
F28HS Hardware-Software Interface:
Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

Semester 2 2016/17

0No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2016/17 1 / 34

Outline

1 Tutorial 1: Using Python and the Linux FS for GPIO Control

2 Tutorial 2: Programming an LED

3 Tutorial 3: Programming a Button input device

4 Tutorial 4: Inline Assembler with gcc

5 Tutorial 5: Programming an LCD Display

6 Tutorial 6: Performance Counters on the RPi 2

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2016/17 2 / 34

Tutorial 6: Performance Counters on the RPi 2

Performance counters are hardware support for monitoring basic
operations on the CPU
They are very accurate and useful for monitoring resource
consumption
It is possible to count cycles, but also cache misses,
(mispredicted) branches etc
In this tutorial we will cover how to use performance counters to
get a precise measure of the runtime of a program

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 3 / 34

Architecture Support

Both the BCM2835 (of the RPi 1) and BCM2836 (of the RPi 2)
provide a Performance Monitoring Unit (PMU) as a
co-processor on the chip
The unit supports in total 4 counter registers and a separate cycle
counter register.
These 4 registers can be configured to count a range of low-level
events.
There are 2 different interfaces for accessing this information.

I the APB interface, which uses memory mapping and access
registers on the PMU directly

I the CP15 interface, which uses special assembler instructions for
communicating between processor and PMU

The PMU operations are usually not available for user programs
(trying to run them directly will trigger an SIGILL exception)
However, we can write a simple Linux kernel module to enable this
functionality, and then use it through assembler instructions in our
user code.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 4 / 34

Overview: How to use the PMU

We need to go through the following steps:
1 Find out how to interact with the PMU
2 Enable access to the PMU from “user space”
3 Define what we want to monitor
4 Use access to the PMU to measure programs

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 5 / 34

Step 1: Find out how to interact with the PMU

The PMU is a co-processor, called CP15, separate from the main
processor, but on the same chip.
The special assembler instructions MRC and MCR transfer data between
processor register (R) and co-processor (C).

0From Linux Magazin 05/2015: Kerntechnik
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 6 / 34

http://www.linux-magazin.de/static/listings/magazin/2015/05/kerntechnik/

Instructions for data transfer between processor and
co-processor

The ARM instruction set provides 2 instructions for the
I MCR: Move to Coproc from ARM Reg
I MRC: Move to ARM Reg from Coproc

The technical reference manual describes the instructions like this:

0See Cortex A7 MPcore Technical Reference Manual, Table 11-1 PMU register
summary, p 241

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 7 / 34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf

Step 2: Enabling PMU access through a kernel
module

By default, the PMU can only be accessed in “privileged mode”,
but this can be changed
We need to construct a small Linux kernel module that enables
the access to the PMU
In essence, we need to embed some assembler instructions into
an API pre-scribed by the Linux kernel
For details on how to build a Linux kernel module see

I The Linux Kernel Module Programming Guide, Peter Jay Salzman
I Building instructions from a course on “Introduction to Embedded

Computing” at Univ of California, San Diego, by Tajana Simunic
Rosing

Here, I’ll just shortly summarise the steps needed, and how to use
performance monitoring in a simple example program

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 8 / 34

http://linux.die.net/lkmpg/index.html
http://cseweb.ucsd.edu/classes/wi16/cse237A-a/project/part1/Part1.Instructions.pdf
http://cseweb.ucsd.edu/classes/wi16/cse237A-a/project/part1/Part1.Instructions.pdf

Table 11-1: PMU registers

0See Cortex A7 MPcore Technical Reference Manual, Table 11-1 PMU register
summary, p 237

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 9 / 34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf

Table 11-1: PMU registers

The two main registers that we need to access are PMCR and
PMUSERENR

I PMCR: controls access to the PMU in general
I PMUSERENR: is the User Enable Register that needs to be

configured to allow user code to access the PMU

0See Cortex A7 MPcore Technical Reference Manual, Table 11-1 PMU register
summary, p 237

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 10 / 34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf

Table 11-1: PMU registers

The two main registers that we need to access are PMCR and
PMUSERENR

I PMCR: controls access to the PMU in general
I PMUSERENR: is the User Enable Register that needs to be

configured to allow user code to access the PMU

0See Cortex A7 MPcore Technical Reference Manual, Table 11-1 PMU register
summary, p 237

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 10 / 34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf

Structure of the PMCR register

To enable access to the PMU, we need to access the PMCR register.
The Performance Monitor Control Register (PMCR) defines the
core behaviour of the PMU:

0See Cortex A7 MPcore Technical Reference Manual, Figure 11-2 Performance
Monitor Control Register bit assignments, p 240

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 11 / 34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf

The bits in the PMCR

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 12 / 34

Configuring the PMCR register

We are almost there!

