F28HS Hardware-Software Interface:
Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

HERIOT
WAI |

UNIVERSITY

Semester 2 2016/17

°No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ)

2016/17

1/13

Outline

0 Tutorial 1: Using Python and the Linux FS for GPIO Control
e Tutorial 2: Programming an LED

e Tutorial 3: Programming a Button input device

© Tutorial 4: Inline Assembler with gcc
e Tutorial 5: Programming an LCD Display

e Tutorial 6: Performance Counters on the RPi 2

HERIOT
Swalt

Hans-Wolfgang Loidl (Heriot-Watt Univ) 2016/17 2/13

Tutorial 4: Inline Assembler with gcc

@ So far we have developed either C or Assembler programs
separately.

@ Linking the compiled code of both C and Assembler sources
together we can call one from the other.
@ This is ok, but sometimes inconvenient because
» errors occur only at link time, and carry little information
» we can’t easily parameterise the Assembler code (e.g. with the
gpio base address)
@ In this tutorial we will cover how to embed assembler code into
a C program, using the gcc and the GNU toolchain

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 4: Inline Assembler 3/13

A Simple Example
Essentials

val provides the input

Look-up the value in val and copy it to val3: asucodereturns its value
val3 receives the output

static volatile int val = 1024, val3,
asm(/x multi-line example of value look-up and return
*/
"\tMOV_RO, % [value]\n" /* load the address
into RO */
"\tLDR_%[result], [RO, #0]\n" /% get and return
the value at that address */

[result] "=r" (val3) /* output parameter =/
[value] "r" (&val) /+ input parameter =/
"ro", "cc"); /* registers used =/

fprintf (stderr, "Value_ lookup_at_address %$x_ (expect %d)
:,%d\n", &val, val, val3l);

HERIOT
BUALT

®Sample source in sample0.c; see also ARM inline assembly-blog
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 4: Inline Assembler 4/13

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/sample0.c
http://www.ethernut.de/en/documents/arm-inline-asm.html

Example explained

@ The asm command defines a block of assembler code that is put
at that location into the C code (embedded).

@ The assembler code itself is written as a sequence of strings,
each starting with a TAB (\t) and ending with a newline (\n) to
match usual assembler code formatting.

@ Inside the strings, the code can refer to arguments provided in the
“output parameter” and “input parameter” sections.

@ These sections define a name (e.g. result) that can be used in
the assembler code (e.g. ¢ [result]), and which is bound to a
concrete variable or value (e.g. val3).

@ Think of these in the same way as formatting strings in print £
statements.

HERIOT
EIWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 4: Inline Assembler 5/13

Example explained (cont’d)

@ For example the line
[result] "=r" (val3)
says “the name result, which is referred to in the assembler
code as % [result], is bound to the C variable val3; moreover,
it should be represented as a register ("r")”

@ So, what this example code does is to load the address of the C
variable va1 into the register R0, and then to load the value at this
address, i.e. the contents of the C variable va1, into the C variable
val3, which should be kept in a register ("= ")

@ The last section of the asm block defines which registers are
modified by this assembler block. This information is needed by
the compiler when doing register allocation.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 4: Inline Assembler 6/13

GCC Extended Assembler Commands

Using gcc you can embed assembler code into your C programs, i.e.
write “inline assembler” code in C.
The format for the inline assembler code is

asm [volatile] (AssemblerTemplate
OutputOperands
[: InputOperands
[: Clobbers] 1)

HERIOT
GWATT

°See GCC Manual, Section “Extended Asm”
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 4: Inline Assembler 7/13

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

GCC Extended Assembler Commands

Using gcc you can embed assembler code into your C programs, i.e.
write “inline assembler” code in C.
The format for the inline assembler code is

asm [volatile] (AssemblerTemplate
OutputOperands
[: InputOperands
[: Clobbers] 1)

AssemblerTemplate: This is a literal string that is the template for
the assembler code. It is a combination of fixed text and tokens that
refer to the input, output, and goto parameters.

°See GCC Manual, Section “Extended Asm”
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 4: Inline Assembler 7/13

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

GCC Extended Assembler Commands

Using gcc you can embed assembler code into your C programs, i.e.
write “inline assembler” code in C.
The format for the inline assembler code is

asm [volatile] (AssemblerTemplate
OutputOperands
[: InputOperands
[: Clobbers] 1)

OutputOperands: A comma-separated list of the C variables
modified by the instructions in the AssemblerTemplate. An empty list is
permitted.

°See GCC Manual, Section “Extended Asm”
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 4: Inline Assembler 7/13

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

GCC Extended Assembler Commands

Using gcc you can embed assembler code into your C programs, i.e.

write “inline assembler” code in C.
The format for the inline assembler code is

asm [volatile] (AssemblerTemplate
OutputOperands
[: InputOperands
[: Clobbers] 1)

InputOperands: A comma-separated list of C expressions read by
the instructions in the AssemblerTemplate. An empty list is permitted.

