F28HS Hardware-Software Interface:
Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

HERIOT
WAI |

UNIVERSITY

Semester 2 2016/17

°No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ)

2016/17

1/34

Outline

0 Tutorial 1: Using Python and the Linux FS for GPIO Control
9 Tutorial 2: Programming an LED

e Tutorial 3: Programming a Button input device

e Tutorial 4: Inline Assembler with gcc

e Tutorial 5: Programming an LCD Display

© Tutorial 6: Performance Counters on the RPi 2

HERIOT
Swalt

Hans-Wolfgang Loidl (Heriot-Watt Univ) 2016/17 2/34

Tutorial 6: Performance Counters on the RPi 2

@ Performance counters are hardware support for monitoring basic
operations on the CPU

@ They are very accurate and useful for monitoring resource
consumption

@ It is possible to count cycles, but also cache misses,
(mispredicted) branches etc

@ In this tutorial we will cover how to use performance counters to
get a precise measure of the runtime of a program

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 3/34

Architecture Support

@ Both the BCM2835 (of the RPi 1) and BCM2836 (of the RPi 2)
provide a Performance Monitoring Unit (PMU) as a
co-processor on the chip

@ The unit supports in total 4 counter registers and a separate cycle
counter register.

@ These 4 registers can be configured to count a range of low-level
events.

@ There are 2 different interfaces for accessing this information.

» the APB interface, which uses memory mapping and access
registers on the PMU directly

» the CP15 interface, which uses special assembler instructions for
communicating between processor and PMU

@ The PMU operations are usually not available for user programs
(trying to run them directly will trigger an SIGILL exception)

@ However, we can write a simple Linux kernel module to enable this
functionality, and then use it through assembler instructions in QU

user code.
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 4/34

Overview: How to use the PMU

We need to go through the following steps:
@ Find out how to interact with the PMU
@ Enable access to the PMU from “user space”
© Define what we want to monitor
© Use access to the PMU to measure programs

HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 5/34

Step 1: Find out how to interact with the PMU

SUNAVCR
Ertsubt den Zugriff
sud dim Userland

Honfiguriert die FMU und
insbesondere CRO und CRI
MCR Tal DCI!EIITM
= Rizykl
AEM-CPU-Core CRO
MRC
System Control Coprocessor

The PMU is a co-processor, called CP15, separate from the main
processor, but on the same chip.
The special assembler instructions MRC and MCR transfer data between
i -processor (C). SEWALT
From Linux Magazin 05/2015: Kerntechnik
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 6/34

http://www.linux-magazin.de/static/listings/magazin/2015/05/kerntechnik/

Instructions for data transfer between processor and
CO-processor

@ The ARM instruction set provides 2 instructions for the

» MCR: Move to Coproc from ARM Reg
» MRC: Move to ARM Reg from Coproc

The technical reference manual describes the instructions like this:

To access the PMCR, read or write the CP15 registers with:

MRC pl15, @, <Rt=, c9, cl2, @; Read Performance Monitor Control Register
MCR plS, @, <Rt=, c9, cl2, @; Write Performance Monitor Control Register

%See Cortex A7 MPcore Technical Reference Manual, Table 11-1 PMU register &/t

summary, p 241
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 7134

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf

Step 2: Enabling PMU access through a kernel
module

@ By default, the PMU can only be accessed in “privileged mode”,
but this can be changed

@ We need to construct a small Linux kernel module that enables
the access to the PMU

@ In essence, we need to embed some assembler instructions into
an API pre-scribed by the Linux kernel
@ For details on how to build a Linux kernel module see

» The Linux Kernel Module Programming Guide, Peter Jay Salzman
» Building instructions from a course on “Introduction to Embedded
Computing” at Univ of California, San Diego, by Tajana Simunic

Rosing
@ Here, I'll just shortly summarise the steps needed, and how to use
. . . . HERIOT
performance monitoring in a simple example program WWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 8/34

http://linux.die.net/lkmpg/index.html
http://cseweb.ucsd.edu/classes/wi16/cse237A-a/project/part1/Part1.Instructions.pdf
http://cseweb.ucsd.edu/classes/wi16/cse237A-a/project/part1/Part1.Instructions.pdf

Table 11-1: PMU registers

Table 11-1 PMU register summary

ister

mber Offset CRn Op1 CRm Op2 Name Type Description

0 BxDif 9 0 cl3 2 PMXEVCNTRO RW Event Count Register, see the ARM
Architecture Reference Manual

1 0004 o] cl3 2 PMXEVCNTRI RW :

