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Lecture 7.
Interrupt Handling
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What are interrupts and why do we need them?

In order to deal with internal or external events, abrupt changes in
control flow are needed.
Such abrupt changes are also called exceptional control flow
(ECF).
The system needs to take special action in these cases (call
interrupt handlers, use non-local jumps)

0Lecture based on Bryant and O’Hallaron, Ch 8
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Revision: Interrupts on different levels

An abrupt change to the control flow is called exceptional control
flow (ECF).
ECF occurs at different levels:

hardware level: e.g. arithmetic overflow events detected by the
hardware trigger abrupt control transfers to exception handlers
operating system: e.g. the kernel transfers control from one user
process to another via context switches.
application level: a process can send a signal to another process
that abruptly transfers control to a signal handler in the recipient.

We covered the application level in a previous class, today we will
focus on the OS and hardware level.
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Timers with assembler-level system calls

We have previously used C library functions to implement timers.
We will now use the ARM assembler SWI command that we know, to
trigger a system call to sigaction, getitmer or setitimer.
The corresponding codes are1:

sigaction: 67
setitimer: 104
getitmer: 105

The arguments to these functions need to be in registers: R0, R1, R2,
etc

1See Smith, Appendix B “Raspbian System Calls”
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Reminder: Interface to C library functions

getitimer, setitimer - get or set value of an interval timer
#include <sys/time.h>

int getitimer(int which, struct itimerval *curr_value);
int setitimer(int which, const struct itimerval *

new_value,
struct itimerval *old_value);

setitimer sets up an interval timer that issues a signal in an interval
specified by the new value argument, with this structure:
struct itimerval {

struct timeval it_interval; /* next value */
struct timeval it_value; /* current value */

};
struct timeval {

time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */

};
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Reminder: Setting-up a timer in C

Signals (or software interrupts) can be programmed on C level by
associating a C function with a signal sent by the kernel.
sigaction - examine and change a signal action
#include <signal.h>
int sigaction(int signum, const struct sigaction *act,

struct sigaction *oldact);

The sigaction structure is defined as something like:
struct sigaction {

void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *,

void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

};NB: the sa sigaction field defines the action to be performed when
the signal with the id in signum is sent.

1See man sigaction
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 7: Interrupt Handling 8 / 40



Timers with assembler-level system calls

We will now use the ARM assembler SWI command that we know, to
trigger a system call to sigaction, getitmer or setitimer.
The corresponding codes are2:

sigaction: 67
setitimer: 104
getitmer: 105

The arguments to these functions need to be in registers: R0, R1, R2,
etc

2See Smith, Appendix B “Raspbian System Calls”
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Example: Timers with assembler-level system calls

We need the following headers:

#include <signal.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <sys/time.h>

// sytem call codes
#define SETITIMER 104
#define GETITIMER 105
#define SIGACTION 67

// in micro-sec
#define DELAY 250000

2Sample source itimer21.c
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Our own getitimer function

static inline int getitimer_asm(int which, struct
itimerval *curr_value){

int res;
asm(/* inline assembler version of performing a system

call to GETITIMER */
"\tB _bonzo105\n"
"_bonzo105: NOP\n"
"\tMOV R0, %[which]\n"
"\tLDR R1, %[buffer]\n"
"\tMOV R7, %[getitimer]\n"
"\tSWI 0\n"
"\tMOV %[result], R0\n"
: [result] "=r" (res)
: [buffer] "m" (curr_value)
, [which] "r" (ITIMER_REAL)
, [getitimer] "r" (GETITIMER)

: "r0", "r1", "r7", "cc");
}
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Our own setitimer function

static inline int setitimer_asm(int which, const struct
itimerval *new_value, struct itimerval *old_value) {

int res;
asm(/* system call to SETITIMER */

"\tB _bonzo104\n"
"_bonzo104: NOP\n"
"\tMOV R0, %[which]\n"
"\tLDR R1, %[buffer1]\n"
"\tLDR R2, %[buffer2]\n"
"\tMOV R7, %[setitimer]\n"
"\tSWI 0\n"
"\tMOV %[result], R0\n"
: [result] "=r" (res)
: [buffer1] "m" (new_value)
, [buffer2] "m" (old_value)
, [which] "r" (ITIMER_REAL)
, [setitimer] "r" (SETITIMER)

