serial clock line (SCL) for synchronising the communication

Both connections use pull-up resistors to encode one bit (high
potential = 1)
The two sides of the communication are

I a master that sends the clock information and initiates
communication

I a slave that receives the data

Typical communication rates are between 100 kb/s (standard
mode) and 5 Mb/s (ultra fast mode)
NB: I2C was not designed for communicating large volumes of
data

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 4: Prging ext devices 6 / 18



Technical detail on I2C

I2C uses a 7-bit address space, i. e.128 possible addresses of
which 16 are reserved.
The 8-th bit indicates the direction of the data transfer between
master and slave.
The usable address-space is defined in the technical
documentation of the device. E. g.
PCF8574 Port-Expander 0x20 – 0x27
PCF8583 Clock/Calendar 0xA0 – 0xA2

The device PCF8583 is a chip that provides an external clock,
with three registers starting at 0xA0
As an example we will now use the PCF8574 port-expander,
which is accessed through address 0x20.
This can be used to e. g. control an LCD display over just one data
channel.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 4: Prging ext devices 7 / 18

http://www.nxp.com/documents/data_sheet/PCF8574.pdf


Block Diagram of the PCF8574 Port Expander

NB: 1 input data channel (SDA), 8 output data channels (P0 . . . P7)

0From PCF8574 Data Sheet
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 4: Prging ext devices 8 / 18

http://www.nxp.com/documents/data_sheet/PCF8574.pdf


What’s happening on the wires?

signals start with HIGH

a change in the SDA signal, with SCL HIGH, indicates start/stop

0From PCF8574 Data Sheet
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 4: Prging ext devices 9 / 18

http://www.nxp.com/documents/data_sheet/PCF8574.pdf


How are the bits transferred?

one bit is transferred during each clock pulse
data is sampled while the SCL line is HIGH
the SDA line needs to be stable during this HIGH period

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 4: Prging ext devices 10 / 18



A typical system configuration using I2C

lines are (quasi-)bidirectional
a device generating a message is a “transmitter”
a device receiving is the “receiver”
the controller of the message is the “master”
the receivers of the message are the “slaves”

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 4: Prging ext devices 11 / 18



I2C on the Raspberry Pi 2

On the RPi2 the following pins provide an I2C interface: physical
Pin 03 (SDA) and Pin 05 (SCL) (these are pins 2 and 4 in the
BCM numbering)
In the following example we will use these pins to connect a
PCF8574 device.
In our configuration we connect the device with four buttons and
LEDs as shown in the picture below.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 4: Prging ext devices 12 / 18



Test configuration

0From The I2C-bus of the Raspberry Pi (Der I2C-Bus des Raspberry Pi) (in
German), Raspberry Pi Geek 01/15

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 4: Prging ext devices 13 / 18

http://www.raspberry-pi-geek.de/Magazin/2015/01/Der-I2C-Bus-des-Raspberry-Pi-Teil-1
http://www.raspberry-pi-geek.de/Magazin/2015/01/Der-I2C-Bus-des-Raspberry-Pi-Teil-1


Software configuration

We use the wiringPi library that we have installed and
discussed before.

We also need the i2c-tools package for the drivers
communicating over the I2C bus
To install i2c-tools do the following:
> sudo apt-get install i2c-tools
> sudo adduser pi i2c
> gpio load i2c

We can now use i2cdetect to check the connection between
our RPi2 and the external device:
> i2cdetect -y 1

This shows that we can reach the device through address 0x20
The 4 high-bits in that address refer to the LEDs, the 4 low-bits
refer to the buttons

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 4: Prging ext devices 14 / 18



Software configuration

Initially all lines are at high, so all LEDs should light up
To turn LEDs off, one-by-one we execute:

> i2cset -y 1 0x20 0x00
> i2cset -y 1 0x20 0x10
> i2cset -y 1 0x20 0x20
> i2cset -y 1 0x20 0x40
> i2cset -y 1 0x20 0x80

Now we want to configure the button as an input device:

> i2cset -y 1 0x20 0x0f
> watch ’i2cget -y 1 0x20’

Using watch we continously get output about the current value
issued by the button
Pressing the button will change the observed value

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 4: Prging ext devices 15 / 18



A C API for I2C

Now we want to use the I2C-bus to programmatically control
external devices
We use the following API provided by Gordon Henderson’s
wiringPi library:
int wiringPiI2CSetup (const int devId)

Open the I2C device, and regsiter the target device
int wiringPiI2CRead (int fd)

Simple device read
int wiringPiI2CWrite (int fd, int data)

Simple device write
int wiringPiI2CReadReg8 (int fd, int reg)

Read an 8-bit value from a regsiter on the device
int wiringPiI2CWriteReg8 (int fd, int reg, int value)

Write a 8-bit value to the given register
and similar read/write interface for 16-bit values.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 4: Prging ext devices 16 / 18



Sample Source for I2C

Using this interface we can make the LEDs blink one-by-one:
#include <wiringPiI2C.h>
int main(void) {
int handle = wiringPiI2CSetup(0x20) ;
wiringPiI2CWrite(handle, 0x10);
delay(5000);
wiringPiI2CWrite(handle, 0x20);
delay(5000);
wiringPiI2CWrite(handle, 0x40);
delay(5000);
wiringPiI2CWrite(handle, 0x80);
delay(5000);
wiringPiI2CWrite(handle, 0x00);
return 0;

}

NB: We access the LEDs as a bitmask on the high 4-bits, setting the
low 4-bits to zero in each case.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 4: Prging ext devices 17 / 18



Further Reading & Hacking

The I2C-bus of the Raspberry Pi (Der I2C-Bus des Raspberry Pi)
(in German), Raspberry Pi Geek 01/15
Data sheet of the PCF8574 port-expander
I2CTutorial
Configuring I2C, SMBus on Raspbian Linux
Using wiringPi on the PCF8574
Using an PCF8574 to control an LCD display
Another guide how to use an PCF8574 to control an LCD display

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 4: Prging ext devices 18 / 18

http://www.raspberry-pi-geek.de/Magazin/2015/01/Der-I2C-Bus-des-Raspberry-Pi-Teil-1
http://www.raspberry-pi-geek.de/Magazin/2015/01/Der-I2C-Bus-des-Raspberry-Pi-Teil-1
http://www.nxp.com/documents/data_sheet/PCF8574.pdf
http://www.robot-electronics.co.uk/i2c-tutorial
https://www.abelectronics.co.uk/kb/article/1/i2c--smbus-and-raspbian-linux
http://wiringpi.com/extensions/i2c-pcf8574/
https://arthurguy.co.uk/blog/2014/6/mini-lcd-adapter-backpack
http://www.circuitbasics.com/raspberry-pi-i2c-lcd-set-up-and-programming/

	Lecture 4: Programming external devices
	Basics of device-level programming


