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Characteristics of Functional Languages

GpH is a conservative extension to the purely-functional, non-strict
language Haskell.
Thus, GpH provides all the of the advanced features inherited from
Haskell:

Sophisticated polymorphic type system, with type inference
Pattern matching
Higher-order functions
Data abstraction
Garbage-collected storage management

Most relevant for parallel execution is referential transparency :

The only thing that matters about an expression is its value,
and any subexpression can be replaced by any other equal in
value. [Stoy, 1977]
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Consequences of Referential Transparency

Equational reasoning:

Proofs of correctness are much easier than reasoning about state as in
procedural languages.

Used to transform programs, e.g. to transform simple specifications into
efficient programs.

Freedom from execution order:

Meaning of program is not dependent on execution order.

Lazy evaluation: an expression is only evaluated when, and if, it is
needed.

Parallel/distributed evaluation. Often there are many expressions that
can be evaluated at a time, because we know that the order of
evaluation doesn’t change the meaning, the sub-expressions can be
evaluated in parallel (Wegner 1978)

Elimination of side effects (unexpected actions on a global state).
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The Challenge of Parallel Programming

Engineering a parallel program entails specifying
computation: a correct, efficient algorithm

in GpH the semantics of the program is unchanged
coordination: arranging the computations to achieve “good”
parallel behaviour.

in GpH coordination and computation are cleanly separated
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Coordination Aspects

Coordinating parallel behaviour entails, inter alia:
partitioning

I what threads to create
I how much work should each thread perform

thread synchronisation
load management
communication
storage management

Specifying full coordination details is a significant burden on the
programmer
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High Level Parallel Programming

High level parallel programming aims to reduce the programmer’s
coordination management burden.

This can be achieved through skeletons (Eden), through specific
execution models (array languages such as SAC, dataflow languages
such as Swan), or parallelising compilers (pH).

GpH (Glasgow parallel Haskell) uses a model of semi-explicit
parallelism: only a few key aspects of coordination need to be specified
by the programmer.
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GpH Coordination Primitives

GpH provides parallel composition to hint that an expression may
usefully be evaluated by a parallel thread.
We say x is “sparked” : if there is an idle processor a thread may be
created to evaluate it.

Evaluation
x ‘par‘ y⇒y

GpH provides sequential composition to sequence computations and
specify how much evaluation a thread should perform. x is evaluated
to Weak Head Normal Form (WHNF) before returning y.

Evaluation
x ‘pseq‘ y⇒y
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Introducing Parallelism: a GpH Factorial

Factorial is a classic divide and conquer algorithm.

Example (Parallel factorial)
pfact n = pfact’ 1 n

pfact’ :: Integer -> Integer -> Integer
pfact’ m n
| m == n = m
| otherwise = left ‘par‘ right ‘pseq‘ (left * right)

where mid = (m + n) ‘div‘ 2
left = pfact’ m mid
right = pfact’ (mid+1) n
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Controlling Evaluation Order

Notice that we must control evaluation order: If we wrote the function
as follows, then the addition may evaluate left on this core/processor
before any other has a chance to evaluate it

| otherwise = left ‘par‘ (left * right)

The right ‘pseq‘ ensures that left and right are evaluated
before we multiply them.
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Controlling Evaluation Degree
In a non strict language we must specify how much of a value should
be computed.

For example the obvious quicksort produces almost no parallelism
because the threads reach WHNF very soon: once the first cons cell of
the sublist exists!

Example (Quicksort)
quicksortN :: (Ord a) => [a] -> [a]
quicksortN [] = []
quicksortN [x] = [x]
quicksortN (x:xs) =
losort ‘par‘
hisort ‘par‘
losort ++ (x:hisort)
where
losort = quicksortN [y|y <- xs, y < x]
hisort = quicksortN [y|y <- xs, y >= x]
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Controlling Evaluation Degree (cont’d)
Forcing the evaluation of the sublists gives the desired behaviour:

Example (Quicksort with forcing functions)
forceList :: [a] -> ()
forceList [] = ()
forceList (x:xs) = x ‘pseq‘ forceList xs

quicksortF [] = []
quicksortF [x] = [x]
quicksortF (x:xs) =
(forceList losort) ‘par‘
(forceList hisort) ‘par‘
losort ++ (x:hisort)
where
losort = quicksortF [y|y <- xs, y < x]
hisort = quicksortF [y|y <- xs, y >= x]

Problem: we need a different forcing function for each datatype.
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GpH Coordination Aspects

To specify parallel coordination in Haskell we must

1 Introduce parallelism
2 Specify Evaluation Order
3 Specify Evaluation Degree

This is much less than most parallel paradigms, e.g. no
communication, synchronisation etc.