%See GCC Manual, Section “Extended Asm”

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 4: Inline Assembler 7/13

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

GCC Extended Assembler Commands

Using gcc you can embed assembler code into your C programs, i.e.
write “inline assembler” code in C.
The format for the inline assembler code is

asm [volatile] (AssemblerTemplate
OutputOperands
[: InputOperands
[: Clobbers] 1)

Clobbers: A comma-separated list of registers or other values
changed by the AssemblerTemplate, beyond those listed as outputs.
An empty list is permitted.

°See GCC Manual, Section “Extended Asm”
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 4: Inline Assembler 7/13

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

Another Example
Using a pair data structure, the function below computes the sum of

both fields.

typedef struct { C variable pair is passed as inp
ulong min; ulong max; "r1: keep in register
} pair_t; =r": the register is written to

Essentials

ulong sumpair_asm(pair_t xpair) {
ulong res;
asm volatile (/* sum over int values */
"\tLDR_RO, ,[%[inp], #0]\n"
"\tLDR_R1, . [%[inp], _#4]\n"
"\tADD_RO, RO, _R1\n"
"\tMOV_% [result], RO\n"

[result] "=r" (res)
[inp] "r" (pair)
Ier", Ilrl", "CC") ; or

R
return res;
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 4: Inline Assembler 8/13

Modifiers and constraints to the input/output operands

When mapping names to C variables or expressions, the following
constraints and modifiers can be specified:

Constraint

£

r
m
I

Specification

Floating point registers f0 ... 7
General register r0 ... r15
Memory address

Immediate value

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 4: Inline Assembler 9/13

Modifiers and constraints to the input/output operands

When mapping names to C variables or expressions, the following
constraints and modifiers can be specified:
Constraint Specification

f Floating point registers f0 . .. {7
r General register r0 ... r15

m Memory address

I Immediate value

Modifier Specification

Write-only operand, usually used for all output operands
Read-write operand, must be listed as an output operand
A register that should be used for output only

2 + |

E.9. : [result] "=r" (res)
means that the name result should be a register in the assemblerm\.\%)}
code, and that it will be written to, by the assembler code. o

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 4: Inline Assembler 9/13

Extended inline assembler: Example

Using a pair data structure, the function below puts the smaller value
into the min and the larger value into the max field:

typedef struct {
ulong min; ulong max;
} pair_t;

void minmax_c (pair_t #*pair) {
ulong t;
if (pair->min > pair->max) {
t = pair->min;
pair->min = pair->max;
t;

palir->max

°Sample source: sumavi_asm.c
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 4: Inline Assembler 10/13

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/sumav1_asm.c

Extended inline assembler: Example

void minmax_asm(pair_t =*pair) {

pair_t =xres;

asm volatile ("\tLDR_RO, , [%[inp]l,_#0]\n"
"\tLDR_R1, [%[inp], _#4]1\n"
"\tCMP_RO, R1\n"
"\tBLE_done\n"
"\tMOV_R3, RO\n"
"\tMOV_RO, RI\n"
"\tMOV_R1, R3\n"
"done: STR_RO, ,[$[inpl, _#01\n"
"\tSTR_R1, ,[%$[inp]l, _#4]\n"

[result] "=r" (res)
[inp] "r" (pair)
"rO", "rl", "r3"’ "CC"),.

or

} LT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 4: Inline Assembler 11/13

Discussion

@ inp needs to be in a register, because it contains the base
address in a load operation (LDR)

@ we don'’t use res in this case, but it usually needs the "=r"
modifier and constraint

@ the clobber list must name all registers that are modified in the
code: r0, rl, r3

@ we could pass in an immediate value sizeof (ulong) and use it
instead of the literal #4 to make the code less
hardware-dependent

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 4: Inline Assembler 12/13

Summary

@ With gcc’s in-line assembler commands (asm) you can embed
assembler code into C code.

@ This avoids having to write code in separate files and then link
them together.

@ The assembler code can be parameterised over C variables and
expressions, to simplify passing arguments.

@ Care needs to be taken to define constraints and modifiers
(keep data in registers or memory)

@ Registers that are modified need to be explicitly identified in the
“clobber list”.

@ Itis recommended to use such in-line assembler code for CW2,
where you need to develop an applicaion in C and assembiler.

HERIOT

Sample sources: sample0.c, and sumavi_asm.c B

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 4: Inline Assembler 13/13

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/sample0.c
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/sumav1_asm.c

	Tutorial 4: Inline Assembler with gcc

