Efficient Regular Expression Parsing

Fritz Henglein

Department of Computer Science, University of Copenhagen

AiPL 2014, Edinburgh
August 23, 2014

Recall: Regular Expressions

- Regular Expressions (RE):

$$
E::=0|1| a\left|E_{1} E_{2}\right| E_{1}\left|E_{2}\right| E_{1}^{*} \quad(a \in \Sigma)
$$

- Assume non-problematic REs: No REs containing sub-REs of the form E^{*} where E nullable.
- All results extend to problematic REs, but are more complicated to state and prove.

What is Regular Expression "Matching"?

Given $s \in \Sigma^{*}$.

1. Acceptance testing: Is $s \in \mathcal{L} \llbracket E \rrbracket$?

- String searching: Find some substring s^{\prime} of s such that $s^{\prime} \in \mathcal{L} \llbracket E \rrbracket$. (Variation: Find all substrings.)

2. Pattern matching: Given $s \in \Sigma^{*}$, find substrings of s such that each matches a sub-RE in E. (Variation: Return multiple matches for each sub-RE.)
3. Parsing: Return complete parse tree of s under E, if it exists

Note:

- Increasing information content.
- Classical automata theory (NFA->DFA, DFA minimization, etc.) applies only to acceptance testing.
- Pattern matching returns only one element match under $*$.

Example

RE $=((a \mid b)(c \mid d))^{*}$. Input string $=a c b d$.

1. Acceptance testing: Yes!
2. Pattern matching: $(0,4),(2,4),(2,3),(3,4)$
3. Parsing: [(inl a, inl $c),(\operatorname{inr} b$, inr $d)]$

Regular Expressions as Types

- Type interpretation $\mathfrak{T} \llbracket E \rrbracket$:

$$
\begin{aligned}
\mathcal{T} \llbracket 0 \rrbracket= & \emptyset \\
\mathcal{T} \llbracket 1 \rrbracket= & \{()\} \\
\mathcal{T} \llbracket a \rrbracket= & \{a\} \\
\mathcal{T} \llbracket E_{1} E_{2} \rrbracket= & \left\{\left(V_{1}, V_{2}\right) \mid V_{1} \in \mathcal{T} \llbracket E_{1} \rrbracket, V_{2} \in \mathcal{T} \llbracket E_{2} \rrbracket\right\} \\
\mathcal{T} \llbracket E_{1} \mid E_{2} \rrbracket= & \left\{\text { inl } V_{1} \mid V_{1} \in \mathcal{T} \llbracket E_{1} \rrbracket\right\} \\
& \cup\left\{\text { inr } V_{2} \mid V_{2} \in \mathcal{T} \llbracket E_{2} \rrbracket\right\} \\
\mathcal{T} \llbracket E^{*} \rrbracket= & \left\{\left[V_{1}, \ldots, V_{n}\right] \mid n \geqslant 0 \wedge\right. \\
& \left.\forall 1 \leqslant i \leqslant n . V_{i} \in \mathcal{T} \llbracket E \rrbracket\right\}
\end{aligned}
$$

- Value = parse tree = proof of inhabitation

Unparsing ("Flattening")

- Flattening yields underlying string:

$$
\begin{aligned}
\operatorname{flat}(()) & =\epsilon \\
\operatorname{flat}(a) & =a \\
\operatorname{flat}\left(\left(V_{1}, V_{2}\right)\right) & =\operatorname{flat}\left(V_{1}\right) \operatorname{flat}\left(V_{2}\right) \\
\operatorname{flat}\left(\operatorname{inl} V_{1}\right) & =\operatorname{flat}\left(V_{1}\right) \\
\operatorname{flat}\left(\operatorname{inr} V_{2}\right) & =\operatorname{flat}\left(V_{2}\right) \\
\operatorname{flat}\left(\left[V_{1}, \ldots, V_{n}\right]\right) & =\operatorname{flat}\left(V_{1}\right) \cdots \operatorname{flat}\left(V_{n}\right)
\end{aligned}
$$

