
F28HS Hardware-Software Interface:
Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

Semester 2 — 2019/20

0No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2019/20 1 / 39



Outline

1 Lecture 1: Introduction to Systems Programming

2 Lecture 2: Systems Programming with the Raspberry Pi

3 Lecture 3: Memory Hierarchy
Memory Hierarchy

Principles of Caches

4 Lecture 4: Programming external devices
Basics of device-level programming

5 Lecture 5: Exceptional Control Flow

6 Lecture 6: Computer Architecture
Processor Architectures Overview

Pipelining

7 Lecture 7: Code Security: Buffer Overflow Attacks

8 Lecture 8: Interrupt Handling

9 Lecture 9: Miscellaneous Topics

10 Lecture 10: Revision

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2019/20 2 / 39



Lecture 6:
Computer Architecture

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 3 / 39



Classes of Computer Architectures

There is a wide range of computer architectures from small-scale
(embedded) to large-scale (super-computers)
In this course we focus on embedded systems
A key requirement for these devices is low power consumption
This is also increasingly important for main-stream hardware and
even for super-computing
Embedded devices are found in cars, planes, house-hold devices,
network-devices, cell-phones etc
This is the most rapidly growing market for computer hardware

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 4 / 39



Number of processors produced

0From Patterson & Hennessy, Chapter 1
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 5 / 39



Limitations to further improvements

0From Patterson & Hennessy, Chapter 1
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 6 / 39



Processor Architectures: Introduction

In this part we take a brief look at the design of processor
hardware.
This view will give you a better understanding of how computers
work.
In particular you will gain a better understanding of issues relevant
to resource consumption.
So far we have used a very simple model of a CPU: each
instruction is fetched and executed to completion before the next
one begins.
Modern processor architectures use pipeling to execute multiple
instructions simultaneously (“super-scalar architectures”).
Special measures need to be taken to ensure that the processor
computes the same results as it would with sequential execution.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 7 / 39



A simple picture of the CPU

The ALU executes arithmetic/logic operations with arguments in
registers
Load and store instructions move data between memory and
registers

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 8 / 39



A simple picture of the CPU

The ALU executes arithmetic/logic operations with arguments in
registers
Load and store instructions move data between memory and
registers

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 8 / 39



Why should you learn about architecture design?

It is intellectually interesting and important.
Understanding how the processor works aids in understanding
how the overall computer system works.
Although few people design processors, many design hardware
systems that contain processors.
You just might work on a processor design.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 9 / 39



Stages of executing an assembler instruction

Processing an assembler instruction involves a number of operations:
1 Fetch: The fetch stage reads the bytes of an instruction from

memory, using the program counter (PC) as the memory address.
2 Decode: The decode stage reads up to two operands from the

register file.
3 Execute: In the execute stage, the arithmetic/logic unit (ALU)

either performs the operation specified by the instruction,
computes the effective address of a memory reference, or
increments or decrements the stack pointer.

4 Memory: The memory stage may write data to memory, or it may
read data from memory.

5 Write back: The write-back stage writes up to two results to the
register file.

6 PC update: The PC is set to the address of the next instruction.
NB: The processing depends on the instruction, and certain stages
may not be used.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 10 / 39



Unpipelined computation hardware

Combinational
logic

R
e
g

300 ps 20 ps

Clock

Delay = 320 ps
Throughput = 3.12 GIPS

Time

I1

I2

I3

(a) Hardware: Unpipelined

(b) Pipeline diagram

On each 320 ps cycle, the system spends 300 ps evaluating a
combinational logic function and 20 ps storing the results in an output
register.

0From Bryant, Chapter 4
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 11 / 39

Unpipelined Design

Delay: 320 ps
Throughput: 3.12 GIPS



Instruction-level parallelism

Key observation: We can do the different stages of the execution
in parallel (“instruction-level parallelism”)
An architecture that allows this kind of parallelism is called
“pipelined” architecture
This is a big performance boost: ideally each instruction takes just
1 cycle (as opposed to 5 cycles for the 5 stages of the execution)
However, the ideal case is often not reached, and modern
architecture play clever tricks to get closer to the ideal case:
branch prediction, out-of-order execution etc

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 12 / 39



Three-stage pipelined computation hardware

The computation is split into stages A, B, and C. On each 120-ps
cycle, each instruction progresses through one stage.

