
F28HS Hardware-Software Interface:
Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

Semester 2 — 2019/20

0No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2019/20 1 / 21

Outline

1 Tutorial 1: Using Python and the Linux FS for GPIO Control

2 Tutorial 2: Programming an LED

3 Tutorial 3: Programming a Button input device

4 Tutorial 4: Inline Assembler with gcc

5 Tutorial 5: Programming an LCD Display

6 Tutorial 6: Performance Counters on the RPi 2

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2019/20 2 / 21

Tutorial 2: Programming an LED

This tutorial will deal with programming an LED output device.
This is the “hello world” program for external devices.
It will deal with programming techniques common to other output
devices.
The learning objective of this exercise is to learn how to directly
control an external device through C and Assembler programs.
We will also cover easier ways of external control, however these
should only be used to test your hardware/software configuration
and don’t replace the programming component.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 3 / 21

The high-level picture

From the main chip of the RPi2 we want to control an (external)
device, here an LED.
We use one of the GPIO pins to connect the device.
Logically we want to send 1 bit to this device to turn it on/off.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 4 / 21

The low-level picture

Programmatically we achieve that, by
memory-mapping the address space of the GPIOs into user-space
now, we can directly access the device via memory read/writes
we need to pick-up the meaning of the peripheral registers from
the BCM2835 peripherals sheet

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 5 / 21

BCM2835 GPIO Peripherals

The meaning of the registers is (see p90ff of BCM2835 ARM
peripherals):

GPFSEL: function select registers (3 bits per pin); set it to 0 for
input, 1 for output; 6 more alternate functions available
GPSET: set the corresponding pin
GPCLR: clear the corresponding pin
GPLEV: return the value of the corresponding pin

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 6 / 21

https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

GPIO Register Assignment

The GPIO has 48 32-bit registers (RPi2; 41 for RPi1).
0See BCM Peripherals Manual, Chapter 6, Table 6.1

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 7 / 21

https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

GPIO Register Assignment

GPIO registers (Base address: 0x3F200000)

12:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
11:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
10:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
9: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
8: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
7: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
6: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
5: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
4: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
3: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
2: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
1: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
0: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12GPFSEL0

GPFSEL1
GPFSEL2
GPFSEL3
GPFSEL4
GPFSEL5

—
GPFSET0
GPFSET1

—
GPFCLR0
GPFCLR1

—

0See BCM Peripherals, Chapter 6, Table 6.1
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 8 / 21

Locating the GPFSEL register for pin 47 (ACT)

This table explains the meaning of the bits in register GPFSEL4.
0See BCM Peripherals Manual, Chapter 6, Table 6.1

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 9 / 21

Accessing a GPIO Pin

Now we want to control the on-chip LED, called ACT, that normally
indicates activity.
The pin number of this device on the RPi2 is: 47
We need to calculate registers and bits corresponding to this pin
The GPFSEL register for pin 47 is 4 (per docu, this register covers
pins 40-49 (Tab 6-6, p. 94)
For each register 3 bits are used to select the function of that pin:
bits 0–2 for register 40 etc
Thus, bits 21–23 cover register 47 (7 × 3)
The function that we need to select is OUTPUT, which is encoded
as the value 1
We need to write the value 0x01 into bits 21–23 of register 4

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 10 / 21

Accessing a GPIO Pin

Now we want to control the on-chip LED, called ACT, that normally
indicates activity.
The pin number of this device on the RPi2 is: 47
We need to calculate registers and bits corresponding to this pin
The GPFSEL register for pin 47 is 4 (per docu, this register covers
pins 40-49 (Tab 6-6, p. 94)
For each register 3 bits are used to select the function of that pin:
bits 0–2 for register 40 etc
Thus, bits 21–23 cover register 47 (7 × 3)
The function that we need to select is OUTPUT, which is encoded
as the value 1
We need to write the value 0x01 into bits 21–23 of register 4

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 10 / 21

Accessing a GPIO Pin

Now we want to control the on-chip LED, called ACT, that normally
indicates activity.
The pin number of this device on the RPi2 is: 47
We need to calculate registers and bits corresponding to this pin
The GPFSEL register for pin 47 is 4 (per docu, this register covers
pins 40-49 (Tab 6-6, p. 94)
For each register 3 bits are used to select the function of that pin:
bits 0–2 for register 40 etc
Thus, bits 21–23 cover register 47 (7 × 3)
The function that we need to select is OUTPUT, which is encoded
as the value 1
We need to write the value 0x01 into bits 21–23 of register 4

