F28HS Hardware-Software Interface:
Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

HERIOT
WAI |

UNIVERSITY

Semester 2 — 2018/19

°No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ)

2018/19

1/19

Outline

Lecture 1: Introduction to Systems Programming
Lecture 2: Systems Programming with the Raspberry Pi

Lecture 3: Memory Hierarchy
@ Memory Hierarchy
@ Principles of Caches

Lecture 4: Programming external devices
@ Basics of device-level programming

Lecture 5: Exceptional Control Flow

Lecture 6: Computer Architecture
@ Processor Architectures Overview
@ Pipelining
Lecture 7: Code Security: Buffer Overflow Attacks

Lecture 8: Interrupt Handling

Lecture 9: Miscellaneous Topics
- HERIOT
Lecture 10: Revision GYALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) 2018/19 2/19

Lecture 7: Code Security: Buffer Overflow Attacks

@ Code Security deals with writing code that is “secure” against
attacks, i.e. that cannot be tricked in performing an unintended
task.

@ This is important across all application domains, e.g. web
programming, server programming, embedded systems
programming.

@ |t is particularly important in embedded systems programming,
because you often don’t have OS protection against attacks.

@ You will learn more about security in F20CN: Computer Network
Security.

@ Here we focus on the security of low-level code and in particular
on buffer overflow attacks.

@ NB: Buffer overflow attacks are some of the most commonly
. . HERIOT
occuring security bugs WWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 7: Buffer Overflow Attacks 3/19

http://cwe.mitre.org/top25/
http://cwe.mitre.org/top25/

Dynamically Changing Attributes: setuid

Background: dynamically changing the ownership of programs.
@ Sometimes we want to specify that a file can only be modified by a

certain program.

@ Thus, we want to control access on a per-program, rather than a

per-user basis.

@ We can achieve this by creating a new user, representing the role
of a modifier for these files.

@ Mark the program, as setuid to this user.

@ This means, no matter who started the program, it will run under
the user id of this new user.

@ Example:
User Operating | Accounts | Accounting | Audit
System Program Data Trail
Sam rwx rwx r T
Alice rx x - -
Accounts program rx r w w
Bob rx r r r

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Lec 7: Buffer Overflow Attacks

HERIOT
EIWATT

4/19

Example code for setuid

static uid_t euid, uid;
int main(int argc, char x argvpl]) {
FILE *file;
/* Store real and effective user IDs x/
uid = getuid(); euid = geteuid();
/* Drop privileges «/
seteuid (uid) ;
/* Do something useful ... =*/
/* Raise privileges, in order to access the file x/
seteuid (euid) ;
/* Open the file; NB: this is owned and readable only by a diffe
file = fopen("/tmp/logfile", "a");
/* Drop privileges again =/
seteuid (uid) ;
/* Write to the file */
if (file) {
fprintf(file, "Someone used this program: UID=%d, EUID=%d\n",
}oelse { HERIOT
fprintf (stderr, "Could not open file /tmp/logfile; abortiny:ll

return 1;
Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 7: Buffer Overflow Attacks 5/19

Testing this prgram

As normal user do the following:

do everything in an open directory

cd /tmp

download the source code

wget http://www.macs.hw.ac.uk/~hwloidl/Courses/F21CN/Labs/OSsec/setuidl.c

compile the program

gcc -o sl setuidl.c

change permissions so that everyone can execute it

chmod a+x sl

check the permissions

ls —-lad sl

—rwxrwxr-x 1 hwloidl hwloidl 10046 2011-11-11 22:06 sl

generate an empty logfile

touch /tmp/logfile

change permissions to make it read/writeable only by the owner!
chmod go-rwx /tmp/logfile

check the permissions

1s -lad /tmp/logfile HERIOT

—rW——————— 1 hwloidl hwloidl 0 2011-11-11 22:06 /tmp/logfile &V
o = = = =

V #= V ==V =V VoS

V == Vo VoS

Hans-Wolfgang Loidl (Heriot-Watt Univ)

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21CN/Labs/OSsec/setuid1.c

> cd /tmp
try to run the program
> . /sl

Could not open file /tmp/logfile; aborting

this failed, because guest doesn’t have permission to write to

HERIOT
o 5 =
Hans-Wolfgang Loidl (Heriot-Watt Univ)

> cd /tmp
try to run the program
> . /sl

Could not open file /tmp/logfile; aborting
this failed, because guest doesn’t have permission to write to .