It’s important that we do so without cluttering the program. In many
parallel languages, e.g. C with MPI, coordination so dominates the
program text that it obscures the computation.
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Evaluation Strategies: Separating Computation and
Coordination

Evaluation Strategies abstract over par and pseq,
raising the level of abstraction, and
separating coordination and computation concerns

It should be possible to understand the semantics of a function
without considering its coordination behaviour.
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Evaluation Strategies
An evaluation strategy is a function that specifies the coordination
required when computing a value of a given type, and preserves the
value i.e. it is an identity function.

type Strategy a = a -> Eval a

data Eval a = Done a

We provide a simple function to extract a value from Eval:

runEval :: Eval a -> a
runEval (Done a) = a

The return operator from the Eval monad will introduce a value into
the monad:

return :: a -> Eval a
return x = Done x
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Applying Strategies

using applies a strategy to a value, e.g.

using :: a -> Strategy a -> a
using x s = runEval (s x)

Example
A typical GpH function looks like this:

somefun x y = someexpr ‘using‘ somestrat
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Simple Strategies

Simple strategies can now be defined.

r0 performs no reduction at all. Used, for example, to evaluate only the first
element but not the second of a pair.

rseq reduces its argument to Weak Head Normal Form (WHNF).

rpar sparks its argument.

r0 :: Strategy a
r0 x = Done x

rseq :: Strategy a
rseq x = x ‘pseq‘ Done x

rpar :: Strategy a
rpar x = x ‘par‘ Done x
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Controlling Evaluation Order
We control evaluation order by using a monad to sequence the
application of strategies.

So our parallel factorial can be written as:

Example (Parallel factorial)
pfact’ :: Integer -> Integer -> Integer
pfact’ m n
| m == n = m
| otherwise = (left * right) ‘using‘ strategy

where mid = (m + n) ‘div‘ 2
left = pfact’ m mid
right = pfact’ (mid+1) n
strategy result = do

rpar left
rseq right
return result
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Controlling Evaluation Degree - The DeepSeq Module

Both r0 and rseq control the evaluation degree of an expression.

It is also often useful to reduce an expression to normal form (NF), i.e. a form
that contains no redexes. We do this using the rnf strategy in a type class.

As NF and WHNF coincide for many simple types such as Integer and
Bool, the default method for rnf is rwhnf.

class NFData a where
rnf :: a -> ()
rnf x = x ‘pseq‘ ()

We define NFData instances for many types, e.g.

instance NFData Int
instance NFData Char
instance NFData Bool
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Evaluation Degree Strategies

We can define NFData for type constructors, e.g.

instance NFData a => NFData [a] where
rnf [] = ()
rnf (x:xs) = rnf x ‘seq‘ rnf xs

We can define a deepseq operator that fully evaluates its first argument:

deepseq :: NFData a => a -> b -> b
deepseq a b = rnf a ‘seq‘ b

Reducing all of an expression with rdeepseq is by far the most common
evaluation degree strategy:

rdeepseq :: NFData a => Strategy a
rdeepseq x = x ‘deepseq‘ Done x
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Combining Strategies
As strategies are simply functions they can be combined using the full
power of the language, e.g. passed as parameters or composed.

dot composes two strategies on the same type:

dot :: Strategy a -> Strategy a -> Strategy a
s2 ‘dot‘ s1 = s2 . runEval . s1

evalList sequentially applies strategy s to every element of a list:

Example (Parametric list strategy)
evalList :: Strategy a -> Strategy [a]
evalList s [] = return []
evalList s (x:xs) = do x’ <- s x

xs’ <- evalList s xs
return (x’:xs’)
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Data Parallel Strategies

Often coordination follows the data structure, e.g. a thread is created
for each element of a data structure.