: "r0", "r1", "r2", "r7", "cc");
}

2Sample source in itimer21.c
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Our own sigaction function

int sigaction_asm(int signum, const struct sigaction *act
, struct sigaction *oldact){

int res;
asm(/* performing a syscall to SIGACTION */

"\tB _bonzo67\n"
"_bonzo67: NOP\n"
"\tMOV R0, %[signum]\n"
"\tLDR R1, %[buffer1]\n"
"\tLDR R2, %[buffer2]\n"
"\tMOV R7, %[sigaction]\n"
"\tSWI 0\n"
"\tMOV %[result], R0\n"
: [result] "=r" (res)
: [buffer1] "m" (act)
, [buffer2] "m" (oldact)
, [signum] "r" (signum)
, [sigaction] "r" (SIGACTION)

: "r0", "r1", "r2", "r7", "cc");
}

2Sample source in itimer21.c
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Example: Timers with assembler-level system calls

The main function is as before, using our own functions:

int main () {
struct sigaction sa;
struct itimerval timer;

/* Install timer_handler as the signal handler for
SIGALRM. */

memset (&sa, 0, sizeof (sa));
sa.sa_handler = &timer_handler;

sigaction_asm (SIGALRM, &sa, NULL);
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Example: Timers with assembler-level system calls

/* Configure the timer to expire after 250 msec... */
timer.it_value.tv_sec = 0;
timer.it_value.tv_usec = DELAY;
/* ... and every 250 msec after that. */
timer.it_interval.tv_sec = 0;
timer.it_interval.tv_usec = DELAY;
/* Start a virtual timer. It counts down whenever this

process is executing. */
setitimer_asm (ITIMER_REAL, &timer, NULL);

/* Busy loop, but accepting signals */
while (1) {} ;

}

2Sample source in itimer21.c
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Timers by probing the RPi on-chip timer

The RPi 2 has an on-chip timer that ticks at a rate of 250 MHz
This can be used for getting precise timing information
(in our case) to implement a timer directly.
As before, we need to know the base address of the timer device
and the register assignment for this device.
We find both in the BCM Peripherals Manual, Chapter 12,
Table 12.1
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GPIO Register Assignment

2See BCM Peripherals Manual, Chapter 12, Table 12.1
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 7: Interrupt Handling 17 / 40



Example code

#define TIMEOUT 3000000
...
static volatile unsigned int timerbase ;
static volatile uint32_t *timer ;
...
timerbase = (unsigned int)0x3F003000 ;
// memory mapping
timer = (int32_t *)mmap(0, BLOCK_SIZE, PROT_READ|

PROT_WRITE, MAP_SHARED, fd, timerbase) ;
if ((int32_t)timer == (int32_t)MAP_FAILED)
return failure (FALSE, "wiringPiSetup: mmap (TIMER)

failed: %s\n", strerror (errno)) ;
else
fprintf(stderr, "NB: timer = %x for timerbase %x\n",

timer, timerbase);

As usual we memory-map the device memory into the accessible
address space.
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Example code

{ volatile uint32_t ts = *(timer+1); // word offset
volatile uint32_t curr;

while( ( (curr=*(timer+1)) - ts ) < TIMEOUT ) { /*
nothing */ }

}

To wait for TIMEOUT micro-seconds, the core code just has to read
from location timer+1 to get and check the timer value.