As normal user do the following

set the setuid bit

> chmod +s sl

> 1ls —lad sl

-rwsrwsr—-x 1 hwloidl hwloidl 10046 2011-11-11 22:06 sl

HERIOT
@

u]
]
I
ul
it

Hans-Wolfgang Loidl (Heriot-Watt Univ)

> cd /tmp

try to run the program

> /sl

Could not open file /tmp/logfile; aborting

this failed, because guest doesn’t have permission to write to

As normal user do the following

set the setuid bit

> chmod +s sl

> 1s —-lad sl

-rwsrwsr—-x 1 hwloidl hwloidl 10046 2011-11-11 22:06 sl

Now, as guest you can run the program:

> /sl

now this succeeds, although the user still cannot read the file
> cat /tmp/logfile

cat: /tmp/logfile: Permission denied

But the normal user can read the file, eg:

> cat /tmp/logfile
Someone used this program: UID=1701, EUID=1701 HERIOT
Someone used this program: UID=12386, EUID=12386 GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 7: Buffer Overflow Attacks 7/19

Buffer Overflow Attacks

@ Often low-level programs use fixed-size arrays (buffers) to store
data.

@ When copying into such buffers, the program has to check that it
doesn’t exceed the size of the buffer.

@ There are no automatic bounds checks in low-level languages
such as C.

@ If no check is performed, the program would just overwrite the
following data block.

@ If the data beyond the bound is chosen to be malign, executable
machine code, an attacker can gain control of the system in this
way.

IIF_RI()'}‘

LG

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 7: Buffer Overflow Attacks 8/19

Example 1: Rsyslog

The following vulnerability in the rsys1og program was reported in
Linux Magazin 12/11:

[...]

int i; /x general index for parsing =/

uchar bufParseTAG[CONF_TAG_MAXSIZE];

uchar bufParseHOSTNAME [CONF_HOSTNAME_MAXSIZE];
[...]

while (lenMsg > 0 && *p2parse != ":’ && *p2parse != ' ' &&
i < CONF_TAG_MAXSIZE) {
bufParseTAG[i++] = xp2parse++;
——-lenMsg;
}
if(lenMsg > 0 && *p2parse == ':’) {
++p2parse;
—-—-lenMsg;
bufParseTAG[i++] = ':'";
}
[...]
bufParseTAG[i] = "\0’; /+ terminate string «/

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 7: Buffer Overflow Attacks

HERIOT
Swalt

9/19

Example 2:

The following vulnerability in the rsys1og program was reported in
Linux Magazin 12/11:

[...]

int i; /* general index for parsing =/

uchar bufParseTAG[CONF_TAG_MAXSIZE];

uchar bufParseHOSTNAME [CONF_HOSTNAME_MAXSIZE];
[...]

while (lenMsg > 0 && *p2parse != ':’ && *p2parse != "' ' &&
i < CONF_TAG_MAXSIZE) {

bufParseTAG[i++] = xp2parse++;

—--lenMsg;

}

if(lenMsg > 0 && =*p2parse == ':’) {

++p2parse;

——-lenMsg;

bufParseTAG[i++] = "
}i ceed HERIOT

. .) GWAILT

bufParseTAG[i] = "\0’; /+ terminate string «/

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 7: Buffer Overflow Attacks 10/19

Discussion

@ The goal of this code is to read tags and store them in a buffer.

@ The program reads from a memory location p2parse and writes
into the buffer bufParseTAG.

@ The fixed size of the buffer is CONF_TAG MAXSIZE

@ The while-loop iterates over the input text, and also checks
whether the index i is still within bounds.

@ BUT: after the while loop, 1 or 2 characters are added to the buffer
as termination characters; this can cause a buffer overflow!

@ The impact of the overflow is system-specific. It can lead to
overwriting the variable i on the stack.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 7: Buffer Overflow Attacks 11/19

Smashing the Stack

@ One common form of exploiting a buffer overflow is to manipulate
the stack.

@ This can happen through unchecked copy operations into a local
function variable or argument.

@ This is dangerous, because local variables are kept on the stack,
together with the return address for the function.