2 DxBBE 9 0 cl3 2 PMXEVCNTR2 RW

3 Bx00C) 0 cl3 2 PMXEVCNTRS RW

4-30 DxBL0-0xTE - - Reserved

31 0307 C 9] cl3 0 PMCCNTR RW Cyele Count Register, see the ARM
Architectuwre Reference Manual

32-255 DxDE0-0x3FC - - Reserved

256 0400 [] cl3 1 PMXEVTYPERD RW Event Type Selection Register, see
the ARM Architecture Reference

257 D44 9 0 cl3 1 PMXEVTYPER1 RW Marnial .

258 0408 @ 0 cl3 1 PMXEVTYPER2 RW

259 B40C o 0 cl3 1 PMXEVTYPER3 RW

See Cortex A7 MPcore Technical Reference Manual, Table 11-1 PMU register

summary, p 237

Hans-Wolfgal

idl (Heriot-Watt Univ)

Tutorial 6: Perf Counters

HERIOT
WAL

9/34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf

Table 11-1: PMU regqisters

897 DxED4 9 0 cl2 0 PMCR RW Performance Monitor Control
Register on page 11-7
808 OxERE < 0 cl4 0 PMUSERENR RW User Enable Register, see the ARM
Architecture Reference Manual
899-903 OuEOC-KEIC - - - - Reserved
HERIOT
PwaLr
=] =)
idl (Heriot-Watt Univ)

12N Ge

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf

Table 11-1: PMU registers

BO7 OxEDS o 0 cl2] FMCR RW Performance Monitor Control
Register on page 11-7

BOK OxEDE ¥ 0 cl4 0 PMUSERENR RW User Enable Register, see the ARM
Architecture Reference Manual

899903 QuEOC-@MEIC - - - - . . Reserved

@ The two main registers that we need to access are PMCR and
PMUSERENR
» PMCR: controls access to the PMU in general
» PMUSERENR: is the User Enable Register that needs to be
configured to allow user code to access the PMU

9See Cortex A7 MPcore Technical Reference Manual, Table 11-1 PMU register SEWALT
summary, p 237

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 10/34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf

Structure of the PMCR register

To enable access to the PMU, we need to access the PMCR register.
The Performance Monitor Control Register (PMCR) defines the
core behaviour of the PMU:

el 2423 | 16 15 110 | 6543210

IMP IDCODE M Reserved DR X|D|C|F(E

Figure 11-2 Performance Monitor Control Register bit assignments.

9See Cortex A7 MPcore Technical Reference Manual, Figure 11-2 Performancels ¢}

Monitor Control Register bit assignments, p 240
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 11/34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf

The bits in the PMCR

Table 11-2 PMCR bit assignments (continued)

Bits Name Function
[4] X Export enable. This bit permits events to be exported to another debug device, such as a trace macrocell, over
an event bus:
] Export of eventsis disabled. This is the reset value.
1 Export of events is enabled. This bit is read/write.
[3] D Clock divider:
] ‘When enabled, PMCCNTR counts every clock cycle. This is the reset value.
1 ‘When enabled, PMCCNTR counts once every 64 clock cycles.
This bit is read‘write.
[2] C Clock counter reset:
0 Mo action. This is the reset value.
1 Reset PMCCNTR to 0.
This bit is write-only, and always RAZ.
[1] P Event counter reset:
] Noaction. This is the reset value.
1 Reset all event counters, not including PMCCNTR, to 0.
In Non-secure modes other than Hyp mode, writing a 1 to this bit does not reset event counters that the
HDCR.HPMN field reserves for Hyp mode use. See Hyp Debug Control Register on page 4-68,
In Secure state and Hyp mode, writing a | to this bit resets all event counters.
This bit is write-only, and always RAZ.
[0] E Enable bit. Performance monitor overflow [RQs are only signaled when the enable bit is set to 1.

] All counters, including PMCCNTR, are dissbled. This is the reset value.

HERIOT
1 All counters are enabled. EWATT
This bit is readiwrite. PR

Configuring the PMCR register

We are almost there!

The encoding for the PMCR register is (see Table 11-1): c9, c12,

We now configure the PMCR by setting the E, P, C, and X bits.
These are bits 0, 1, 2, and 4 in the PMCR register.
This means we need a bitmask of 0000010111 or 0x17.