2Sample source in itimer31.c; see also this discussion on the BakingPi pages
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Summary

In order to implement a time-out functionality, several mechanisms
can be used:

I C library calls (on top of Raspbian)
I assembler-level system calls (to the kernel running inside

Raspbian)
I directly probing the on-chip timer available on the RPi2

We have seen sample code for each of the 3 mechanisms.
Also, on embedded systems time-critical code is often needed, so
access to a precise on-chip timer is important for many kinds of
applications.
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Interrupt requests in Assembler

Exception
table

0
1

2 ...

n-1

 Code for  
exception handler 0

 Code for  
exception handler 0

Code for 
exception handler 1

Code for 
exception handler 1

Code for
exception handler 2

Code for
exception handler 2

Code for 
exception handler n-1

Code for 
exception handler n-1

...
The central data structure for handling (hardware) interrupts is the
interrupt vector table (or more generally exception table).
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Interrupt handlers in C + Assembler

We will now go through the steps of handling hardware interrupts
directly in assembler.
To implement interrupt handlers directly on the RPi2 we need to:

1 Build vector tables of interrupt handlers
2 Load vector tables
3 Set registers to enable specific interrupts
4 Set registers to globally enable interrupts

2Valvers: Bare Metal Programming in C (Pt4)
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Building an Interrupt Vector Table

The relevant information for the Cortex A7 processor, used on the
RPi2, can be found in the ARMv7 reference manual in Section B1.8.1
(Table B1-3).

Exception Type Mode VE Normal Address
Reset Supervisor 0x00
Undefined Instruction Undefined 0x04
Software Interrupt (SWI) Supervisor 0x08
Prefetch Abort Abort 0x0C
Data Abort Abort 0x10
IRQ (Interrupt) IRQ 0 0x18
IRQ (Interrupt) IRQ 1 undef
FIQ (Fast Interrupt) FIQ 0 0x1C
FIQ (Fast Interrupt) FIQ 1 undef

NB: each entry is 4 bytes; just enough to code a branch operation to
the actual code NB: when an exception occurs the processor changes
mode to the exception-specific mode
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NB: For Fast Interrupt exception, a lot of registers have been replaced
by mode-specific registers, i.e. these registers can be used in the
interrupt handler
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Coding Interrupt Handlers

An interrupt handler is a block of C (or assembler) code, that is called
on an interrupt. The interrupt vector table links the interrupt number
with the code.
We need to inform the compiler that a function should be used as an
interrupt handler like this:

void f () __attribute__ ((interrupt ("IRQ")));

Other permissible values for this parameter are: IRQ, FIQ, SWI,
ABORT and UNDEF.
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Example interrupt handler

A very basic “undefined instruction” handler looks like this:

/**
@brief The undefined instruction interrupt handler

If an undefined instruction is encountered, the CPU will
start

executing this function. Just trap here as a debug
solution.

*/
void __attribute__((interrupt("UNDEF")))

undefined_instruction_vector(void)
{

while( 1 )
{

/* Do Nothing! */
}

}
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Constructing Vector Tables
“Our vector table:”
_start:

ldr pc, _reset_h
ldr pc, _undefined_instruction_vector_h
ldr pc, _software_interrupt_vector_h
ldr pc, _prefetch_abort_vector_h
ldr pc, _data_abort_vector_h
ldr pc, _unused_handler_h
ldr pc, _interrupt_vector_h
ldr pc, _fast_interrupt_vector_h

_reset_h: .word _reset_
_undefined_instruction_vector_h: .word

undefined_instruction_vector
_software_interrupt_vector_h: .word

software_interrupt_vector
_prefetch_abort_vector_h: .word

prefetch_abort_vector
_data_abort_vector_h: .word data_abort_vector
_unused_handler_h: .word _reset_
_interrupt_vector_h: .word interrupt_vector
_fast_interrupt_vector_h: .word

fast_interrupt_vector
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Constructing Vector Tables

_reset_:

mov r0, #0x8000
mov r1, #0x0000
ldmia r0!,{r2, r3, r4, r5, r6, r7, r8, r9}
stmia r1!,{r2, r3, r4, r5, r6, r7, r8, r9}
ldmia r0!,{r2, r3, r4, r5, r6, r7, r8, r9}
stmia r1!,{r2, r3, r4, r5, r6, r7, r8, r9}

NB: using tools such as gdb and objdump we know that “our” vector
table is at address 0x00008000; in supervisor mode we can write to
any address, so the code above moves our vector table to the start of
the memory, where it should be
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The Interrupt Controller