The encoding for the PMCR register is (see Table 11-1): c9, c12, 0

We now configure the PMCR by setting the E, P, C, and X bits.
These are bits 0, 1, 2, and 4 in the PMCR register.
This means we need a bitmask of 0b00010111 or 0x17.

Here is the code:

mov r2, #0x17 @ store bitmask 0x17 in reg r2
mcr p15, 0, r2, c9, c12, 0 @ transfer to PMCR

NB: For longer running programs you probably also want to enable the
D bit, which divides the cylce counter by 64!

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 13 / 34

The PMUSERENR register

0See ARM Architecture Reference Manual Cortex-A7, Sec B6.1.81, PMUSERENR,
Performance Monitors User Enable Register, p 1924

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 14 / 34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf

Enabling access to the PMU

We can enable access to the PMU from “user space”, from normal
applications that are running outside the Linux “kernel space”, by
setting the lowest bit in the PMUSERENR:

mov r2, #0x01 @ store bitmask 0x01 in reg r2
mcr p15, 0, r2, c9, c14, 0 @ transfer r2 to PMUSERENR

The MCR instruction transfers a value in a register to the co-processor.
To find the encoding of the PMUSERENR we look up Table 11-1:
c9, c14, 0

0See also ARM Architecture Reference Manual Cortex-A7, Sec B5.8.2, Table
B5-11: Summary of PMSA CP15 register descriptions, p 1796

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 15 / 34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf

Enabling access to the PMU
We also need to configure the following registers

PMCNTENSET: Count Enable Set Register1:
Purpose: The PMCNTENSET register enables the Cycle
Count Register, PMCCNTR, and any implemented event
counters, PMNx. Reading this register shows which counters
are enabled. This register is a Performance Monitors register.

PMOVSR: Overflow Status Register PMCNTENSET: Count Enable
Set Register2:

Purpose: The PMOVSR holds the state of the overflow bits for:

I the Cycle Count Register, PMCCNTR
I each of the implemented event counters, PMNx.

Software must write to this register to clear these bits.
This register is a Performance Monitors register.

1See ARM Architecture Reference Manual Cortex-A7, Sec B6.1.74, p 1910
2See ARM Architecture Reference Manual Cortex-A7, Sec B6.1.78, p 1908

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 16 / 34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf

Table 11-1: PMCNTENSET and PMOVSR registers

We now have to find the register encodings for PMCNTENSET and
PMOVSR.

2See either Cortex A7 MPcore Technical Reference Manual, Figure 11-2
Performance Monitor Control Register bit assignments, p 240
or ARM Architecture Reference Manual Cortex-A7, Sec B5.8.2, Table B5-11:
Summary of PMSA CP15 register descriptions, p 1796

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 17 / 34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf

Bits in PMCNTENSET and PMOVSR registers

The PMCNTENSET register enables the Cycle Count Register,
PMCCNTR, and any implemented event counters, PMNx3

The PMOVSR holds the state of the overflow bit for: (i) the Cycle
Count Register, PMCCNTR; (ii) each of the implemented event
counters, PMNx.4

3See ARM Architecture Reference Manual Cortex-A7, Sec B4.1.116, p 1676
4See ARM Architecture Reference Manual Cortex-A7, Sec B4.1.116, p 1685Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 18 / 34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf

Bits in PMCNTENSET and PMOVSR registers

The PMCNTENSET register enables the Cycle Count Register,
PMCCNTR, and any implemented event counters, PMNx3

The PMOVSR holds the state of the overflow bit for: (i) the Cycle
Count Register, PMCCNTR; (ii) each of the implemented event
counters, PMNx.4

3See ARM Architecture Reference Manual Cortex-A7, Sec B4.1.116, p 1676
4See ARM Architecture Reference Manual Cortex-A7, Sec B4.1.116, p 1685Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 18 / 34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf

Enabling access to the PMU

Almost there!