For example parList applies a strategy to every element of a list in
parallel using evalList

parList :: Strategy a -> Strategy [a]
parList s = evalList (rpar ‘dot‘ s)

parMap is a higher order function using a strategy to specify
data-oriented parallelism over a list.

parMap strat f xs = map f xs ‘using‘ parList strat
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Control-oriented Parallelism

Example (Strategic quicksort)
quicksortS [] = []
quicksortS [x] = [x]
quicksortS (x:xs) =
losort ++ (x:hisort) ‘using‘ strategy
where

losort = quicksortS [y|y <- xs, y < x]
hisort = quicksortS [y|y <- xs, y >= x]
strategy res = do

(rpar ‘dot‘ rdeepseq) losort
(rpar ‘dot‘ rdeepseq) hisort
rdeepseq res

Note how the coordination code is cleanly separated from the
computation.
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Thread Granularity
Using semi-explicit parallelism, programs often have massive,
fine-grain parallelism, and several techniques are used to increase
thread granularity.

It is only worth creating a thread if the cost of the computation will
outweigh the overheads of the thread, including

communicating the computation
thread creation
memory allocation
scheduling

It may be necessary to transform the program to achieve good parallel
performance, e.g. to improve thread granularity.
Thresholding: in divide and conquer programs, generate parallelism
only up to a certain threshold, and when it is reached, solve the small
problem sequentially.
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Threshold Factorial

Example (Strategic factorial with threshold)
pfactThresh :: Integer -> Integer -> Integer
pfactThresh n t = pfactThresh’ 1 n t

-- thresholding version
pfactThresh’ :: Integer -> Integer -> Integer -> Integer
pfactThresh’ m n t
| (n-m) <= t = product [m..n] -- seq solve
| otherwise = (left * right) ‘using‘ strategy

where mid = (m + n) ‘div‘ 2
left = pfactThresh’ m mid t
right = pfactThresh’ (mid+1) n t
strategy result = do

rpar left
rseq right
return result
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Chunking Data Parallelism
Evaluating individual elements of a data structure may give too fine
thread granularity, whereas evaluating many elements in a single
thread give appropriate granularity. The number of elements (the size
of the chunk) can be tuned to give good performance.

It’s possible to do this by changing the computational part of the
program, e.g. replacing
parMap rdeepseq fact [12 .. 30]

with
concat (parMap rdeepseq

(map fact) (chunk 5 [12 .. 30]))

chunk :: Int -> [a] -> [[a]]
chunk _ [] = [[]]
chunk n xs = y1 : chunk n y2
where
(y1, y2) = splitAt n xs
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Strategic Chunking
Rather than change the computational part of the program, it’s better
to change only the strategy.

We can do so using the parListChunk strategy which applies a
strategy s sequentially to sublists of length n:
map fact [12 .. 30] ‘using‘ parListChunk 5 rdeepseq

Uses Strategy library functions:

parListChunk :: Int -> Strategy [a] -> Strategy [a]
parListChunk n s =
parListSplitAt n s (parListChunk n s)

parListSplitAt :: Int -> Strategy [a]
Strategy [a] -> Strategy [a]

parListSplitAt n stratPref stratSuff =
evalListSplitAt n (rpar ‘dot‘ stratPref)

(rpar ‘dot‘ stratSuff)
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evalListSplitAt :: Int -> Strategy [a] ->
Strategy [a] -> Strategy [a]

evalListSplitAt n stratPref stratSuff [] = return []
evalListSplitAt n stratPref stratSuff xs
= do

ys’ <- stratPref ys
zs’ <- stratSuff zs
return (ys’ ++ zs’)
where

(ys,zs) = splitAt n xs
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Systematic Clustering
Sometimes we require to aggregate collections in a way that cannot be
expressed using only strategies. We can do so systematically using
the Cluster class:

cluster n maps the collection into a collection of collections
each of size n

decluster retrieves the original collection
decluster . cluster == id

lift applies a function on the original collection to the clustered
collection

class (Traversable c, Monoid a) => Cluster a c where
cluster :: Int -> a -> c a
decluster :: c a -> a
lift :: (a -> b) -> c a -> c b

lift = fmap -- c is a Functor, via Traversable
decluster = fold -- c is Foldable, via Traversable
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An instance for lists requires us only to define cluster

instance Cluster [a] [] where
cluster = chunk
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A Strategic Div&Conq Skeleton
divConq :: (a -> b) -- compute the result