We need to enable interrupts by
enabling the kind of interrupt we are interested in;
globally enabling interrupts

The global switch ensures that disabling interrupts can be done in just
one instruction.
But we still want more detailed control over different kinds of interrupts
to treat them differently.
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Interrupt Control Registers

The interrupt controller on an ARM architecture, provides registers to
control the behaviour of interrupt handling. We can use these registers
in a similar way as the GPIO registers.
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Interrupt Control Registers

We now define a structure for the interrupt controller registers,
matching the table on the previous slide
/** @brief See Section 7.5 of the BCM2835 ARM Peripherals docu

*/
#define RPI_INTERRUPT_CONTROLLER_BASE ( PERIPHERAL_BASE + 0

xB200 )

/** @brief The interrupt controller memory mapped register set

*/
typedef struct {

volatile uint32_t IRQ_basic_pending;
volatile uint32_t IRQ_pending_1;
volatile uint32_t IRQ_pending_2;
volatile uint32_t FIQ_control;
volatile uint32_t Enable_IRQs_1;
volatile uint32_t Enable_IRQs_2;
volatile uint32_t Enable_Basic_IRQs;
volatile uint32_t Disable_IRQs_1;
volatile uint32_t Disable_IRQs_2;
volatile uint32_t Disable_Basic_IRQs;
} rpi_irq_controller_t;
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Auxiliary functions

Functions to get the base address of the peripherals:

/** @brief The BCM2835 Interupt controller peripheral at its
base address */

static rpi_irq_controller_t* rpiIRQController =
(rpi_irq_controller_t*)RPI_INTERRUPT_CONTROLLER_BASE;

/**
@brief Return the IRQ Controller register set

*/
rpi_irq_controller_t* RPI_GetIrqController( void )
{

return rpiIRQController;
}
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The ARM Timer Peripheral

The ARM timer is in the basic interrupt set. To enable interrupts from
the ARM Timer peripheral we set the relevant bit in the Basic
Interrupt enable register:
/** @brief Bits in the Enable_Basic_IRQs register to enable

various interrupts.
See the BCM2835 ARM Peripherals manual, section 7.5 */

#define RPI_BASIC_ARM_TIMER_IRQ (1 << 0)
#define RPI_BASIC_ARM_MAILBOX_IRQ (1 << 1)
#define RPI_BASIC_ARM_DOORBELL_0_IRQ (1 << 2)
#define RPI_BASIC_ARM_DOORBELL_1_IRQ (1 << 3)
#define RPI_BASIC_GPU_0_HALTED_IRQ (1 << 4)
#define RPI_BASIC_GPU_1_HALTED_IRQ (1 << 5)
#define RPI_BASIC_ACCESS_ERROR_1_IRQ (1 << 6)
#define RPI_BASIC_ACCESS_ERROR_0_IRQ (1 << 7)

and in our main C code to enable the ARM Timer IRQ:
/* Enable the timer interrupt IRQ */
RPI_GetIrqController()->Enable_Basic_IRQs =

RPI_BASIC_ARM_TIMER_IRQ;
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Before using the ARM Timer it also needs to be enabled.
Again, we map the ARM Timer peripherals register set to a C struct to
give us access to the registers:
/** @brief See Section 14 of thed BCM2835 Peripherals PDF */
#define RPI_ARMTIMER_BASE ( PERIPHERAL_BASE + 0xB400 )

/** @brief 0 : 16-bit counters - 1 : 23-bit counter */
#define RPI_ARMTIMER_CTRL_23BIT ( 1 << 1 )

#define RPI_ARMTIMER_CTRL_PRESCALE_1 ( 0 << 2 )
#define RPI_ARMTIMER_CTRL_PRESCALE_16 ( 1 << 2 )
#define RPI_ARMTIMER_CTRL_PRESCALE_256 ( 2 << 2 )

/** @brief 0 : Timer interrupt disabled - 1 : Timer interrupt
enabled */

#define RPI_ARMTIMER_CTRL_INT_ENABLE ( 1 << 5 )
#define RPI_ARMTIMER_CTRL_INT_DISABLE ( 0 << 5 )