0From Bryant, Chapter 4
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 13 / 39

Three-stage Pipeline

Delay: 360 ps
Throughput: 8.33 GIPS



Three-stage pipeline timing

The rising edge of the clock signal controls the movement of
instructions from one pipeline stage to the next.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 14 / 39



Example: One clock cycle of pipeline operation.

We now take a closer look on how values are propagated through
the pipeline.
Instruction I1 has completed stage B
Instruction I2 has completed stage A

0From Bryant, Chapter 4, Fig 4.35
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 15 / 39



Example: One clock cycle of pipeline operation.

Just before clock rise: values have been computed (stage A of
instruction I2, stage B of instruction I1), but the pipeline registers have
not been updated, yet.

0From Bryant, Chapter 4
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 16 / 39



Example: One clock cycle of pipeline operation.

On clock rise, inputs are loaded into the pipeline registers.

0From Bryant, Chapter 4
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 17 / 39



Example: One clock cycle of pipeline operation.

Signals then propagate through the combinational logic (possibly at
different rates).

0From Bryant, Chapter 4
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 18 / 39



Example: One clock cycle of pipeline operation.

Before time 360, the result values reach the inputs of the pipeline
registers, to be propagated at the next rising clock.

0From Bryant, Chapter 4
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 19 / 39



Multiple-clock-cycle pipeline diagram

0From Patterson & Hennessy, Chapter 4
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 20 / 39



Abstract view of a sequential processor

The information processed
during execution of an in-
struction follows a clockwise
flow starting with an instruc-
tion fetch using the program
counter (PC), shown in the
lower left-hand corner of the
figure.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 21 / 39



Discussion of pipelined execution

The main pipeline stages are:
Fetch: Using the program counter register as an address, the
instruction memory reads the bytes of an instruction. The PC
incrementer computes valP, the incremented program counter.
Decode: The register file has two read ports, A and B, via which
register values valA and valB are read simultaneously.
Execute: This uses the arithmetic/logic (ALU) unit for different
purposes according to the instruction type: integer operations,
memory access, or branch instructions.
Memory: The Data Memory unit reads or writes a word of
memory (memory instruction). The instruction and data memories
access the same memory locations, but for different purposes.
Write back: The register file has two write ports. Port E is used to
write values computed by the ALU, while port M is used to write
values read from the data memory.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 22 / 39



Abstract view of a pipelined processor

Hardware structure of a
pipelined implementation.
By inserting pipeline regis-
ters between the stages, we
create a five-stage pipeline.

0From Bryant, Chapter 4
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 23 / 39



Pipeline registers
The pipeline registers are labeled as follows:

F holds a predicted value of the program counter.
D sits between the fetch and decode stages. It holds information
about the most recently fetched instruction for processing by the
decode stage.
E sits between the decode and execute stages. It holds
information about the most recently decoded instruction and the
values read from the register file for processing by the execute
stage.
M sits between the execute and memory stages. It holds the
results of the most recently executed instruction for processing by
the memory stage. It also holds information about branch
conditions and branch targets for processing conditional jumps.
W sits between the memory stage and the feedback paths that
supply the computed results to the register file for writing and the
return address to the PC selection logic when completing a return
instruction.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 24 / 39



Example of instruction flow through pipeline

0From Bryant, Chapter 4Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 25 / 39



The ARM picture

The pipeline in the BCM2835 SoC for the RPi has 8 pipeline stages:
1 Fe1: The first Fetch stage, where the address is sent to memory

and an instruction is returned.
2 Fe2: Second fetch stage, where the processor tries to predict the

destination of a branch.
3 De: Decoding the instruction.
4 Iss: Register read and instruction issue
5 Only for ALU operations:

1 Sh: Perform shift operations as required.
2 ALU: Perform arithmetic/logic operations.
3 Sat: Saturate integer results.

6 WBi: Write back of data from any of the above sub-pipelines.

0See slidesRPiArch and the table in Smith’s book
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 26 / 39



The ARM picture

The pipeline in the BCM2835 SoC for the RPi has 8 pipeline stages:
1 Fe1: The first Fetch stage, where the address is sent to memory

and an instruction is returned.
2 Fe2: Second fetch stage, where the processor tries to predict the

destination of a branch.
3 De: Decoding the instruction.
4 Iss: Register read and instruction issue
5 Only for Multiply operations:

1 MAC1: First stage of the multiply-accumulate pipeline.
2 MAC2: Second stage of the multiply-accumulate pipeline.
3 MAC3: Third stage of the multiply-accumulate pipeline.

6 WBi: Write back of data from any of the above sub-pipelines.

0See slidesRPiArch and the table in Smith’s book
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 26 / 39



The ARM picture

The pipeline in the BCM2835 SoC for the RPi has 8 pipeline stages:
1 Fe1: The first Fetch stage, where the address is sent to memory

and an instruction is returned.
2 Fe2: Second fetch stage, where the processor tries to predict the

destination of a branch.
3 De: Decoding the instruction.
4 Iss: Register read and instruction issue
5 Only for Load/Store operations:

1 ADD: Address generation stage.
2 DC1: First stage of data cache access.
3 DC2: Second stage of data cache access.

6 WBi: Write back of data from any of the above sub-pipelines.

0See slidesRPiArch and the table in Smith’s book
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 26 / 39



Pipelining and branches

How can a pipelined architecture deal with conditional branches?
In this case the processor doesn’t know the successor instruction
until further down the pipeline.
To deal with this, modern architectures perform some form of
branch prediction in hardware.
There are two forms of branch prediction:

I static branch prediction always takes the same guess (e.g. guess
always taken)

I dynamic branch prediction uses the history of the execution to take
better guesses

Performance is significantly higher when branch predictions are
correct
If they are wrong, the processor needs to stall or inject bubbles
into the pipeline

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 27 / 39



Example: bad branch prediction

.global _start

.text
_start: EORS R1, R1, R1 @ always 0

BNE target @ Not taken
MOV R0, #11 @ fall through
MOV R7, #1
SWI 0

target: MOV R0, #1
MOV R7, #1
SWI 0

Branch prediction: we assume the processor takes an always taken
policy, i.e. it always assumes that that a branch is taken
NB: the conditional branch (BNE) will never be taken, because
exclusive-or with itself always gives 0, i.e. this is a deliberately bad
example for the branch predictor

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 28 / 39



Processing mispredicted branch instructions.

Predicting “branch taken”, instruction 0x014 is fetched in cycle 3,
and instruction 0x018 is fetched in cycle 4.
In cycle 4 the branch logic detects that the branch is not taken
It therefore abandons the execution of 0x014 and 0x018 by
injecting bubbles into the pipeline.
The result will be as expected, but performance is sub-optimal!

0Adapted from Bryant, Figure 4.62
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 29 / 39



Example of bad branch prediction

Code example: sumav3 asm

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 30 / 39



Hazards of Pipelining

Pipelining complicates the processing of instructions because of:
I Control hazards, where branches are mis-predicted (as we have

seen)
I Data hazards, where data dependencies exist between

subsequent instructions
Several ways exist to solve these problems:

I To deal with control hazards, branch prediction is used and, if
necessary, partially executed instructions are abandoned.

I To deal with data hazards, bubbles can be injected to delay the
execution of instructions, or data in pipeline registers (but not
written back) can be forwarded to other stages in the pipeline.

A lot of the complexities in modern processors is due to deep
pipelining, (possibly dynamic) branch prediction, and forwarding of
data

For details on pipelining and data hazards, see Bryant & O’Hallaron,
Computer Systems: A Programmer’s View, Chapter 4 (especially
Sec 4.4 and 4.5).

