
Regular expressions: Basic notions

Fritz Henglein

Department of Computer Science
University of Copenhagen
Email: henglein@diku.dk

2nd International Summer School on Advances in Programming
Languages

Edinburgh, Scotland

2014-08-22

Kleene Meets Church (KMC)

Research project on type theory for

proof-theoretic foundations of formal language theory,
specifically regular languages;

semantically well-behaved, powerful, scalable, efficient (large)
stream processing tools

Web site: http://www.diku.dk/kmc

2

Regular expression

Definition (Regular expression)

A regular expression (RE) over alphabet (set) A is an expression of
the form

E ,F ::= 0 | 1 | a | E |F | EF | E∗

where a ∈ A.

This should be read as an abstract syntax specification.

Operator precedence: ∗ > juxtaposition > |. Use parentheses
for associating subexpressions explicitly.

A is often assumed to be finite.

Kleene (1956) coined the term “regular expression”. The
above (though as a concrete grammar) is what he meant by it
and nothing else.

3

What is (the meaning of) a regular expression?

What does a regular expression denote?

Regular expression as a language: A set of strings (= classical
automata theory)

Regular expression as a grammar or type: A set of parse trees.

Regular expression as a Kleene algebra: Result of interpreting
in an algebraic structure satisfying certain equational
properties.

Regular expression as a tool (loose notion): Domain-specific
language for string processing that is embedded in or
accessible from general-purpose programming language

We focus on regular expressions as types, which is most relevant
for extracting and transforming information from input streams.

4

Regular expression as language

Definition (Language denoted by regular expression)

A regular expression E denotes the language L[[E]] (set of strings)
defined by

L[[0]] = ∅
L[[1]] = {ε}
L[[a]] = {a}

L[[E |F]] = L[[E]] ∪ L[[F]]
L[[EF]] = L[[E]]� L[[F]]
L[[E∗]] =

⋃
i≥0(L[[E]])i

where S � T = {s t | s ∈ S ∧ t ∈ T}, E 0 = {ε},E i+1 = E � E i .

5

Regular language

Definition (Regular language)

A regular language is a language (set of strings) over some finite
alphabet A that is accepted by some deterministic finite
automaton.

A regular language may be infinite, but it is recognized by a
finite automaton, which may be circular (contain loops).

Loose intuition: “Regular” = “There is something finitary and
potentially circular about it”

6

Kleene’s Theorem

Theorem (Kleene 1956)

A language is regular if and only it is denoted by a regular
expression.

7

Many other characterizations of regular languages

A language is regular if and only if:

it is accepted by a nondeterministic finite state machine (NFA)

it is accepted by an alternating finite automaton (AFA)

it is generated by a regular grammar

it is generated by a prefix grammar

it is accepted by a read-only Turing machine

it is defined in monadic second-order logic over strings

it is recognized by a finitely generated monoid

it is the preimage of a subset of a finite monoid under a
homomorphism from the free monoid on its alphabet.

8

Regular expression equivalence and containment

Sometimes we are interested in regular expression containment or
equivalence.

Definition

E is contained in F , written |= E ≤ F , if L[[E]] ⊆ L[[F]].

E is equivalent to F , written |= E = F , if L[[E]] = L[[F]].

Regular expression equivalence and containment are easily related:

|= E ≤ F ⇐⇒|= E |F = F

and
|= E = F ⇐⇒|= E ≤ F∧ |= F ≤ E .

9

Regular expression as language:
What we usually learn

They’re just a way to talk about finite state automata
All equivalent regular expressions are interchangeable since
they accept the same language.
All equivalent automata are interchangeable since they accept
the same language.

We might as well choose an efficient one (deterministic,
minimal state): it processes its input in linear time and
constant space.

Myhill-Nerode Theorem (for proving a language regular)
Pumping Lemma (for proving a language nonregular)
Equivalence is decidable: PSPACE-complete.
They are closed under complement (for finite A) and
intersection (for arbitrary A).
Star-height problem...
Good for specifying lexical scanners.

10

Regular expression as grammar (type):
What we actually use1

Full matching, s =~ /^E$/:
Does E match s; that is, s ∈ L[[E]]?