-> a -- the value
-> (a -> Bool) -- threshold reached?
-> (b -> b -> b) -- combine results
-> (a -> Maybe (a,a)) -- divide
-> b

divConq f arg threshold conquer divide = go arg
where
go arg =
case divide arg of
Nothing -> f arg
Just (l0,r0) -> conquer l1 r1 ‘using‘ strat

where
l1 = go l0
r1 = go r0
strat x = do r l1; r r1; return x

where r | threshold arg = rseq
| otherwise = rpar

data Maybe a = Nothing | Just a
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Summary
Evaluation strategies in GpH

use laziness to separate computation from coordination
use the Eval monad to specify evaluation order
use overloaded functions (NFData) to specify the
evaluation-degree
provide high level abstractions, e.g. parList, parSqMatrix
are functions in algorithmic language⇒

I comprehensible,
I can be combined, passed as parameters etc,
I extensible: write application-specific strategies, and
I can be defined over (almost) any type

general: pipeline, d&c, data parallel etc.
Capable of expressing complex coordination, e.g. embedded
parallelism, Clustering, skeletons

For a list of (parallel) Haskell exercises with usage instructions see:
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21DP/
tutorial0.html#gph
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Fuel-based parallelism with give-back using circularity

The resource of “fuel” is used to limit the amount of parallelism
when traversing a data structure
It is passed down from the root of the tree
It is given back if the tree is empty or fuel is unused
The give-back mechanism is implemented via circularity
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Fuel-based parallelism with give-back using circularity

Listing 1: Fuel with giveback annotation
1 -- | Fuel with giveback annotation
2 annFuel_giveback::Fuel->QTree tl
3 ->AnnQTree Fuel tl
4 annFuel_giveback f t = fst $ ann (fuelL f) t
5 where
6 ann::FuelL->QTree tl->(AnnQTree Fuel tl,FuelL)
7 ann f_in E = (E,f_in)
8 ann f_in (L x) = (L x,f_in)
9 ann f_in (N (Q a b c d)) =

10 (N (AQ (A (length f_in)) a’ b’ c’ d’),emptyFuelL)
11 where
12 (f1_in:f2_in:f3_in:f4_in:_) =
13 fuelsplit_unitlist _numSubnodes f_in

14 (a’, f1_out ) = ann (f1_in++ f4_out ) a

15 (b’, f2_out ) = ann (f2_in++ f1_out ) b

16 (c’, f3_out ) = ann (f3_in++ f2_out ) c

17 (d’, f4_out ) = ann (f4_in++ f3_out ) d
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Further Reading & Deeper Hacking

S. Marlow and P. Maier and H-W. Loidl and M.K. Aswad and P.
Trinder, “Seq no more: Better Strategies for Parallel Haskell”. In
Haskell’10 — Haskell Symposium, Baltimore MD, U.S.A.,
September 2010. ACM Press.
http://www.macs.hw.ac.uk/~dsg/projects/gph/
papers/abstracts/new-strategies.html

Prabhat Totoo, Hans-Wolfgang Loidl. “Lazy Data-Oriented
Evaluation Strategies”. In FHPC 2014: The 3rd ACM SIGPLAN
Workshop on Functional High-Performance Computing,
Gothenburg, Sweden, September, 2014.
http://www.macs.hw.ac.uk/~dsg/projects/gph/
papers/abstracts/fhpc14.html

“Parallel and concurrent programming in Haskell”, by Simon
Marlow. O’Reilly, 2013. ISBN: 9781449335946.
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Further Reading & Deeper Hacking

An excellent site for learning (sequential) Haskell is:
https://www.fpcomplete.com/school

Glasgow parallel Haskell web page:
http://www.macs.hw.ac.uk/~dsg/gph

Our course on parallel technologies covers GpH in more detail
and has more exercises:
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21DP

Specifically, for a list of (parallel) Haskell exercises with usage
instructions see:
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21DP/
tutorial0.html#gph
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Case study: Parallel Matrix Multiplication

As an example of a parallel program lets consider: matrix
multiplication.

Problem If matrix A is an m × n matrix [aij ] and B is an n × p matrix
[bij ], then the product is an m × p matrix C where Cik = Σn

j=1aijbjk
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Matrix Multiplication

0Picture from http://en.wikipedia.org/wiki/Matrix_multiplication
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Sequential Implementation

-- Type synonyms
type Vec a = [a]
type Mat a = Vec (Vec a)

-- vector multiplication (’dot-product’)
mulVec :: Num a => Vec a -> Vec a -> a
u ‘mulVec‘ v = sum (zipWith (*) u v)

-- matrix multiplication, in terms of vector multiplications
mulMat :: Num a => Mat a -> Mat a -> Mat a
a ‘mulMat‘ b =
[[u ‘mulVec‘ v | v <- bt ] | u <- a]

where bt = transpose b
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Parallel Implementation

