
F28HS Hardware-Software Interface:
Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

Semester 2 — 2019/20

0No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2019/20 1 / 23

Outline

1 Tutorial 1: Using Python and the Linux FS for GPIO
Control

2 Tutorial 2: Programming an LED

3 Tutorial 3: Programming a Button input device

4 Tutorial 4: Inline Assembler with gcc

5 Tutorial 5: Programming an LCD Display

6 Tutorial 6: Performance Counters on the RPi 2

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2019/20 2 / 23

Tutorial 1: Using Python for GPIO Control

In this first tutorial we will get started with programming the RPi2
to control output devices.
We will use Python as programming language and existing
libraries for controlling the GPIO pins on the RPi2, which simplifies
the programming considerably.
The main learning objective for this course, however, is to achieve
such control by using C and Assembler, and we will focus on
these languages for the remaining tutorials.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 3 / 23

GPIO pins of the RPi2

The Raspberry Pi 2 has 40 General Purpose Input/Output
(GPIO) pins.
These can be used to control a range of devices, or to receive
data from such devices.
You need to use the jumper cables in the Raspberry Pi2 starter kit
to connect devices.
In this first tutorial we will attach an LED and make it blink

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 4 / 23

Map of the GPIO pins of a RPi2

0Available from http://pinout.xyz/
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 5 / 23

http://pinout.xyz/

Electronics basics and wiring diagrams

For a good, introductory discussion on how to wire-up external devices
to the Raspberry Pi 2 follow this link.
You can get a small CamJam EduKit, including LEDs, button, resistors
and jumper cables, from ThePiHut. These are all include in your RPi2
starter kit, so you don’t need these, but they may be useful for
experimentation.
The following slides summarise the main steps from this web page.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 6 / 23

https://thepihut.com/blogs/raspberry-pi-tutorials/27968772-turning-on-an-led-with-your-raspberry-pis-gpio-pins
https://thepihut.com/collections/camjam-edukit/products/camjam-edukit

Connecting an LED to the RPi2

As the first exercise in controlling an external LED we need:
a Breadboard
an LED
a 330 ohm resistor
two Male-Female jumper wires

0For details see this page
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 7 / 23

https://thepihut.com/blogs/raspberry-pi-tutorials/27968772-turning-on-an-led-with-your-raspberry-pis-gpio-pins

How to use a Breadboard

The breadboard is a way of connecting electronic components to each
other without having to solder them together.

Using a breadboard, like the one above, simplifies the wiring,
especially for larger projects (as in CW2).

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 8 / 23

External devices: LED and Resistor

In this tutorial, we only want to connect an LED to
the RPi2, using a breadboard.
Note that the LED has two legs of different lengths.
The longer leg, is always connected to the positive
supply of the circuit.
The shorter leg is connected to the negative side
of the power supply, known as ‘ground’.
You must protect the LED with a resistor, otherwise
the LED will try to draw more power than needed
and might burn out the RPi2.
Putting the resistors in the circuit will ensure that
only this small current will flow and the Pi will not be
damaged.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 9 / 23

Fritzing Diagrams

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 10 / 23

The Fritzing Diagram Explained

The Fritzing diagram on the previous slide shows how to wire-up
external devices, i.e. which pins to connect to which rows/columns on
the breadboard to complete a circuit.

Use one of the jumper wires to connect a ground pin to the rail,
marked with blue, on the breadboard. The female end goes on
the Pi’s pin, and the male end goes into a hole on the breadboard.
Then connect the resistor from the same row on the breadboard
to a column on the breadboard, as shown in the diagram.
Next, push the LEDs legs into the breadboard, with the long leg
(with the kink) on the right.
Lastly, complete the circuit by connecting pin 18 to the right hand
leg of the LED. This is shown here with the orange wire.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 11 / 23

Using Python to control a GPIO pin

Details of the software setup can be found in Chapter 8 of “Adventures
in Raspberry Pi”.

First install the Python library for GPIO support:

> sudo apt-get install python-RPi.GPIO

To test the version of the RPi you have do the following:

>>> import RPi.GPIO as GPIO
>>> GPIO.RPI_REVISION
2

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 12 / 23

Python code to control a GPIO pin

First we import all required libraries and set some constants, in
particular the pin number that we use for the LED. We need to specify
which numbering of the pins to use, and then setup the connection.
#!/usr/bin/python

External module imports
import RPi.GPIO as GPIO
import time

Pin Definitons:
ledPin = 23 # Broadcom pin 23 (P1 pin 16)

Pin Setup:
GPIO.setmode(GPIO.BCM) # Broadcom pin-numbering scheme
GPIO.setup(ledPin, GPIO.OUT) # LED pin set as output

Initial state for LEDs:
GPIO.output(ledPin, GPIO.LOW)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 13 / 23

Python code to control a GPIO pin (cont’d)

The main part of the program is the loop below, which continously
turns the LED on and off, using a delay of 75ms:

while True:
try:
GPIO.output(ledPin, GPIO.HIGH)
time.sleep(0.075)
GPIO.output(ledPin, GPIO.LOW)
time.sleep(0.075)

except KeyboardInterrupt: # If CTRL+C is pressed, exit
cleanly:

GPIO.cleanup() # cleanup all GPIO

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 14 / 23

Tutorial 1: Using the Linux FS for GPIO Control

One design principle in Linux is to control and view system
information through files.
We have seen this in class by, e.g. looking up details about the
CPU by cat /proc/cpuinfo

This tutorial will demonstrate how filesystem operations can be
used to easily control GPIO pins on the RPi 2

NB: You need a Linux kernel with support for SysFS. Raspbian 7, as
we use it in the kit handed out for this course, provides this.
To check whether SysFS is supported do:
> sudo sh -c "cat /lib/modules/‘uname -r‘/build/.config |

fgrep SYSFS"

and look for a line like this
> CONFIG_SYSFS=y

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 15 / 23

Basics of SysFS

The Linux kernel provides several RAM based file systems.
These file systems provide low-level hardware information and in
some cases a way to control these.
The basic programmer API is to use the system-level read(2)
and write(2) commands on the files in these file systems.
Each file has a special meaning to enable hardware interaction.
The read and write function calls, result in callbacks in the
Linux kernel which has access to the corresponding value.
The benefit of using the read and write functions is that the user
space has a lot of tools available to send data to the kernel space
(e.g. cat(1), echo (1)).

0From: Kernel Space - User Space Interfaces
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 16 / 23

http://people.ee.ethz.ch/~arkeller/linux/multi/kernel_user_space_howto-2.html

SysFS filesystem

SysFS was designed to represent the whole device model as
seen from the Linux kernel
It contains information about devices, drivers and buses and their
interconnections.
SysFS is heavily structured and contains a lot of links.

The main subdirectories of interest for us are:
sys/block/ all known block devices such as hda/ ram/ sda/
sys/class/ for each device type there is a subdirectory: for
example /printer or /sound
sys/device/ all devices known by the kernel, organised by the
bus they are connected to

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 17 / 23

Controlling GPIO pins using SysFS

We want to control the GPIO pins on the RPi2 using the SysFS
interface.
To this end we need to:

I tell the system that we want to access a specific pin (“export” this
device to the SysFS)

I configure the mode of the pin, as either in or out
I read/write from/to the device using standard tools such as echo

and cat
I finally, remove the device from the filesystem (“unexport” it from

SysFS)
All of these steps can be done as one-liners from the
command-line
No additional libraries need to be installed

NB: This interface is useful for testing a wiring or debugging the
hardware. The main learning objective of the course is to learn how to
do the above operations directly on the device (in C or Assembler),
without involving the operating system or an external library at all.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 18 / 23

The Shell Code for Controlling a GPIO
the pin to control
PIN=23

make this pin available through the SysFS
echo $PIN > /sys/class/gpio/export

now, set this pin to output
echo out > /sys/class/gpio/gpio${PIN}/direction

write a value to this pin
echo 1 > /sys/class/gpio/gpio${PIN}/value

wait for some seconds
sleep 3s

write a value to this pin
echo 0 > /sys/class/gpio/gpio${PIN}/value

make this pin unavailable through the SysFS
echo $PIN > /sys/class/gpio/unexport

NB: You need to run this as root, i.e. type sudo sh sysfs_23.sh
NB: Version with a pin as param: sudo sh sysfs.sh -p 23

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 19 / 23

Other useful information in the SysFS

You can get the information about the model like this:
> cat /sys/firmware/devicetree/base/model

You can get the information about the cache line size like this (not
enabled under Raspbian by default):
> cat /sys/devices/system/cpu/cpu0/cache/index0/coherency_line_size

On Debian-based systems, such as Ubuntu, you can also get this info
by typing:
> getconf -a

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 20 / 23

Useful information in the ProcFS filesystem

The /proc filesystem provides information about the processor:
> cat /proc/cpuinfo

gives detailed information about the processor, split by core, eg. each
core is an ARMv7 Processor and the neon instruction set is enabled.
Detailed information about the memory is available via:

> cat /proc/meminfo

shows that the total memory is 949408 kB, i. e. ca. 1GB.

> cat /proc/iomem

shows the structure of the memory, including the location of the GPIO
memory.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 21 / 23

The ProcFS filesystem

There is a special subdirectory: /proc/sys. It allows to configure a
lot of parameters of the running system.

> cat /proc/sys/kernel/osrelease

tells us that the kernel version is 3.18.11-v7+.
There are a lot of files in this directory, showing the current state of the
kernel. For interacting with the kernel, the sysctl interface should be
used.
The sysctl infrastructure is designed to configure kernel parameters
at run time. E. g.

> sysctl --all

lists all kernel parameters.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 22 / 23

Further Reading & Deeper Hacking

Kernel Space - User Space Interfaces, Ariane Keller
ProcFS Kernel Docu
Linux Device Drivers, 3rd ed, Jonathan Corbet, Alessandro
Rubini, Greg Kroah-Hartman
More detailed documentation on SysFS
Shell code samples with SysFS

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 23 / 23

http://people.ee.ethz.ch/~arkeller/linux/multi/kernel_user_space_howto-2.html
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
http://www.oreilly.com/openbook/linuxdrive3/book/
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
http://elinux.org/RPi_GPIO_Code_Samples#Shell

	Tutorial 1: Using Python and the Linux FS for GPIO Control