Both registers hold bitmasks over the event counters, to enable them
and to control overflow.
We want to turn on the bit for every counter.
We have 4 counters in total, so we need to set the 4 least significant
bits: we need a bitmask of 0b1111 or 0x0f

Finally, here is the code to set the PMCNTENSET and PMOVSR registers:

mov r2, #0x0f @ store bitmask 0x0f in reg r2
mcr p15, 0, r2, c9, c12, 1 @ transfer to PMCNTENSET
mov r2, #0x0f @ store bitmask 0x0f in reg r2
mcr p15, 0, r2, c9, c12, 3 @ transfer to PMOVSR

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 19 / 34

Step 3: Defining what to monitor

Now that the PMU is enabled we need to decide what we want to
monitor
The PMU contains one cycle counter register, which we can use
without special configuration: PMCCNTR
The PMU contains 4 configurable counter registers
For each of these registers we need to specify an event type to
monitor

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 20 / 34

Table 16-1: PMU monitor events

4From ARM Cortex-A Programmer’s Guide, Table 16-1, p222
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 21 / 34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DEN0013D_cortex_a_series_PG.pdf

Table 16-1: PMU monitor events

4From ARM Cortex-A Programmer’s Guide, Table 16-1, p222
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 22 / 34

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DEN0013D_cortex_a_series_PG.pdf

Defining what to monitor

We can define the events we want to monitor like this:

mov r2, #0x00 @ counter #0
mcr p15, 0, r2, c9, c12, 5 @ transfer to PMSELR
mov r2, #0x11 @ event type #11: cycle count
mcr p15, 0, r2, c9, c13, 1 @ transfer to PMXEVTYPER

The first 2 lines identify counter no. 0 (0x00) as the counter we are
configuring.
The next 2 lines specify that this counter should monitor event no.
0x11: instruction cycles.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 23 / 34

Defining what to monitor

We can define the events we want to monitor like this:

mov r2, #0x00 @ counter #0
mcr p15, 0, r2, c9, c12, 5 @ transfer to PMSELR
mov r2, #0x11 @ event type #11: cycle count
mcr p15, 0, r2, c9, c13, 1 @ transfer to PMXEVTYPER

The first 2 lines identify counter no. 0 (0x00) as the counter we are
configuring.
The next 2 lines specify that this counter should monitor event no.
0x11: instruction cycles.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 23 / 34

The complete kernel module
// 1. Enable "User Enable Register"
asm volatile("mcr p15, 0, %0, c9, c14, 0\n\t" :: "r" (0

x00000001));

// 2. Reset Performance Monitor Control Register(PMCR), Count
Enable Set Register, and Overflow Flag Status Register

asm volatile ("mcr p15, 0, %0, c9, c12, 0\n\t" :: "r"(0
x00000017));

asm volatile ("mcr p15, 0, %0, c9, c12, 1\n\t" :: "r"(0
x8000000f));

asm volatile ("mcr p15, 0, %0, c9, c12, 3\n\t" :: "r"(0
x8000000f));

// 3. Disable Interrupt Enable Clear Register
asm volatile("mcr p15, 0, %0, c9, c14, 2\n\t" :: "r" (˜0));

// 4. Read how many event counters exist
asm volatile("mrc p15, 0, %0, c9, c12, 0\n\t" : "=r" (v)); //

Read PMCR
printk("pmon_init(): have %d configurable event counters.\n", (

v >> 11) & 0x1f);

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 24 / 34

Build the module

You first need to download the kernel sources.
To build the module, get the sample sources from PMU pmuon and do
this:

sudo make clean
sudo make
sudo insmod ./pmuon.ko
dmesg | tail
sudo rmmod pmuon

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 25 / 34

Step 4: Use the PMU in a user program

First we define macros for assembler 1-liners, which reset all counters
(by writing to PMCR) and read the counters from the PMU:

#define armv7_reset_counters \
asm volatile ("mcr p15, 0, %0, c9, c12, 0\n\t" :: "r"(0

x00000017)) /* write to PMCR */

#define armv7_read_ccr(val) \
asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r"(val)

)

#define armv7_read_cr0(val) \
asm volatile("mcr p15, 0, %0, c9, c12, 5" :: "r"(0x00

)); /* select counter #0 */ \
asm volatile("mrc p15, 0, %0, c9, c13, 2" : "=r"(val)

) /* read its value */

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 26 / 34

Measuring a simple C loop

The core of our user program is a counting loop:

armv7_reset_counters;
armv7_read_ccr(before_ccr);
armv7_read_cr0(before_cr0);

for (i=0; i<n; i++) /* nothing */ ; // code to measure

armv7_read_ccr(after_ccr);
armv7_read_cr0(after_cr0);

