Coercions and substitutions

Fritz Henglein

DIKU, University of Copenhagen

2nd International Summer School on Advances in Programming Languages Edinburgh, Scotland 2014-08-22

Recall：Regular expressions as types

－Language of expressions $\operatorname{Reg}_{\mathcal{A}}$ ：
In

$$
8
$$

$$
E, F::=0|1| a|E| F|E F| E^{*}
$$

－Type interpretation $\mathcal{T} \llbracket E \rrbracket$ ：

$$
\begin{align*}
\mathcal{T} \llbracket 0 \rrbracket & =\emptyset \\
\mathcal{T} \llbracket 1 \rrbracket & =\{()\} \\
\mathcal{T} \llbracket a \rrbracket & =\{a\} \\
\mathcal{T} \llbracket E \mid F \rrbracket & =\mathcal{T} \llbracket E \rrbracket+\mathcal{T} \llbracket F \rrbracket \\
\mathcal{T} \llbracket E F \rrbracket & =\mathcal{T} \llbracket E \rrbracket \times \mathcal{T} \llbracket F \rrbracket \tag{保}\\
\mathcal{T} \llbracket E^{*} \rrbracket & =\mathcal{T} \llbracket E \rrbracket \text { list } \tag{F}
\end{align*}
$$

where

$$
\begin{aligned}
S+T & =\{\operatorname{inl} v \mid v \in S\} \cup\{\operatorname{inr} w \mid w \in T\} \\
S \text { list } & =\left\{\left[v_{1}, \ldots, v_{n}\right] \mid v_{i} \in S\right\}
\end{aligned}
$$

I
where

UNIVHRIIY OF COPENHAGEN

[^0] \square
$$
0
$$

\qquad
\qquad
都

Regular expressions as languages

Language interpretation $\mathcal{L} \llbracket E \rrbracket$:

$$
\begin{aligned}
& \mathcal{L} \llbracket E \mid F \rrbracket=\mathcal{L} \llbracket E \rrbracket \cup \mathcal{L} \llbracket F \rrbracket \\
& \mathcal{L} \llbracket E F \rrbracket=\mathcal{L} \llbracket E \rrbracket \mathcal{L} \llbracket F \rrbracket \\
& \mathcal{L} \llbracket E^{*} \rrbracket=\mathcal{L} \llbracket E \rrbracket^{*} \\
& S T=\{s t \mid s \in S \wedge t \in T\} \\
& S^{*}=\left\{s_{1} s_{2} \ldots s_{n} \mid s_{i} \in S\right\}
\end{aligned}
$$

Views of $\mathcal{T} \llbracket E \rrbracket$:

促

$\qquad$$T E$ read as
teds (proofs)
$v \in T \mathbb{E} \|\}$

Values $=$ parse trees $=$ membership proofs

- The values of E read as a type built from singletons, sum, product,
- The parse trees of all the strings matching E
- The parse trees of all the strings matching E
- The certificates (proofs) of membership for strings in $\mathcal{L} \llbracket E \rrbracket$.

```
Proposition
Proposition
L\\llbracketE\rrbracket={flat(v)|v\in\mathcal{T}EE\rrbracket}
sition
\[
(v) \mid v \in \mathcal{T} \llbracket E \rrbracket\}
\]
    O
\[
-
\]  
\[
\mathcal{L} \llbracket E \rrbracket=\{\operatorname{flat}(v) \mid v \in \mathcal{T} \llbracket E \rrbracket\}
\]






\section*{}

\(\qquad\)



\(\qquad\)

\section*{Regular Expression Containment}

> Definition (Language containment)
> \(\equiv E \leq F\) if \(\mathcal{L} \llbracket E \rrbracket \subseteq \mathcal{L} \llbracket F \rrbracket\).

Write \(\vDash E=F\) iff \(\models E \leq F\) and \(\models F \leq E\).

\section*{Definition (Coercion)}
\(\vDash f: E \leq F\) if \(f\) is function from \(\mathcal{T} \llbracket E \rrbracket\) to \(\mathcal{T} \llbracket F \rrbracket\) such that flat \((f(v))=\) flat \((v)\).

\section*{Theorem}
\(\vDash E \leq F\) if and only if there exists \(f\) such that \(\models f: E \leq F\).

\section*{Example: Language containment by FP}
- Conway's denesting rule: \(\models(E \mid F)^{*}=E^{*}\left(F E^{*}\right)^{*}\) for all \(E, F\).
- Proof by functional programming:

Find \(f:(' a+\) ' \(b\) ) list \(\rightarrow\) 'a list \(\times\) (' \(b \times\) 'a list) list
such that \(f\) does not discard, duplicate or reorder its input
\[
\begin{aligned}
& f([])=([], \quad[]) \\
& f(\text { inl u::zs })= \\
& \quad \text { let }(x s, y s)=f(z s) \text { in }(u:: x s, y s) \\
& f(\text { inr } v:: z s)= \\
& \quad \text { let }(x s, y s)=f(z s) \text { in }([],(v, x s):: y s)
\end{aligned}
\]
- \(f\) terminates since it is called recursively with smaller sized arguments
- \(f\) is string-preserving
- \(f\) is polymorphic, so works for all \(E, F\). (Indeed \(E, F\) need not even be regular.)
- Therefore: \(\models(E \mid F)^{*} \leq E^{*}\left(F E^{*}\right)^{*}\) for all \(E, F\).
- Reverse direction similar.

\section*{Synthesis problem}
- Need only existence of a? Decision problem, classical automata and formal language theory.
- Need to construct a coercion? Synthesis problem. Which coercion, how to construct and represent it?
Challenges:
- Different coercions, extensionally-choose which one? E.g. tagL : \(a \leq a+a\) or tagR : \(a \leq a+a\) ?
- Different coercions, intensionally-want efficient ones. E.g., id : \(a^{*} \leq a^{*}\) better than map[id] : \(a^{*} \leq a^{*}\).
- How to design "sublanguage" (DSL) of well-typed functions that are
- guaranteed to be coercions (soundness);
- contain at least one coercion for every valid containment (completeness);
- can be searched practically efficiently (not too large);
- contain efficient coercions (not too small).

Idea: Constructive interpretation of axiomatization of containment

\section*{Axiomatization：Weak containment}
\[
\begin{array}{llrll}
\text { shuffle } & : & E+(F+G) & =(E+F)+G & \\
\text { retag } & : & E+F & =F+E \\
\text { untagL } & : & 0+F & =F \\
\text { untag } & : & E+E & \leq E \\
\text { tagL } & : & E & \leq E+F & \\
\text { assoc } & : & E \times(F \times G) & =(E \times F) \times G & \frac{c: E \leq E^{\prime} \quad d: E^{\prime} \leq E^{\prime \prime}}{c ; d: E \leq E^{\prime \prime}} \\
\text { swap } & : & E \times 1 & =1 \times E & \frac{c: E \leq E^{\prime}}{c+d: E+F \leq E^{\prime}+F^{\prime}} \\
\text { proj } & : & 1 \times E & =E & \frac{c: E \leq E^{\prime}}{c \times d: E \times F \leq F^{\prime} \times F^{\prime}} \\
\text { abortR } & : & E \times 0 & =0 & \\
\text { abortL } & : & 0 \times E & =0 & \\
\text { distL } & : & E \times(F+G) & =(E \times F)+(E \times G) & \\
\text { distR } & : & (E+F) \times G & =(E \times G)+(F \times G) & \\
\text { wrap } & : & 1+E \times E^{*} & =E^{*} \\
\text { id } & : & E & =E
\end{array}
\]

Double reading：
－Names of axioms and rules for representing derivations as terms．
－Base functions and combinators for building coercions

derivations as terms．
有 5 \(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)

都




（ ..... 


\section*{Computational interpretation of coercions}

\[
\begin{array}{ll}
\operatorname{shuffle}(\operatorname{inl} v) & =\operatorname{inl}(\operatorname{inl} v) \\
\operatorname{shuffle}(\operatorname{inr}(\operatorname{inl} v)) & =\operatorname{inl}(\operatorname{inr} v) \\
\operatorname{shuffle}(\operatorname{inr}(\operatorname{inr} v)) & =\operatorname{inr} v \\