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 10 / 21

Accessing a GPIO Pin

Now we want to control the on-chip LED, called ACT, that normally
indicates activity.
The pin number of this device on the RPi2 is: 47
We need to calculate registers and bits corresponding to this pin
The GPFSEL register for pin 47 is 4 (per docu, this register covers
pins 40-49 (Tab 6-6, p. 94)
For each register 3 bits are used to select the function of that pin:
bits 0–2 for register 40 etc
Thus, bits 21–23 cover register 47 (7 × 3)
The function that we need to select is OUTPUT, which is encoded
as the value 1
We need to write the value 0x01 into bits 21–23 of register 4

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 10 / 21

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 11 / 21

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 11 / 21

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio? Answer: gpio+4
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 11 / 21

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 11 / 21

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
Answer: *(gpio+4)
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 11 / 21

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 11 / 21

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
Answer: *(gpio + 4) & ˜(7 << 21)

How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 11 / 21

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?

C code: 7

0 1 1 1
28 24 20 16 12 8 4 0

How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 11 / 21

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?

C code: 7 << 21

0 0 0 0 0 0 0 0 1 1 1 0
28 24 20 16 12 8 4 0

How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 11 / 21

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?

C code: ˜(7 << 21)

1 1 1 1 1 1 1 1 0 0 0 1
28 24 20 16 12 8 4 0

How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 11 / 21

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?

C code: (*(gpio + 4) & ˜(7 << 21))

&1 1 1 1 1 1 1 1 0 0 0 1
28 24 20 16 12 8 4 0

How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 11 / 21

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?

C code: (*(gpio + 4) & ˜(7 << 21))

0 0 0
28 24 20 16 12 8 4 0

How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 11 / 21

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 11 / 21

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
Answer: (1 << 21)

How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 11 / 21

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?

(*(gpio + 4) & ˜(7 << 21)) | (1 << 21)

0 0 1
28 24 20 16 12 8 4 0

How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 11 / 21

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 11 / 21

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

(gpio + 4) = ((gpio + 4) & ˜(7 << 21)) | (1 << 21)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 11 / 21

C Code: constants and memory mapping
// constants for RPi2
gpiobase = 0x3F200000 ;

// memory mapping
// Open the master /dev/memory device, and map it to address

gpio

if ((fd = open("/dev/mem", O_RDWR | O_SYNC | O_CLOEXEC))< 0)
return failure (FALSE, "Unable to open /dev/mem: %s\n",

strerror(errno)) ;

// gpio is the mmap’ed device memory
gpio = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE,

MAP_SHARED, fd, gpiobase) ;
if ((int32_t)gpio == -1)
return failure (FALSE, " mmap (GPIO) failed: %s\n",

strerror(errno)) ;

Now, gpio is the address of the device memory that we can access
directly (if run as root!).

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 12 / 21

Registers for the GPIO peripherals: GPFSEL

12:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
11:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
10:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
9: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
8: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
7: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
6: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
5: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
4: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
3: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
2: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
1: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
0: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

pin 47

Write into these bits (21–23) to set the function for pin 47

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 13 / 21

Registers for the GPIO peripherals: GPFSEL

12:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
11:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
10:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
9: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
8: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
7: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
6: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
5: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
4: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
3: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
2: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
1: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
0: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

4 23 22 21

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 13 / 21

C Code: setting the mode of the pin

// setting the mode for GPIO pin 47
fprintf(stderr, "setting pin %d to %d ...\n", pinACT, OUTPUT)

;
fSel = 4; // GPIO 47 lives in register 4 (GPFSEL)
shift = 21; // GPIO 47 sits in slot 7 of register 4, thus

shift by 7*3 (3 bits per pin)

(gpio + fSel) = ((gpio + fSel) & ˜(7 << shift)) | (1 <<
shift) ; // Sets bits to one = output

// *(gpio + fSel) = (*(gpio + fSel) & ˜(7 << shift)) ;
// Sets bits to zero = input

Now, pin 47 (the on-board ACT LED) is set as an output device.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 14 / 21

Essentials

Register no.: 4
Bits: 21–23

Function: 1 (output)

C Code: setting the mode of the pin

// setting the mode for GPIO pin 47
fprintf(stderr, "setting pin %d to %d ...\n", pinACT, OUTPUT)

;
fSel = 4; // GPIO 47 lives in register 4 (GPFSEL)
shift = 21; // GPIO 47 sits in slot 7 of register 4, thus

shift by 7*3 (3 bits per pin)

(gpio + fSel) = ((gpio + fSel) & ˜(7 << shift)) | (1 <<
shift) ; // Sets bits to one = output