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 27 / 34

Example: running the measurement

> gcc -DCP15 -o rpi2-pmu01 rpi2-pmu01.c
> sudo ./rpi2-pmu01 10
Raspberry Pi 2 performance monitoring, using CP15 interface
The result is: 10
ccr: 338 (before: 0 after: 338) CYCLES
cr0: 338 (before: 6 after: 344) CYCLES
cr1: 12 (before: 0 after: 12) BRANCHES
cr2: 48 (before: 3 after: 51) CACHE HITS (Data read or write

operation that causes a cache access at (at least) the
lowest level of data or unified cache)

cr3: 32 (before: 0 after: 32) CACHE MISSES (Data read
architecturally executed)

PMCR=41072011
Done.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 28 / 34

Measuring assembler code
This is an assembler version of the counting loop:
armv7_reset_counters;
armv7_read_ccr(before_ccr);
armv7_read_cr0(before_cr0);

asm volatile(/* inline assembler version of a counting loop */
"_measure_me_asm_%=:\n"
"\t MOVS R3, #0x00 @ initialise counter

register\n"
"\t B TEST%= @ uncond. jump\n"
"LOOP%=: @ loop over counter R3\

n"
"\t ADD R3, R3, #1 @ increment counter

\n"
"TEST%=: CMP R3, %[n] @ test end value\n"
"\t BLT LOOP%=\n"
"\t MOV %[res], R3 @ done \n"
: [res] "=r" (i) : [n] "r" (n) : "r3", "cc");

armv7_read_ccr(after_ccr);
armv7_read_cr0(after_cr0);

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 29 / 34

Output

> gcc -DCP15 -o rpi2-pmu01 rpi2-pmu01.c
> sudo ./rpi2-pmu01 10
Raspberry Pi 2 performance monitoring, using CP15 interface
The result is: 10
ccr: 249 (before: 0 after: 249) CYCLES
cr0: 249 (before: 6 after: 255) CYCLES
cr1: 12 (before: 0 after: 12) BRANCHES
cr2: 7 (before: 3 after: 10) CACHE HITS (Data read or write

operation that causes a cache access at (at least) the
lowest level of data or unified cache)

cr3: 1 (before: 0 after: 1) CACHE MISSES (Data read
architecturally executed)

PMCR=41072011
Done.

NB: we get precise runtime in machine-cycles; because we execute
the loop 10 times (plus entry and exit), the branch counter shows 12;
most operations work in registers, only a few memory access are
needed and most of them can use the cache

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 30 / 34

armv7_reset_counters;
armv7_read_ccr(before_ccr);
armv7_read_cr0(before_cr0);

asm volatile(/* inline assembler version of a counting loop
with bad branch prediction */

"_measure_me_asm_%=:\n"
"\t MOVS R3, #0x00 @ initialise counter

register\n"
"TEST%=: CMP R3, %[n] @ test end value\n"
"\t BGE LEAVE%= @ leave loop (BAD

BRANCH PRED!) \n"
"\t ADD R3, R3, #1 @ increment counter

\n"
"\t B TEST%= @ unconditional jump \

n"
"LEAVE%=: MOV %[res], R3 @ done \n"
: [res] "=r" (i) : [n] "r" (n) : "r3", "cc");

armv7_read_ccr(after_ccr);
armv7_read_cr0(after_cr0);

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 31 / 34

Output

> gcc -DCP15 -o rpi2-pmu01 rpi2-pmu01.c
> sudo ./rpi2-pmu01 10
Raspberry Pi 2 performance monitoring, using CP15 interface
The result is: 10
ccr: 116 (before: 0 after: 116) CYCLES
cr0: 116 (before: 6 after: 122) CYCLES
cr1: 21 (before: 0 after: 21) BRANCHES
cr2: 7 (before: 3 after: 10) CACHE HITS (Data read or write

operation that causes a cache access at (at least) the
lowest level of data or unified cache)

cr3: 1 (before: 0 after: 1) CACHE MISSES (Data read
architecturally executed)

PMCR=41072011
Done.

NB: In this case we have 21 rather than 12 branches, for the same
kind of counting loop; this is because each iteration resulted in a
mis-predicted branch, which was partially executed by the
processor-pipeline, but then had to be aborted.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 32 / 34

A larger user program: sum-and-average

Code example: sumav3 asm pmu.c

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 33 / 34

Summary

The ARM Cortex-A7 has an on-chip co-processor for hardware
performance monitoring (PMU)
The PMU can be configured to count a range of low-level events,
e.g. cycles, branches, cache hits
The PMU needs to be enabled from within a kernel module, so
that user space programs can access it
Once configured, inline assember instructions can be used to
start/stop counting and read values
The relevant assembler instructions are MCR and MRC, with a
bespoke formatting of specifying registers on the CP15
co-processor (and on other on-chip co-processor)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 34 / 34

	Tutorial 6: Performance Counters on the RPi 2