Here is the code:

mov r2, #0x17 @ store bitmask 0x17 in reg r2
mcr pl5, 0, r2, c9, cl2, 0 @ transfer to PMCR

0

NB: For longer running programs you probably also want to enable the

D bit, which divides the cylce counter by 64!

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters

HERIOT
GWATT

13/34

The PMUSERENR register

The PMUSERENR. bit assignments are:
131 | | | | | 10

Reserved, UNK/SBZP

EMJ

Bits|31:1] Reserved, UNK/SBZP.

EN. hit]0] User mode access enable bit. The possible values of this bit are:
[} User mode access to the Performance Monitors disabled.
1 User mode access to the Performance Monitors enabled.

Some MCR and MRC instruction accesses to the Performance Monitors are UNDEFINED in User mode when the EN bit
is set to 0. For more information, see Access permissions on page C12-2330.

Accessing the PMUSERENR

To access the PMUSERENE., read or write the CP1 5 registers with <opcls set to 0, <CRn> setto 9, <Chm> setto cl4,
and <opcl> set 1o 0. For example:

MRC p15, 8, <Rt>, 9, cl4, @ : Read PMUSERENR into Rt
MCR p15, 8, <Rt>, €9, cl4, B : Write Rt to PMUSERENR

9See ARM Architecture Reference Manual Cortex-A7, Sec B6.1.81, PMUSERE BT
Performance Monitors User Enable Register, p 1924
idl (Heriot-Watt Univ) Tutorial 6: Perf Counters 14/34

Hans-Wolfgal

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf

Enabling access to the PMU

We can enable access to the PMU from “user space”, from normal
applications that are running outside the Linux “kernel space”, by
setting the lowest bit in the PMUSERENR:

mov r2, #0x01 @ store bitmask 0x0l in reg r2
mcr pl5, 0, r2, c9, cl4, 0 Q@ transfer r2 to PMUSERENR

The MCR instruction transfers a value in a register to the co-processor.

To find the encoding of the PMUSERENR we look up Table 11-1:
c9, cl4, O

9See also ARM Architecture Reference Manual Cortex-A7, Sec B5.8.2, Table
B5-11: Summary of PMSA CP15 register descriptions, p 1796
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters

HERIOT
GWATT

15/34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf

Enabling access to the PMU
We also need to configure the following registers
@ PMCNTENSET: Count Enable Set Register!:
Purpose: The PMCNTENSET register enables the Cycle
Count Register, PMCCNTR, and any implemented event

counters, PMNXx. Reading this register shows which counters
are enabled. This register is a Performance Monitors register.

@ pPMOVSR: Overflow Status Register PMCNTENSET: Count Enable
Set Register?:

Purpose: The PMOVSR holds the state of the overflow bits for:

» the Cycle Count Register, PMCCNTR
» each of the implemented event counters, PMNXx.

Software must write to this register to clear these bits.
This register is a Performance Monitors register.

'See ARM Architecture Reference Manual Cortex-A7, Sec B6.1.74, p 1910 SEWALT
2See ARM Architecture Reference Manual Cortex-A7, Sec B6.1.78, p 1908
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 16/34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf

Table 11-1: PMCNTENSET and PMOVSR registers

We now have to find the register encodings for PMCNTENSET and
PMOVSR.

Table 11-1 PMU register summary (continued)

Register qpeor CRn Op1 CRm Op2 Name Type Description
number
ROD 0:xCRO]] cl2 3 PMOVSR RW Overflow Flag Status Register, see
the ARM Architecture Reference
Manual
Reserved

BO1-807 0xCB4-0:CO0 -

768 [RcT] o 0 cl2 1 PMCNTENSET RW Count Enable Set Register, see the
ARM Architecture Reference Manual

T69-775 Dul04-0eCIC - Reserved

776 BxC20 <9 0 cl2 2 PMCNTEMNCLR RW Count Enable Clear Register, see the
ARM Architecture Reference Manual

777783 DuC24-0e030 - Reserved

2See either Cortex A7 MPcore Technical Reference Manual, Figure 11-2
Performance Monitor Control Register bit assignments, p 240
or ARM Architecture Reference Manual Cortex-A7, Sec B5.8.2, Table B5-11:
Summary of PMSA CP15 register descriptions, p 1796
Hans-Wolfgang Loidl (Heriot-Watt Univ)

HERIOT
BUALT

Tutorial 6: Perf Counters 17 /34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf

Bits in PMCNTENSET and PMOVSR registers

The PMCNTENSET register enables the Cycle Count Register,
PMCCNTR, and any implemented event counters, PMNx3