- The parse trees for a given string s :

$$
\mathcal{T}_{s} \llbracket E \rrbracket=\{V \in \mathcal{T} \llbracket E \rrbracket \mid \text { flat }(V)=s\} .
$$

Proposition

$$
\mathcal{L} \llbracket E \rrbracket=\{\operatorname{flat}(V) \mid V \in \mathcal{T} \llbracket E \rrbracket\} .
$$

Challenges

- Grammatical ambiguity: Which parse tree to return?
- How to represent parse trees compactly?
- Time: Straightforward backtracking algorithm, but impractical: $\Theta\left(m 2^{n}\right)$ time, where $m=|E|, n=|s|$.
- Space: How to minimize RAM consumption?

Disambiguation

- RE E ambiguous iff $\left|\mathcal{T}_{s} \llbracket E \rrbracket\right|>1$ for some s.
- How to deterministically choose one $V \in \mathcal{T}_{s} \llbracket E \rrbracket$ among several possible candidates?
- Greedy matching: Intuitively, choose what a backtracking parser returns:

1. Try left alternative of $E \mid F$ first.
2. If it fails, backtrack and try the right alternative.
3. Treat E^{*} as $E E^{*} \mid 1$.

Greedy Order \prec_{ν}

$$
\begin{array}{rllll}
\text { in } V & \prec v & \text { in } V^{\prime} & & \\
{\left[V_{1}, \ldots\right]} & \prec v & {[} & & \\
\left(V_{1}, V_{2}\right) & \prec v & \left(V_{1}^{\prime}, V_{2}^{\prime}\right) & \text { if } & V_{1} \prec v V_{2} V \\
& & & \left(V_{1}=V_{1}^{\prime} \wedge V_{2} \prec v V_{2}^{\prime}\right) \\
\text { in } V & \prec v & \text { in } V^{\prime} & \text { if } V \prec V_{v} \\
\text { in } V & \prec v & \text { in } V^{\prime} & \text { if } & V \prec_{v} V^{\prime} \\
{\left[V_{1}, \ldots\right]} & \prec v & {\left[V_{1}^{\prime}, \ldots\right]} & \text { if } & V_{1} \prec v V_{1}^{\prime} \\
{\left[V_{1}, V_{2}, \ldots\right]} & \prec v & {\left[V_{1}, V_{2}^{\prime}, \ldots\right]} & \text { if } & {\left[V_{2}, \ldots\right] \prec v\left[V_{2}^{\prime}, \ldots\right]}
\end{array}
$$

Proposition (Frisch/Cardelli)

For any nonproblematic RE E, string s, \prec_{v} is a strict well-founded total order on $\mathcal{T}_{s} \llbracket E \rrbracket$.
Definition
Greedy parse for $s \in \mathcal{L} \llbracket E \rrbracket: \min _{\prec_{\nu}} \mathcal{T}_{s} \llbracket E \rrbracket$.

Bit-Coding

- Compact representation of parse trees where the RE is known.
- Encoding $\ulcorner\urcorner:. \mathcal{V} \rightarrow\{\mathbf{1}, 0\}^{*}$,

$$
\begin{aligned}
\ulcorner()\urcorner & =\epsilon \\
\ulcorner a\urcorner & =\epsilon \\
\left\ulcorner\left(V_{1}, V_{2}\right)\right\urcorner & =\left\ulcorner V_{1}\right\urcorner\left\ulcorner V_{2}\right\urcorner \\
\left\ulcorner\text { inl }\left(V_{1}\right)\right\urcorner & =0\left\ulcorner V_{1}\right\urcorner \\
\left\ulcorner\text { inr }\left(V_{2}\right)\right\urcorner & =1\left\ulcorner V_{2}\right\urcorner \\
\left\ulcorner\left[V_{1}, \ldots, V_{n}\right]\right\urcorner & =0\left\ulcorner V_{1}\right\urcorner \cdots 0\left\ulcorner V_{n}\right\urcorner 1
\end{aligned}
$$

- Type-indexed decoding $\llcorner\cdot\lrcorner E:\{1,0\}^{*} \rightharpoonup \mathcal{T} \llbracket E \rrbracket$: Interpret RE as nondeterministic algorithm to construct parse tree, with bit-code as oracle. ("Every bit counts.")
- $\mathcal{B} \llbracket E \rrbracket=\{\ulcorner V\urcorner \mid V \in \mathcal{T} \llbracket E \rrbracket\}$
- $\mathcal{B}_{s} \llbracket E \rrbracket=\left\{\ulcorner V\urcorner \mid V \in \mathcal{T}_{s} \llbracket E \rrbracket\right\}$.