1st attempt: parallelise every element of the result matrix, or both ‘maps’

mulMatPar :: (NFData a, Num a) =>
Mat a -> Mat a -> Mat a

mulMatPar a b = (a ‘mulMat‘ b) ‘using‘ strat
where
strat m = parList (parList rdeepseq) m

Easy to get a first parallel version.
Unlikely to give good performance straight away.
Some performance tuning is necessary (as with all parallel
programming activities).
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Shared-Memory Results
600 x 600 matrices on an 8-core shared memory machine (Dell
PowerEdge).

Compile with profiling; run on 4 cores; view results

% ghc --make -O2 -threaded -eventlog
% -o MatMultPM MatMultPM.hs
% ./MatMultPM 600 90 20 20 13 +RTS -N7 -sstderr -ls
% threadscope MatMultPM.eventlog

No. Cores Runtime Relative Absolute
(s) Speedup Speedup

Seq 56.1 1.0
1 62.6 1.0 0.89
2 56.9 1.10 0.99
4 59.7 1.04 0.95
7 60.2 1.04 0.96
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Improving Granularity

Currently parallelise both maps (outer over columns, inner over rows)

Parallelising only the outer , and performing the inner sequentially will
increase thread granularity .

mulMatParRow :: (NFData a, Num a) =>
Mat a -> Mat a -> Mat a

mulMatParRow a b =
(a ‘mulMat‘ b) ‘using‘ strat
where
strat m = parList rdeepseq m
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Granularity can be further increased by ‘row clustering’, i.e. evaluating
c rows in a single thread, e.g.

mulMatParRows :: (NFData a, Num a) =>
Int -> Mat a -> Mat a -> Mat a

mulMatParRows m a b =
(a ‘mulMat‘ b) ‘using‘ strat
where
strat m = parListChunk c rdeepseq m

Clustering (or chunking) is a common technique for increase the
performance of data parallel programs.
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Shared-Memory Row-Clustered Results

600 x 600 matrices with clusters of 90 rows:

No. Cores Runtime Relative Absolute
(s) Speedup Speedup

Seq 56.1 1.0
1 60.4 1.0 0.93
2 31.4 1.9 1.8
4 18.0 3.4 3.4
7 9.2 6.6 6.6
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Algorithmic Improvements

Using blockwise clustering (a.k.a. Gentleman’s algorithm) reduces
communication as only part of matrix B needs to be communicated.

N.B. Prior to this point we have preserved the computational part of the
program and simply added strategies. Now additional computational
components are added to cluster the matrix into blocks size m times n.

mulMatParBlocks :: (NFData a, Num a) =>
Int -> Int -> Mat a -> Mat a -> Mat a

mulMatParBlocks m n a b =
(a ‘mulMat‘ b) ‘using‘ strat
where
strat x = return (unblock (block m n x

‘using‘ parList rdeepseq))

Algorithmic changes can drastically improve parallel performance, e.g.
by reducing communication or by improving data locality.
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block clusters a matrix into a matrix of matrices, and unblock does
the reverse.

block :: Int -> Int -> Mat a -> Mat (Mat a)
block m n = map f . chunk m where
f :: Mat a -> Vec (Mat a)
f = map transpose . chunk n . transpose

-- Left inverse of @block m n@.
unblock :: Mat (Mat a) -> Mat a
unblock = unchunk . map g where
g :: Vec (Mat a) -> Mat a
g = transpose . unchunk . map transpose
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Results from the Tuned Parallel Version

600 x 600 matrices with block clusters: 20 x 20

No. Cores Runtime Relative Absolute
(s) Speedup Speedup

Seq 56.1 1.0
1 60.4 1.0 0.93
2 26.9 2.2 2.1
4 14.1 4.2 3.9
7 8.4 7.2 6.7
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Parallel Threadscope Profiles

For parallelism profiles compile with option -eventlog

ghc -O2 -rtsopts -threaded -eventlog
-o parsum_thr_l parsum.hs

then run with runtime-system option -ls

./parsum_thr_l 90M 100 +RTS -N6 -ls

and visualise the generated eventlog profile like this:

/home/pt114/.cabal/bin/threadscope parsum_thr_l.eventlog

You probably want to do this on small inputs, otherwise the eventlog
file becomes huge!
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