The PMCNTENSET register bit assignments are:
13130 | N N-1 | | | | 0|

C| Reserved, RAZMI Event counter enable bits, Px, for x = 0 to (N=1)

The PMOYSR bit assignments are:

13130 M N-1 | 0

C| Reserved, RAZWI Ewent counter overflow bits, Px, for x =0to (N-1)

HERIOT
GWALT

3See ARM Architecture Reference Manual Cortex-A7, Sec B4.1.1186, p 1676

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 18/34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf

Bits in PMCNTENSET and PMOVSR registers

The PMCNTENSET register enables the Cycle Count Register,
PMCCNTR, and any implemented event counters, PMNx3

The PMCNTENSET register bit assignments are:
31 30 | N N-1 | | | 0|

C| Reserved, RAZMI Event counter enable bits, Px, for x = 0 to (N=1)

The PMOVSR holds the state of the overflow bit for: (i) the Cycle
Count Register, PMCCNTR,; (ii) each of the implemented event
counters, PMNx.*

The PMOYSR bit assignments are:

3130 N N=1 0
C| Reserved, RAZWI Ewent counter overflow bits, Px, for x =0to (N-1)
et
3See ARM Archltecture Reference Manual Cortex- A7 Sec B4.1.116, p 1676 o

an DA 4 A4 .~ drOT

Hans- Wolfgang Loudl (Henot -Watt Univ) Tutorial 6: Perf Counters 18/34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf

Enabling access to the PMU

Almost there!

Both registers hold bitmasks over the event counters, to enable them
and to control overflow.

We want to turn on the bit for every counter.

We have 4 counters in total, so we need to set the 4 least significant
bits: we need a bitmask of 0b1111 or 0x0f

Finally, here is the code to set the PMCNTENSET and PMOVSR registers:

store bitmask 0x0f in reg r2
transfer to PMCNTENSET

store bitmask 0x0f in reg r2
transfer to PMOVSR

mov r2, #0x0f
mcr pl5, 0, r2, c9, cl2, 1
mov r2, #0x0f

mcr pl5, 0, r2, c9, cl2, 3 o
EWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 19/34

Step 3: Defining what to monitor

@ Now that the PMU is enabled we need to decide what we want to
monitor

@ The PMU contains one cycle counter register, which we can use
without special configuration: PMCCNTR

@ The PMU contains 4 configurable counter registers

@ For each of these registers we need to specify an event type to
monitor

HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 20/34

Table 16-1: PMU monitor events

Table 16-1 Performance monitor events

Number Event counted

Bxdd Software increment of the Software Increment Regisier

Bl Instruction fetch that causes a Level | instruction cache refill

B2 Instruction fetch that causes a Level | instruction TLE refill

03 Data Read or Write operation that causes a Level | instruction TLB refill

dd Data Read or Write operation that causes a Level | data cache access

x5 Data Read or Write operation that causes a Level | data TLB refill

X0 Memory-reading instruction executed

Lt Memory-writing instruction executed

0x09 Exception taken

BB Exception return executed

Dx0E Instruction that writes to the Context ID register

BB Software change of program counter

Bxb0 Immediate branch instruction executed

BxOF Unaligned load or store

Bl Branch mispredicted or not predicted

axll Cycle count: the register is incremented on every cvcle HERIOT
PwaLr

“From ARM Cortex-A Programmer’s Guide, Table 16-1, p222
olfga idl (Heriot-Watt Univ) Tutorial 6: Perf Counters 21/34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DEN0013D_cortex_a_series_PG.pdf

Table 16-1: PMU monitor events

1l Cyele count: the register is incremented on every cyele
iz Prediciable branch speculativel v executed
Bx13 Data memory access

14 Level | instruction cache access

Bx15 Level | data cache write-back

Bx1b Level | data cache write-back

@17 Level 2 data cache refill

Bx1E Level 2 data cache write-back

Bx19 Bus access

B 1A Local memory error

LIS Instruction speculatively executed

Bx1C Instruction write to TTBR

81D Bus cycle

Bx1E-0x3F Reserved

HERIOT
Swalt

“From ARM Cortex-A Programmer’s Guide, Table 16-1, p222- =

Hans-Wolfgang Loidl (Heriot-Watt Univ)

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DEN0013D_cortex_a_series_PG.pdf