/** @brief 0 : Timer disabled - 1 : Timer enabled */
#define RPI_ARMTIMER_CTRL_ENABLE ( 1 << 7 )
#define RPI_ARMTIMER_CTRL_DISABLE ( 0 << 7 )
...
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Accessing the ARM Timer Register

This code gets the current value of the ARM Timer:

static rpi_arm_timer_t* rpiArmTimer = (rpi_arm_timer_t*)
RPI_ARMTIMER_BASE;

rpi_arm_timer_t* RPI_GetArmTimer(void)
{

return rpiArmTimer;
}
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ARM Timer setup

Then, we can setup the ARM Timer peripheral from the main C code
with something like:

/* Setup the system timer interrupt */
/* Timer frequency = Clk/256 * 0x400 */
RPI_GetArmTimer()->Load = 0x400;

/* Setup the ARM Timer */
RPI_GetArmTimer()->Control =

RPI_ARMTIMER_CTRL_23BIT |
RPI_ARMTIMER_CTRL_ENABLE |
RPI_ARMTIMER_CTRL_INT_ENABLE |
RPI_ARMTIMER_CTRL_PRESCALE_256;

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 7: Interrupt Handling 36 / 40



Globally enable interrupts

We have now configured the ARM Timer and the Interrupt controller.
We still need to globally globally enable interrupts, which needs some
assembler code.

_enable_interrupts:
mrs r0, cpsr @ move status to reg
bic r0, r0, #0x80 @ modify status
msr cpsr_c, r0 @ move reg to status

mov pc, lr
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An LED control interrupt handler

Our interrupt handler should control an LED, as usual.
Note that we need to clear the interrupt pending bit in the handler, to
avoid immediately re-issuing an interrupt.
/* @brief The IRQ Interrupt handler: blinking LED */
void __attribute__((interrupt("IRQ"))) interrupt_vector(void)
{

static int lit = 0;

/* Clear the ARM Timer interrupt */
RPI_GetArmTimer()->IRQClear = 1;

/* Flip the LED */
if( lit ) {

LED_OFF();
lit = 0;

} else {
LED_ON();
lit = 1;

}
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Kernel function

On a bare-metal system, the following wrapper code is needed to start
the system:
/** Main function - we’ll never return from here */
void kernel_main( unsigned int r0, unsigned int r1, unsigned int atags )
{

/* Write 1 to the LED init nibble in the Function Select GPIO
peripheral register to enable LED pin as an output */

RPI_GetGpio()->LED_GPFSEL |= LED_GPFBIT;

/* Enable the timer interrupt IRQ */
RPI_GetIrqController()->Enable_Basic_IRQs = RPI_BASIC_ARM_TIMER_IRQ;

/* Setup the system timer interrupt */
/* Timer frequency = Clk/256 * 0x400 */
RPI_GetArmTimer()->Load = 0x400;

/* Setup the ARM Timer */
RPI_GetArmTimer()->Control =

RPI_ARMTIMER_CTRL_23BIT |
RPI_ARMTIMER_CTRL_ENABLE |
RPI_ARMTIMER_CTRL_INT_ENABLE |
RPI_ARMTIMER_CTRL_PRESCALE_256;

/* Enable interrupts! */
_enable_interrupts();

/* Never exit as there is no OS to exit to! */
while(1)
{

}
}
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Summary

Interrupts trigger an exceptional control flow, to deal with
special situations.
Interrupts can occur at several levels:

I hardware level, e.g. to report hardware faults
I OS level, e.g. to switch control between processes
I application level, e.g. to send signals within or between processes

The concept is the same on all levels: execute a short sequence
of code, to deal with the special situation.
Depending on the source of the interrupt, execution will continue
with the same, the next instruction or will be aborted.
The mechanisms how to implement this behaviour are different:
in software on application level, in hardware with jumps to entries
in the interrupt vector table on hardware level

2Complete bare-metal application: Valvers: Bare Metal Programming in C (Pt4)
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