// *(gpio + fSel) = (*(gpio + fSel) & ˜(7 << shift)) ;
// Sets bits to zero = input

Now, pin 47 (the on-board ACT LED) is set as an output device.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 14 / 21

Essentials

Register no.: 4
Bits: 21–23

Function: 1 (output)

GPIO Registers for Turning the LED on/off

We now need to access the GPSET and GPCLR register for pin 47.
0See BCM Peripherals Manual, Chapter 6, Table 6.1

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 15 / 21

Turning the LED on or off

12:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
11:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
10:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
9: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
8: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
7: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
6: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
5: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
4: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
3: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
2: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
1: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
0: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

GPCLR1 pin 47

Write into this bit (15) to clear pin 47

GPSET1 pin 47

Write into this bit (15) to set pin 47

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 16 / 21

Turning the LED on or off

12:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
11:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
10:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
9: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
8: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
7: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
6: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
5: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
4: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
3: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
2: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
1: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
0: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

11 15

Write into this bit (15) to clear pin 47

8 15

Write into this bit (15) to set pin 47

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 16 / 21

Code: blinking LED

for (j=0; j<1000; j++) {
theValue = ((j % 2) == 0) ? HIGH : LOW;
// write the value into the location corresp. to pin 47
if ((pinACT & 0xFFFFFFC0) == 0) // sanity check
{

if (theValue == LOW) { // GPCLR
// GPCLR for GPIOs 32-53 is register 11
clrOff = 11; // register for clearing a pin value

*(gpio + clrOff) = 1 << (pinACT & 31) ;
} else { // GPSET
// GPSET for GPIOs 32-53 is register 8
setOff = 8; // register for setting a pin value

*(gpio + setOff) = 1 << (pinACT & 31) ;
}

} else { fprintf(stderr, "only supporting on-board pins\n
"); exit(1); }

// delay for howLong ms, using a Linux system function
...

}
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 17 / 21

Discussion

In each iteration of the loop, we toggle theValue between the
constants HIGH and LOW

This is not the value written to a register, but a flag for the control
flow
If theValue is LOW, we write a 1 into the corresponding GPCLR
register, to turn the LED off
If theValue is HIGH, we write a 1 into the corresponding GPSET
register, to turn the LED off
Note, that we determine the bit location in these registers by
pinACT & 31, which is the same as taking pinACT modulo 32
We then wait for a certain amount of time to control the blinking
frequency

See sample source: tut led.c

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 18 / 21

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/tut_led.c

The main registers that you need to know about

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 19 / 21

FctSelect

0
1
2
3
4
5

Set Registers

7
8

Clear Registers

10
11

The main registers that you need to know about

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 19 / 21

FctSelect

0
1
2
3
4
5

Set Registers

7
8

Clear Registers

10
11

Controlling the LED in Assembler
@ ... mmap boilerplate here
ADD R3, R3, #4 @ add 4 for block 1
LDR R2, [SP, #16] @ get virtual mem addr
ADD R2, R2, #16 @ add 16 for block 4
LDR R2, [R2, #0] @ load R2 with value at R2
BIC R2, R2, #0b111<<21 @ Bitwise clear of three bits
STR R2, [R3, #0] @ Store result in Register
LDR R3, [SP, #16] @ Get virtual mem address
ADD R3, R3, #16 @ Add 16 for block 4
LDR R2, [SP, #16] @ Get virtual mem addr
ADD R2, R2, #4 @ add 16 for block 4
LDR R2, [R2, #0] @ Load R2 with value at R2
ORR R2, R2, #1<<21 @ Set bit....
STR R2, [R3, #0] @ ...and make output
LDR R3, [SP, #16] @ get virt mem addr
ADD R3, R3, #32 @ add 32 to offset for GPSET1
MOV R4, #1 @ get 1
MOV R2, R4, LSL#15 @ Shift by pin number
STR R2, [R3, #0] @ write to memory

See sample source: gpio47on.s
0From: Bruce Smith “Raspberry Pi Assembly Language: Raspbian”, Ch 25

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 20 / 21

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/gpio47on.s

Summary

Controlling a simple external device means logically sending 1 bit
of information (on/off)
Realising this control means physically writing into special
registers which have special meaning
The information on the special meaning is usually in bulky
hardware-description documentation
Once uncovered, the code for direct device control is fairly short
The sample sources show a C and an Assembler version of
turning pin 47 (ACT) on/off

Thanks to Gordon Henderson for his sterling work on the wiringPi
library!

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 21 / 21

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/
http://wiringpi.com/
http://wiringpi.com/

	Tutorial 2: Programming an LED