Defining what to monitor

We can define the events we want to monitor like this:

mov r2,
mcr plb5,
mov r2,
mcr pl5,

#0x00

0,

r2,

#0x11

0,

r2,

c9,

c9,

Hans-Wolfgang Loidl (Heriot-Watt Univ)

el2,

cl3,

5

1

counter #0

transfer to PMSELR

event type #11: cycle count
transfer to PMXEVTYPER

HERIOT
BUALT

Tutorial 6: Perf Counters 23/34

Defining what to monitor

We can define the events we want to monitor like this:

mov
mcr
mov
mcr

r2,
pl5,
r2,
pl5,

#0x00

0,

r2,

#0x11

0,

r2,

c9,

c9,

el2,

cl3,

5

1

@

@
@
@

counter #0

transfer to PMSELR

event type #11: cycle count
transfer to PMXEVTYPER

The first 2 lines identify counter no. 0 (0x00) as the counter we are
configuring.
The next 2 lines specify that this counter should monitor event no.
0x11: instruction cycles.

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Tutorial 6: Perf Counters 23/34

The complete kernel module
// 1. Enable "User Enable Register"
asm volatile("mcr_pl5,_0,_%0, .9, ,c14,_0\n\t" :: "r" (O
x00000001)) ;

// 2. Reset Performance Monitor Control Register (PMCR), Count
Enable Set Register, and Overflow Flag Status Register

asm volatile ("mcr_pl5,_0,.%0,_.c9,..cl2,_0\n\t" :: "r" (O
x00000017)) ;
asm volatile ("mcr_pl5,.0,.%0,_.,c9,.,cl2, 1\n\t" :: "r" (0

x8000000f)) ;
asm volatile ("mcr_pl5, 0,
x8000000f)) ;

%0,

c9,..cl2, 3\n\t" :: "r" (0

—

// 3. Disable Interrupt Enable Clear Register
asm volatile ("mcr _pl5,.0,.%0,_c9,_cl4, _2\n\t" :: "r" (70));

// 4. Read how many event counters exist

asm volatile ("mrc_pl5,.0,.%0,.c9,.cl2, 0\n\t" : "=r" (v)); //
Read PMCR

printk ("pmon_init () :_have_%d _configurable_event counters.\n", (¢f
v >> 11) & 0x1f); o

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 24/34

Build the module

You first need to download the kernel sources.
To build the module, get the sample sources from PMU_pmuon and do
this:

sudo make clean

sudo make

sudo insmod ./pmuon.ko
dmesg | tail

sudo rmmod pmuon

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 25/34

Step 4: Use the PMU in a user program

First we define macros for assembler 1-liners, which reset all counters
(by writing to PMCR) and read the counters from the PMU:
#define armv7_reset_counters \

asm volatile ("mcr_pl5,.,0,_.%0,_.c9,_.cl2, 0\n\t" :: "r" (0
x00000017)) /x write to PMCR x/

#define armv7_read_ccr(val) \
asm volatile("mrc, , pl15,.0,.,%0,_c9,_,c13,_0" : "=r"(val)
)
#define armv7_read_cr0(val) \
asm volatile ("mcr, . pl5,.0,.%0, .9, _,c12, 5" :: "r" (0x00
)); /* select counter #0 x/ \
asm volatile("mrc. , pl15,.0,.,%0,_c9, _,cl13,_2" : "=r"(val)

) /* read its value =*/

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 26/34

Measuring a simple C loop

The core of our user program is a counting loop:

armv/_reset_counters;
armv7/_read_ccr(before_ccr);
armv7/_read_cr0(before_cr0);

for (i=0; i<n; 4i++) /* nothing %/ ; // code to measure

armv/_read_ccr(after_ccr);
armv7/_read_cr0(after_cr0);

HERIOT
BUALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 27/34

Example: running the measurement

> gcc —-DCP15 -0 rpi2-pmu0l rpi2-pmuOl.c

> sudo ./rpi2-pmu0l 10

Raspberry Pi 2 performance monitoring, using CP15 interface

The result is: 10

ccr: 338 (before: 0 after: 338) CYCLES

cr0: 338 (before: 6 after: 344) CYCLES

crl: 12 (before: 0 after: 12) BRANCHES

cr2: 48 (before: 3 after: 51) CACHE HITS (Data read or write
operation that causes a cache access at (at least) the
lowest level of data or unified cache)

cr3: 32 (before: 0 after: 32) CACHE MISSES (Data read
architecturally executed)

PMCR=41072011

Done.