Partial matching, s =~ /E/:
Does E match a substring of s; that is, s ∈ L[[A ∗ E A∗]]?
Partial matching with recording, s =~ /(E)/:
Does E match a substring of s, and, if so, bind a matching
substring to a variable.

Partial matching with nested recording,
s =~ /(...(E)...(F)...)/:
Does the RE match a substring in s, and, if so, bind some
matching substring in s to each of the parenthesized groups
(regular subexpressions).

1in Perl and such
11

Regular expression as grammar (type):
What we actually use3

Substitution, s =~ s/E/F/m where F may reference group
variables and m are modifiers affecting the matching
semantics.

Extensions: Backreferences, look-ahead, look-behind,...

Disambiguation: Manually annotating RE to guide which
particular substrings in the input are to be matched.

lazy and greedy matching
possessive quantifiers
atomic grouping

Optimization: Manually transforming RE such that it is
efficiently processed by pattern matching engine2

2Friedl, Mastering Regular Expressions, chapter 6: Crafting an efficient
expression

3in Perl and such
12

Disambiguation and optimization?

Why the need for disambiguation and optimization?

There is no mention of that in theory of regular expression as
regular languages:

Corresponds to full matching problem without recording
(membership testing)
No ambiguity possible: we only return yes or no!
Any finite automaton can be used: same automaton can be
constructed and used for all equivalent regular expressions—no
point in “optimizing”.

Returning substring matches makes regular language and
automata theory a priori inapplicable:

Substring matching is often ambiguous: Multiple candidates
for substrings that match
Cannot use optimized automata: Grammatical information of
original regular expression is lost, can’t easily find substring
matches.

13

Ambiguity

Example

((a|ab)(bc|(c)))*.

Match against acabc .
For each parenthesized group one substring occurrence is returned.

PCRE POSIX

$0 = acabc acabc
$1 = abc abc
$2 = a ab
$3 = bc c
$4 = εa c

aOr special no match-value to distinguish from match with empty string.

Note: Only last match under Kleene-star * is returned.
14

Optimization

Cox (2007)

Perl-compliant regular expressions (what you get in Perl,
Python, Ruby, Java) use backtracking parsing.

Requires worst-case exponential time or may even crash (stack
overflow) if E contains ε..

15

Why discrepancy between theory and practice?
Theory is extensional: About regular languages.

Does this string match the regular expression? Yes or no?
Practice is intensional: About regular expressions as
grammars.

Does this string match the regular expression and if so
how—which parts of the string match which parts of the RE?

Ideally (conceptually): Regular expression processing =
Guaranteed efficient parsing + catamorphic postprocessing4

KMC Project: Turn ideal into reality.
Reality: Regular expression processing =

Ad-hoc backtracking matching with numerous extensions
(Perl); or
Finite automaton + opportunistic instrumentation to get some
parsing information (RE2).

Regular expressions as grammars is semantically and
computationally much more difficult than regular expressions
as languages!

Ambiguity
Time and space complexity of parsing and processing

4Intuitively: Throwing parts of a parse tree away or substituting parts of it.

16

Type interpretation

Definition (Type interpretation)

The type interpretation T [[.]] compositionally maps a regular
expression E to the corresponding simple type:

T [[0]] = ∅ empty type
T [[1]] = {()} unit type
T [[a]] = {a} singleton type

T [[E |F]] = T [[E]] + T [[F]] sum type
L[[E F]] = T [[E]]× T [[F]] product type
T [[E ∗]] = {[v1, . . . , vn] | vi ∈ T [[E]]} list type

T + U = {inl v | v ∈ T} ∪ {inr w | w ∈ U}
T × U = {(v ,w) | v ∈ T ∧ w ∈ U}

[v1, . . . , vn] = v1 :: . . . :: vn :: nil

v :: vs = inl (v , vs)

nil = inr ()17

Flattening (Unparsing)

Definition

The flattening function flat(.) : Val(A)→ Seq(A) is defined as
follows:

flat(()) = ε flat(a) = a
flat(inl v) = flat(v) flat(inr w) = flat(w)

flat((v ,w)) = flat(v) flat(w)

Note: flat([v1, . . . , vn]) = flat(v1) . . . flat(vn)

Example

flat([inl ((a, b), inr d), inr (a, (b, c))]) = abdabc

flat([inl ((a, b), inr d), inl ((a, b), inl c)]) = abdabc

18

Parse tree = element of type

Example

Parse acabc according to ((a|ab)(bc|(c)))*.

p1 = [(inl a, inr c), (inl a, inl (b, c))]

p2 = [(inl a, inr c), (inr (a, b), inr c)]

p1, p2 have type

({a}+ {a} × {b})× ({b} × {c}+ {c}) list .