Example

RE $=((a \mid b)(c \mid d))^{*}$. Input string $=a c b d$.

1. Acceptance testing: Yes!
2. Pattern matching: $(0,4),(2,4),(2,3),(3,4)$
3. Parsing: [(inl a, inl $c),(\operatorname{inr} b, \operatorname{inr} d)]$

- Bit-code: 0000111.

Bit-coding: Examples

- Bit codes for the string abcbcba

Regular expression	Representation	Size
Latin1	abcbcba00000000	64
Σ^{*}	0a0b0c0b0c0b0a1	64
$((a+b)+(c+d))^{*}$	0000010100010100010001	22
$a \times b \times c \times b \times c \times b \times a$		0

Augmented NFAs

- Augmented NFA (aNFA) is a 5 -tuple $M \in\left(Q, \Sigma, \Delta, q^{s}, q^{f}\right)$.
- States $Q ; q^{s}, q^{f} \in Q$ start and finishing states.
- Input alphabet Σ.
- Labeled transition relation $\Delta \subseteq Q \times(\Sigma \cup\{\mathbf{1}, 0\} \cup\{\overline{\mathbf{1}}, \overline{\mathbf{0}}\}) \times Q$.
- Σ input labels; $\{1,0\}$ output labels; $\{\overline{1}, \overline{0}\} \log$ labels.
- Write $q \stackrel{p}{\rightsquigarrow} q^{\prime}$ if there is a walk from q to $q^{\prime} ; p$ sequence of labels.
- in $(p)=$ input label subsequence;
- out $(p)=$ output labels;
- $\log (p)=\log$ labels.

aNFA Construction (1/2)

- Define $\mathcal{N}\left(E, q^{s}, q^{f}\right)$ as set of aNFAs for E, with start and finishing states q^{s}, q^{f} :

E	$\mathcal{N}\left(E, q^{s}, q^{f}\right)$
0	$-q^{s}$
1	q^{f}
a	$-q^{s}$

aNFA Construction (2/2)

Representation Theorem

Theorem
Let $M=\mathcal{N}\left(E, q^{s}, q^{f}\right)$. The paths of M are in one-to-one correspondence with the parse trees of E :

$$
\mathcal{B}_{s} \llbracket E \rrbracket=\left\{\operatorname{out}(p) \mid q^{s} \stackrel{p}{\sim} q^{f}, \operatorname{in}(p)=s\right\}
$$

- Important to use Thompson-style ϵ-NFAs! Does not hold for DFAs, ε-free NFAs.
- Already observed by Brüggemann-Klein (1993).

Greedy parse = Lexicographically least bitcode

Proposition

For all $E, V, V^{\prime} \in \mathcal{T} \llbracket E \rrbracket$:

$$
V \prec_{\mathcal{V}} V^{\prime} \Longleftrightarrow\ulcorner V\urcorner \prec_{\mathcal{B}}\left\ulcorner V^{\prime}\right\urcorner
$$

where $\prec_{\mathcal{B}}$ is lexicographic ordering on $\{0,1\}^{*}$.
Corollary
Let $M=\mathcal{N}\left(E, q^{s}, q^{f}\right)$. For all $s \in \mathcal{L} \llbracket E \rrbracket$:

$$
\min _{\prec \vartheta} \mathcal{T}_{s} \llbracket E \rrbracket=\left\llcorner\min _{\prec_{\mathcal{B}}}\left\{\operatorname{out}(p) \mid q^{s} \stackrel{p}{\rightsquigarrow} q^{f}, \operatorname{in}(p)=s\right\}_{\lrcorner E} .\right.
$$