@ Therefore, a buffer-overflow can directly modify the control-flow
in the program.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 7: Buffer Overflow Attacks 12/19

Example of Smashing the Stack

Assume, we call this func- The stack-layout for this

tion: function is:
int function() {
int a; c
char b[5]; b
char c[4]; @
y return address

HERIOT
Swalt

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 7: Buffer Overflow Attacks 13/19

Example of Smashing the Stack

ﬁgﬁume we call this func- The stack-layout for this

function is:
int function() {
int a; c
char b[5]; b
char c[4]; a

return address

A buffer overflow of b can overwrite the contents of a, or maybe even
the return address, which would change the control flow of the
program.

Stack Guard and other security programs re-order the variables on the
stack, and add variables at the end to detect overwrites.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 7: Buffer Overflow Attacks 13/19

Difficulties in exploiting the vulnerability

@ The attacker needs to locate the position of the return address,
and write the address of its own, malign code there.

@ Several techniques can be used to achieve this.

@ In a return-to-libc attack, the attacker overwrites the return
address with a call to a known libc library function (eg. system).

@ After this, the return address to the malign code and data for the
arguments to the libc function is placed.

@ This will cause a call to the libc function, followed by executing the
malign code itself.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 7: Buffer Overflow Attacks 14/19

A Worst Case Scenario

A particularly dangerous combination of weaknesses is the following:
@ A setuid function, raising privileges temporarily,
@ which contains a buffer overflow vulnerability,

@ and an attacker that plants shellcode as malign code onto the
stack.

@ If successful, the shellcode will give the attacker access to a full
shell with the privileges used in that part of the application.

@ If these are root privileges, the attacker can do anything he wants!

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 7: Buffer Overflow Attacks 15/19

Prevention Mechanisms

@ Canary variables, eg. on the stack, can detect overflows.

@ Re-ordering variables on the stack can help to reduce the impact
of a buffer overflow.

@ Compiler modifications can change the pointer semantics, eg.
never store a pointer directly, but only a version that needs to be
XORed to get to the real address.

@ Some operating systems allow to mark address blocks as
non-executable.

@ Address randomisation (re-arranging data at random in the
address space) is frequently in modern operating systems to
make it more difficult to predict where to find a return address or
similar, attackable control-flow data.

HERIOT
GWAILT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 7: Buffer Overflow Attacks 16/19

Listing 2: imap/nntpd.c

Another attack mentioned in Linux Magazin 12/11 is this one:

do {
if ((c = strrchr(str, ’,")))
xct+ = 7\0;
else
c = str;
if (!'(n % 10)) /+ alloc some more =*/
wild = xrealloc(wild, (n + 11) * sizeof(struct wildmat));

if (*c == '!’) wild[n].not = 1; /* not =*/

else if (xc == ’'@’) wild[n].not = -1; /+ absolute not (feeding)
else wild[n].not = 0;

strcpy (p, wild[n].not ? ¢ + 1 : c);
wild[n++].pat = xstrdup (pattern);
} while (c != str); %ﬁﬁ}

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 7: Buffer Overflow Attacks 17/19

Listing 2: imap/nntpd.c

Another attack mentioned in Linux Magazin 12/11 is this one:

do {
if ((c = strrchr(str, ’,")))
xct+ = 7\0;
else
c = str;
if (!'(n % 10)) /+ alloc some more =*/
wild = xrealloc(wild, (n + 11) * sizeof(struct wildmat));

if (*c == '!’) wild[n].not = 1; /* not =*/

else if (xc == ’'@’) wild[n].not = -1; /+ absolute not (feeding)
else wild[n].not = 0;

strcpy (p, wild[n].not ? ¢ + 1 : c);
wild[n++] .pat = xstrdup(pattern);
} while (c != str); %3%}

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 7: Buffer Overflow Attacks 18/19

Discussion

@ This example is part of an IMAP server for emails.
@ This code segment handles wildcards to perform operations.

@ Its weakness is that it uses st rcpy to copy a block of characters,
which copies an unbounded 0-terminated block of memory.

@ Instead, the function st rncpy should be used, which takes the
size of the block to copy as additional argument.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Lec 7: Buffer Overflow Attacks 19/19

	Lecture 7: Code Security: Buffer Overflow Attacks