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 28/34

Measuring assembler code
This is an assembler version of the counting loop:

armv/_reset_counters;
armv7/_read_ccr(before_ccr);
armv7/_read_cr0(before_cr0);

asm volatile(/* inline assembler version of a counting loop =/
" measure_me_asm_%=:\n"
"\t e Movs L R3, L #0x00, ., ,..@ initialise_counter
register\n"

n B z "
M B TEST= @ uncond. Jump\n

"LOOPS=2 i@ L 100P,_over, counter, R3\
nll
"\t oo ADD W R3, RS, #L @ increment counter
\n"
~
"TEST$=:_CMP_R3,.%[nl__......Q test_end value\n"
o __ n
RGN R . C CEL S\
"\ MOV % [res], RS, @ _done_\n"
[res] ||=rll (i) : [n] Ilrll (n) : I|r3", llccll);
or
armv/_read_ccr(after_ccr); I

armv7_read_cr0(after_cr0);
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 29/34

Output

> gcc -DCP15 -o rpi2-pmulOl rpi2-pmull.c

> sudo ./rpi2-pmu0l 10

Raspberry Pi 2 performance monitoring, using CP15 interface

The result is: 10

ccr: 249 (before: 0 after: 249) CYCLES

cr0: 249 (before: 6 after: 255) CYCLES

crl: 12 (before: 0 after: 12) BRANCHES

cr2: 7 (before: 3 after: 10) CACHE HITS (Data read or write
operation that causes a cache access at (at least) the
lowest level of data or unified cache)

cr3: 1 (before: 0 after: 1) CACHE MISSES (Data read
architecturally executed)

PMCR=41072011

Done.

NB: we get precise runtime in machine-cycles; because we execute
the loop 10 times (plus entry and exit), the branch counter shows 12;
most operations work in registers, only a few memory access are Lor

needed and most of them can use the cache
Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 30/34

armv/_reset_counters;
armv7/_read_ccr(before_ccr);
armv7/_read_cr0(before_cr0);

asm volatile(/* inline assembler version of a counting loop
with bad branch prediction =/
" measure_me_asm_%=:\n"

"\t eseseeooMoOvsS, o R3, #0x00, .. ,...,@ initialise_counter,
register\n"

"TEST%=:_ . ,...ooCMP . R3, %[nl_..o...@ test_end value\n"

"\t eseseeu BGE oL L LEAVES=,, . u0u@ leave loop,, (BAD,
BRANCH_PRED!) u\n"

"\t LG ADD L R3, R3, L #1,.,.,,.@ increment ,counter
NS L

"\t oo Booee e TESTS = oo ewn @ unconditional jump, \
n"

"LEAVES®=:_,MOV_ %[res],_R3_....@ done_\n"

[res] "=r" (i) : [n] "r" (n) : "r3", "cc");

armv7/_read_ccr(after_ccr);
armv7/_read_cr0(after_cr0);

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters

or
ywall

31/34

Output

> gcc —-DCP15 -o rpi2-pmulOl rpiZ2-pmull.c

> sudo ./rpi2-pmu0l 10

Raspberry Pi 2 performance monitoring, using CP1l5 interface

The result is: 10

ccr: 116 (before: 0 after: 116) CYCLES

cr0: 116 (before: 6 after: 122) CYCLES

crl: 21 (before: 0 after: 21) BRANCHES

cr2: 7 (before: 3 after: 10) CACHE HITS (Data read or write
operation that causes a cache access at (at least) the
lowest level of data or unified cache)

cr3: 1 (before: 0 after: 1) CACHE MISSES (Data read
architecturally executed)

PMCR=41072011

Done.

NB: In this case we have 21 rather than 12 branches, for the same
kind of counting loop; this is because each iteration resulted in a
mis-predicted branch, which was partially executed by the
processor-pipeline, but then had to be aborted.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 32/34

A larger user program: sum-and-average

Code example: sumav3 asm pmu.c

Hans-Wolfgang Loidl (Heriot-Watt Univ)

HERIOT
Swalt

Summary

@ The ARM Cortex-A7 has an on-chip co-processor for hardware
performance monitoring (PMU)

@ The PMU can be configured to count a range of low-level events,
e.g. cycles, branches, cache hits

@ The PMU needs to be enabled from within a kernel module, so
that user space programs can access it

@ Once configured, inline assember instructions can be used to
start/stop counting and read values

@ The relevant assembler instructions are MCR and MRC, with a
bespoke formatting of specifying registers on the CP15
co-processor (and on other on-chip co-processor)

HERIOT
EIWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) Tutorial 6: Perf Counters 34/34

	Tutorial 6: Performance Counters on the RPi 2