\operatorname{shuffl} e^{-1}(\operatorname{inl}(\operatorname{inl} v)) & =\operatorname{inl} v \\
\operatorname{shuffle}{ }^{-1}(\operatorname{inl}(\operatorname{inr} v)) & =\operatorname{inr}(\operatorname{inl} v) \\
\operatorname{shuffle} e^{-1}(\operatorname{inr} v) & =\operatorname{inr}(\operatorname{inr} v) \\
\operatorname{retag}(\operatorname{inl} v) & =\operatorname{inr} v \\
\operatorname{retag}(\operatorname{inr} v) & =\operatorname{inl} v \\
\operatorname{retag}^{-1} & =\operatorname{retag} \\
\operatorname{untagL}^{\operatorname{inr} v)} & =v \\
\operatorname{untag}(\operatorname{inl} v) & =v \\
\operatorname{untag}(\operatorname{inr} v) & =v \\
\operatorname{tagL}(v) & =\operatorname{inl} v \\
\operatorname{assoc}(v,(w, x)) & =((v, w), x) \\
\operatorname{assoc}{ }^{-1}((v, w), x) & =(v,(w, x))
\end{array}
\]

\section*{Computational interpretation of coercions (2)}
\[
\begin{array}{ll}
\operatorname{swap}(v,()) & =((), v) \\
\operatorname{swap}^{-1}((), v) & =(v,()) \\
\operatorname{proj}^{((), w)} & =w \\
\operatorname{proj}^{-1}(w) & =((), w) \\
\operatorname{distL}(v, \operatorname{inl} w) & =\operatorname{inl}(v, w) \\
\operatorname{distL}(v, \operatorname{inr} x) & =\operatorname{inr}(v, x) \\
\operatorname{distL} \\
\operatorname{distL}^{-1}(\operatorname{inl}(v, w)) & =(v, \operatorname{inl}(v, x)) \\
\operatorname{distR}(\operatorname{inl} v, w) & =(v, \operatorname{inr} x) \\
\operatorname{distR}(\operatorname{inr} v, x) & =\operatorname{inl}(v, w) \\
\operatorname{distR}^{-1}(v, x) \\
\operatorname{dist}(v, w)) & =(\operatorname{inl} v, w) \\
\operatorname{wrap}^{-1}(v) & \operatorname{inr}(v, x)) \\
\operatorname{wrap}^{-1}(v) & =\operatorname{inr} v, x) \\
\text { fold } v
\end{array}
\]

\section*{Computational interpretation of coercions (3)}

Type constructors as functors:
\[
\begin{array}{ll}
\operatorname{id}(v) & =v \\
\mathrm{id}^{-1} & =\operatorname{id} \\
(c ; d)(v) & =d(c(v)) \\
(c+d)(\operatorname{inl} v) & =\operatorname{inl}(c(v)) \\
(c+d)(\operatorname{inr} w) & =\operatorname{inr}(d(w)) \\
(c \times d)(v, w) & =(c(v), d(w))
\end{array}
\]

\section*{Kozen Axiomatization (1994)}
\[
\begin{aligned}
& \text { shuffle : } E+(F+G)=(E+F)+G \\
& E+F=F+E \\
& 0+F=F \\
& E+E \leq E \\
& E \leq E+F \\
& E \times(F \times G)=(E \times F) \times G \\
& E \times 1=1 \times E \\
& 1 \times E=E \\
& E \times 0=0 \\
& 0 \times E=0 \\
& E \times(F+G)=(E \times F)+(E \times G) \\
& (E+F) \times G=(E \times G)+(F \times G) \\
& E=E
\end{aligned}
\]

\section*{Example proofs}
\[
\begin{aligned}
& \text { cons }=\ldots: a \times a^{*} \leq a^{*} \\
& \operatorname{ll}[\text { foldr }[\mathrm{cons}]]: a^{*} \times a^{* *} \leq a *
\end{aligned}
\]
foldl[foldr[cons]]: \(a^{*} \times a^{* *} \leq a *\)
Short proof. But: foldl[foldr[cons]] runs in quadratic time! Does Kozen's axiomatization contain a "faster" proof? 
\(\qquad\)

\[
\rangle
\]

\(\square\) ——.

\section*{Henglein-Nielsen axiomatization (2011)}
- Weak axiomatiation +1 rule:

Safe coinduction (= terminating recursion).
- Contains all proofs of Salomaa, Kozen, Grabmayer.
- Numerous containment proofs that yield the identity (noop) on bit-coded parse trees or a finite state transducer (streaming linear-time, with constant-sized buffer).
- How to efficiently synthesize these? (Future work)

\section*{A（Somewhat）Realistic Scenario}

Fix malformed CSV data：

5




\(\qquad\) en

 ． － 

\author{
\(12,0,11,2,13,1\) \\ 
都都




 －都 ．
 \(\square\)

都
\[
\begin{aligned}
& \text { UNIVERSITY OF COPENHAGEN } \\
& \text { RE } \\
& \qquad \begin{array}{l}
r=[0-9]+,[0-9]+ \\
t=(r,) * r
\end{array} \\
& \qquad \begin{array}{l}
L(t) \text { contains all } \\
\qquad
\end{array} \\
& \text { where } w_{0}, w_{1}, \cdots, w_{n-1}, w_{n}
\end{aligned}
\]
\[
w_{0}, w_{1}, \cdots, w_{n-1}, w_{n}
\]
where \(w_{i} \in L(r)\).






\begin{tabular}{l}
1 \\
\hline
\end{tabular}

\[
\cdots 0+\quad+\quad+\infty
\] 
位
\(\operatorname{lem}^{2}\)

\(\qquad\)
\[
W
\]

\section*{A PCRE attempt}

Perl Compliant Regular Expressions (PCRE): Only one match under Kleene star.
\[
\mathrm{s} /(r,) *(r) / ? ? ? /
\]

\section*{A PCRE attempt}

Perl Compliant Regular Expressions (PCRE): Only one match under Kleene star.
\[
s / \underbrace{(r,)}_{1} * \underbrace{(r)}_{2} / ? ? ? /
\]

\section*{A PCRE attempt}
\[
\begin{gathered}
\mathrm{S} / \underbrace{(r,)}_{1} * \underbrace{(r)}_{2} / ? ? ? / \\
\underbrace{w_{0}, w_{1}, \cdots,}_{\text {lost! }} \underbrace{w_{n-1},}_{1} \underbrace{w_{n}}_{2}
\end{gathered}
\]

\section*{Perl Compliant Regular Expressions (PCRE): Only one match under Kleene star.}

\section*{Using PCRE \\ }

Iteration needs to be hand-coded.
In Python: 


In Python:
*
```