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 31 / 39



Data Hazards

The branch-prediction example above was a case of a control
hazard.
Now we look into a simple example of a data hazard.
Consider the following simple ARM assembler program:

ADD R3, R1, R2 @ R3 = R1 + R2
SUB R0, R3, R4 @ R0 = R3 - R4

Note, the result from the first instruction, in R3, will only become
available in the write-back (5th) stage
But, the data in R3 is needed already in the decode (2nd) stage of
the second instruction
Without intervention, this would stall the pipeline, similar to the
branch-mis-prediction case
The solution to this is to introduce forwarding (or by-passing) to
the hardware of the processor

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 32 / 39



A Graphical Representation of Forwarding

0From Patterson & Hennessy, Chapter 4
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 33 / 39



Example: Reordering Code to Avoid Pipeline Stalls

We have previously examined, how C expressions are compiled to
Assembler code. For example, consider this C program fragment:

int a, b, c, d, e, f;
a = b + e;
c = b + f;

Knowing about control and data hazards motivates reordering of
code that should be done by the compiler to avoid pipeline stalls.
Such reordering is commonly done in the backend of compilers.
Therefore, the sequence of Assembler instructions might be
different from the one you expect.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 34 / 39



Data layout and code for a C expression

0From Patterson & Hennessy, Chapter 4
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 35 / 39



Example: Reordering Code to Avoid Pipeline Stalls

Example: Translate the following C expression into Assembler:

int a, b, c, d, e, f;
a = b + e;
c = b + f;

Example: We assume the variables are stored in memory, starting
from the location held in register R0. Here is the naive Assembler code:

LDR R1, [R0, #4] @ load b
LDR R2, [R0, #16] @ load e
ADD R3, R1, R2 @ b + e
STR R3, [R0, #0] @ store a
LDR R4, [R0, #20] @ load f
ADD R5, R1, R4 @ b + f
STR R5, [R0, #12] @ store c

Can you spot the data hazard in this example?
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 36 / 39



Example: Reordering Code to Avoid Pipeline Stalls

Example: Translate the following C expression into Assembler:

int a, b, c, d, e, f;
a = b + e;
c = b + f;

Example: We assume the variables are stored in memory, starting
from the location held in register R0. Here is the naive Assembler code:

LDR R1, [R0, #4] @ load b
LDR R2, [R0, #16] @ load e
ADD R3, R1, R2 @ b + e
STR R3, [R0, #0] @ store a
LDR R4, [R0, #20] @ load f
ADD R5, R1, R4 @ b + f
STR R5, [R0, #12] @ store c

Can you spot the data hazard in this example?
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 36 / 39



A Graphical Representation of a Load-Store Hazard

0From Patterson & Hennessy, Chapter 4
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 37 / 39



Example: Reordering Code to Avoid Pipeline Stalls

Example: Translate the following C expression into Assembler:

int a, b, c, d, e, f;
a = b + e;
c = b + f;

Example: The reordered Assembler code, eliminating the data hazard:

LDR R1, [R0, #4] @ load b
LDR R2, [R0, #16] @ load e
LDR R4, [R0, #20] @ load f; moved_up
ADD R3, R1, R2 @ b + e
STR R3, [R0, #0] @ store a
ADD R5, R1, R4 @ b + f
STR R5, [R0, #12] @ store c

Moving the third LDR instruction upward, makes its result available
soon enough to avoid a pipeline stall.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 38 / 39



Summary: Processor Architecture and Pipelining

Modern (“super-scalar”) processors can execute several
instructions at the same time, by organising the execution of an
instruction into several stages and using a pipeline structure.
This exploits instruction-level parallelism and boosts
performance.
However, there is a risk of control and data hazards, leading to
reduced performance, e.g. due to poor branch prediction
Knowing these risks, you can develop faster code!
These code transformations are often done internally by the
compiler.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 6: Computer Architecture 39 / 39


	Lecture 6: Computer Architecture
	Processor Architectures Overview