Monotonicity of $\prec_{\mathcal{B}}$

Proposition

If p_{1} not prefix of p_{2}, then

$$
\operatorname{out}\left(p_{1}\right) \prec_{\mathcal{B}} \operatorname{out}\left(p_{2}\right) \Rightarrow \operatorname{out}\left(p_{1} q_{1}\right) \prec_{\mathcal{B}} \operatorname{out}\left(p_{2} q_{2}\right)
$$

Lean-log algorithm

- Simulate aNFA for input s, using ordered state sets.
- Each state represents lexicographically least path reading current prefix.
- States are ordered according to the lexicographic ordering on the paths they represent.
- Perform state-ordered ϵ-closure: Log 1 bit per join state for each input character.
- After complete string is processed, use reverse aNFA and log bits to construct lexicographically least bit-code.
- (Construct parse tree from bit-code, if desired.)

Example: Parse aaa with RE (aa|a)*

- Input: aaa

Example: Parse aaa with RE (aa|a)*

- Input: aaa

Example: Parse aaa with RE (aala)*

- Input: a aa

Example: Parse aaa with RE (aa|a)*

- Input: aa a

Example: Parse aaa with RE (aa|a)*

- Input: aaa

Key properties of lean-log algorithm

- Semi-streaming: Forward streaming pass over input, logging join-state bits; backward pass for constructing bit-code.
- Two passes because of disambiguation requiring unbounded look-ahead.
- Input string read in streaming fashion, using $O(m)$ working memory and $k n$ bits of LIFO memory for the log, $k=$ number of alternatives and stars in E.
- Input string need not be stored. (Consider input coming from a generator.)
- Runs in time $O(m n)$.

Implementation

- Implementations of lean-log algorithm
- Straightforward Haskell version
- Optimized Haskell version, based on Conduit (10 times faster and)
- Straightforward C version (10 times faster than fast Haskell version)
- No NFA-minimization, no DFA generation, no word-level parallelism, no special RE-processing, no special handling of bounded iteration.

Performance

- Better performance than Play
- Competitive with RE2 when RE2 does not employ static optimizations, or when subjected to REs that are not "tuned" to Perl (made deterministic)
- Otherwise competitive with Grep and other tools, but not with RE2.
- These tools perform only acceptance testing or RE pattern matching, not full parsing; and they don't always do it correctly.
- Best amongst all tested full RE parsers (both greedy and other).

Regular matching algorithms

Problem	Time	Space	Aux	Answer
NFA simulation	$O(m n)$	$O(m)$	0	$0 / 1$
Perl	$O\left(m 2^{n}\right)$	$O(m)$	0	k groups
RE2 1	$O(m n)$	$O(m+n)$	0	k groups
Parse $(3-\mathrm{p})^{2}$	$O(m n)$	$O(m)$	$O(n)$	greedy parse
Parse $(2-\mathrm{p})^{3}$	$O(m n)$	$O(m)$	$O(n)$	greedy parse
Parse $(\text { str.) })^{4}$	$O(m n+f(m))$	$O(m)$	$O(n)$	greedy parse

(n size of input, m size of RE)

[^0]
Summary

- Regular expression parsing: Return list of matches for Kleene star, not just last match.
- Greedy parse = least parse in Greedy order. (Correspondingly for POSIX)
- Greedy-ordered parse = what backtracking yields.
- Greedy parse can be computed without any backtracking.
- NFA-simulation with ordered state sets.
- Worst-case linear time parsing for fixed RE (= scalable, guaranteed no REDoS)
- Bit-coding \cong parse tree minus underlying RE
- Semi-streaming and optimally streaming algorithms
- Input need not be stored in memory before, during or after parsing.
- RAM requirements independent of size of input string.

End

[^0]: ${ }^{1}$ Cox (2007)
 ${ }^{2}$ Frisch, Cardelli (2004)
 ${ }^{3}$ Grathwohl, Henglein, Nielsen, Rasmussen (2013)
 ${ }^{4}$ Grathwohl, Henglein, Rasmussen (2014)