$$
\text { out }+=\text { m.group (1) }
$$

else:

$$
\begin{aligned}
& \mathrm{e}=,([0-9]+,[0-9]+) \mid(,) \text { ' } \\
& \text { for } m \text { in re.finditer }(\mathrm{e}, \text { text }):
\end{aligned}
$$

```
out += ";"
```

```
```

```
e = '([0-9]+,[0-9]+)|(,)'
```

```
```

e = '([0-9]+,[0-9]+)|(,)'

```
```

```
e = '([0-9]+,[0-9]+)|(,)'
```

```
```

e = '([0-9]+,[0-9]+)|(,)'

```
```

```
e = '([0-9]+,[0-9]+)|(,)'
```

```
```

e = '([0-9]+,[0-9]+)|(,)'
for m in re.finditer(e, text):
if m.group(1):
if m.group(1):
if m.group(1):
if m.group(1):
if m.group(1):
if m.group(1):
out += m.group(1)
else:
else:
else:
else:
else:
else:
out += ";"

```
```

 out += ";"
    ```
```

 out += ";"
    ```
```

 out += ";"
    ```
```

 out += ";"
    ```
```

 out += ";"
    ```
```

 out += ";"
    ```
```

```
.
```

-

\qquad

\qquad
\qquad
\qquad
\qquad

$$
)
$$

$$
\left(\left[\left(W_{1},,\right), \cdots,\left(W_{n-1},,\right)\right], W_{n}\right)
$$

\qquad

\qquad
\qquad
\qquad
\qquad -

\square \square \square

$$
\{,\}) \times r
$$

\qquad
（1）

 $-$

$$
\begin{aligned}
& (r,) * r \sim \operatorname{List}(r \times\{,\}) \times r \\
& \quad \left\lvert\, \begin{array}{l}
(i d \times \text { semic })^{\star} \times \text { id } \\
\operatorname{List}(r \times\{;\}) \times r
\end{array}\right.
\end{aligned}
$$ \square \qquad －

\|
\qquad
保
(1)

$$
\left(\left[\left(w_{1}, \underline{\varrho}\right), \ldots,\left(w_{n-1}, \underline{\perp}\right)\right], w_{n}\right)
$$

\qquad

[^1].
\qquad

Substitutions, functorially

$$
\begin{aligned}
& (r,) * r \sim \operatorname{List}(r \times\{,\}) \times r \\
& \quad \left\lvert\, \begin{array}{l}
\text { id } \times \text { semic })^{\star} \times \text { id } \\
\operatorname{List}(r \times\{;\}) \times r
\end{array}\right.
\end{aligned}
$$

Matches are values:

$$
\left(\left[\left(w_{1}, \dot{j}\right), \ldots,\left(w_{n-1}, \dot{j}\right)\right], w_{n}\right)
$$

Nested Repetition

$$
\operatorname{List}(\operatorname{List}(r \times\{,\}) \times r \times\{\backslash \mathrm{n}\})
$$

\qquad

Nested Repetition

$$
\begin{aligned}
& \operatorname{List}(\operatorname{List}(r \times\{,\}) \times r \times\{\backslash \mathrm{n}\}) \\
& \phi \\
& \operatorname{List}(\operatorname{List}(r \times\{;\}) \times r \times\{\backslash \mathrm{n}\}) \\
& \phi=\left((\mathrm{id} \times \text { semic })^{\star} \times \mathrm{id} \times \mathrm{id}\right)^{\star}
\end{aligned}
$$

 \qquad
-
 _ \qquad _ ـ \qquad -
\square

Using PCRE

Nested iteration needs to be hand-coded.

```
e = '([0-9]+,[0-9]+)|(,)'
for l in text.split('\n'):
    for m in re.finditer(e, l):
    out += "\n"
```


Summary

- Coercion $=$ Transformation that changes RE but retains string
- Proofs of containment induce string representation transformations
- Substitution $=$ Structural transformation that changes strings
- Includes projections, discarding parts of the input
- Synthesizing efficient coercions important (future work)
- Functorial transformations to express substitutionsUseful for compact RE-specific representations of strings

[^0]: [

[^1]: \qquad