Compare with regular expression ((ab)(c|d)|(abc))* .

The elements of type E correspond to the syntax trees for
strings parsed according to regular expression E !

19

Regular expression as type and as language

Theorem

L[[E]] = {flat(v) | v ∈ T [[E]]}

The flattened values of type E = the strings in regular language E .

20

Membership testing versus parsing

Example

E = ((a|ab)(bc|(c)))* Ed = (a(bb|b|1)c)*

Ed is unambiguous: If v ,w ∈ T [[Ed]] and flat(v) = flat(w)
then v = w . (Each string in Ed has exactly one syntax tree.)

E is ambiguous. (Recall p1 and p2.)

E and Ed are equivalent: L[[E]] = L[[Ed]]

Matching (membership testing): Easy—construct DFA from
either E or Ed .

But: How to parse according to E using Ed or (same) DFA
for either?

21

Regular expression as algebra

Definition

A Kleene algebra is any algebraic structure with operations
0, 1,+, ·, ∗ over carrier set V such that t1 = t2 for terms built from
the operations and constants drawn from V whenever they denote
the same regular language under the standard interpretation of the
operations as in the definition of “language denoted by regular
expression”.

A Kleene algebra may satisfy additional equalities.

The extension of Kleene algebras with test operations is useful
in program verification and other applications.

22

Example: Relational algebra

Example

Consider the following algebraic structure:

V = 2U×U , the set of binary relations over some given
universe of elements.

0 = {}, the empty relation.

1 = {(x , x) | x ∈ U}, the relation that relates all elements of
U only to themselves.

R + S = R ∪ S , the union of R and S .

R · S = {(x , z) | ∃y ∈ U. (x , y) ∈ R ∧ (y , z) ∈ S}
R∗ = {(x1, xn) | ∃x2, . . . , xn−1.∀i ∈ {2, . . . , n}. (xi−1, xi) ∈
R}.

This is a Kleene algebra.

23

Regular expression as tool

Some of most used domain specific languages (DSLs) for
programming:

SQL
Regexes

Regexes used for substring matching and substitution in input
strings

Warning: “Regular expression” or “regex” in programming
(e.g. Perl) are proper extensions of regular expressionsas
defined by Kleene.

Backreferences make “regex”es drastically more powerful and
difficult to process than regular expressions – they are not
regular (!)

24

Exercises I
1 Implement a backtracking full regular expression matcher in

Haskell, which takes a regular expression and a string as
inputs and returns a boolean: true if the string matches
(fully), false if it does not. Does it terminate for all inputs? If
not, for which inputs does it not terminate? Can you change
it to make it terminating for all inputs?

2 Draw a DFA for Ed (see slide “Membership testing versus
parsing”). Is it minimal?

3 Argue how one can see that Ed is unambiguous.
4 Consider (a | 1) (a | 1) a a. What is the type of its parse trees

(in Haskell or Standard ML)? Match it against aaa. Give the
set of all parse trees of aaa (as elements of the above type).
Is the regular expression ambiguous or unambiguous? What is
its minimal DFA? Execute the DFA on aaa. Can you
construct the parse trees for (a | 1) (a | 1) a a from it?

25

Exercises II

1 Can you come up with sound rules that ensure that a regular
expression is unambiguous? Are they complete?

2 Prove that |= a a∗ = a∗ a. Generalize your proof to
|= E E∗ = E ∗E for all E .

3 Alan claims that |= E = E F | G implies |= E = G F∗. Is this
implication

1 true for all choices of E ,F ,G ?
2 false for all choices of E ,F ,G ?
3 true for some choices of E ,F ,G and false for some choices of

E ,F ,G ?

4 Dan claims that |= E F ≤ F implies |= E ∗ F ≤ F . Always
true, always false or sometimes true/sometimes false?

5 The regular languages and binary relations are Kleene
algebras. Can you come up with another one?

26

