Skeleton-Based Parallel Programming in Eden

Rita Loogen
Philipps-Universitat Marburg, Germany

Joint Work with:

Mischa Dieterle and Thomas Horstmeyer
(Philipps-Universitat Marburg)

Jost Berthold

(University of Copenhagen, Denmark)
Yolanda Ortega Mallén and Lidia Sanchez-Gil
(Universidad Complutense de Madrid, Spain)

Overview

— Motivation and Basics
— Algorithmic Skeletons

— Parallel map implementations
— Divide and Conquer

— Skeleton Composition
— Remote data concept
— Parallel map — parallel reduce
— Implementing PSRS in Eden

— Conclusions

— Lab Notes

Motivation

Parallel programming at a high level of abstraction

parallelism control + functional language

» explicit processes (> Haskell)

: => concise programs
» implicit communication

» distributed memory => high programming efficiency
=> higher-order functions

» non-functional features .
=> |laziness

» remote data

» many-to-one communication ; ‘E;

Eden = Haskell + Parallelism
www.informatik.uni-marburg.de/~eden

Eden = Haskell + Parallelism

(@

parallel programming
at a high level of
abstraction

G
» process definition
process :: (Transa, Transb)=> (a->b)->Processab
:1‘ . gridProcess = process gridFunction
1 gridFunction (fromLeft,fromTop) = (toRight, toBottom))
where toRight = ... S)
toBottom = ... process outputs B

computed by
concurrent threads,

> eager creation of processes &
J

lists sent as streams

J

spawn :: (Trans a, Trans b) => [Process a b] -> [a] -> [b]

(outEasts,outSouths) = unzip $

4—‘4—
v

4—‘4—
v

—e—
v

outEast = last outEasts

spawn (repeat gridProcess)
(zip inNorths (inWest:outEasts))

The Eden Module: Control.Parallel.Eden

4 N\)
definitions of more features like
process, Process and spawn e.g. remote data

\ J
process :: (Trans a, Trans b) => (a -> b) -> Process a b
spawn :: (Trans a, Trans b) => [Process a b] -> [a]->[Db]

t\ /\
A .

Definition of type class Trans which

e contains transmissible data types (most pre-defined types)

e defines (implicitly used) communication functions
overloaded for lists (-> streams) and tuples (-> concurrency)

_ J

\

Evaluating spawn [process f] [e]

] ‘spawn’ [

graph of graph of

process argument
abstraction expression
process f o
— _ — _
YT N
thread(s) in new child process new concurrent thread (s)
will evaluate(s) the application in parent process
(f S e) tonormal form evaluate(s) e to normal form
and send(s) the result to the and send(s) the result to the
parent process child process

resultof f$ e
main process

creates

child process

result of e

Lazy evaluation vs. Parallelism

e Problem: Lazy evaluation ==> distributed sequentiality
e Eden’s approach:

— eager process creation with spawn
e default round robin process placement

e explicit process placement using spawnAt :: [Int] -> ...

— eager communication:
e normal form evaluation of all process outputs
(by independent threads)

e push communication, i.e.
values are communicated as soon as available

— explicit demand control using sequential strategies

(Module Control.Seq):
e rnf :: NFData a => Strategy a
e pseq::a->b->b (Module Control.Parallel)

"

A Simple Parallelisation of map

map :: (a -> b) -> [a] -> [b]
[£ x | x <- xs]

113

parMap :: (Trans a, Trans b) =>
(a -=> b) -> [a] -> [Db]
parMap £ = spawn (repeat (process f))

map f xs

1 process

per list element

14

Case Study: Merge Sort

unsorted /

unshuffle 2

list \

Haskell Code:
mergeSort
mergeSort []
mergeSort [x]
mergeSort xs

unsorted
sublist 1

unsorted
sublist 2

>

—

sorted
sublist 1

sorted
list

sorted
sublist 2

:: (Ord a, Show a) => [a] -> [a]

=l
= [x]

= sortMerge (mergeSort xs1) (mergeSort xs2)

where [xsl1,xs2] = unshuffle 2 xs

Parallel Mergesort Using parMap

unsorted
list

unsorted
sublist 1

unsorted
sublist 2

),

unshuffle (noPe-1)

mergesort

mergesort

11

o

O OO

unsorted
sublist noPe-2

mergesort

unsorted
sublist noPe-1

mergesort

11

sorted
sublist 1

sorted
sublist 2

merge many lists

sorted
list

sorted
sublist noPe-2

\\

sorted
sublist noPe-1

10

Eden Code

par ms :: (Ord a, Show a, Trans a) => [a] -> [a]
par ms Xs
= mergeAll $ parMap mergeSort (unshuffle (noPe-1) xs))

mergeAll :: Ord a => [[a]] -> [a]
mergeAll [xs] = xs

mergeAll xss = mergeAll (mergePairs xss)
mergePairs :: Ord a => [[a]] -> [[all

mergePairs (xsl:xs2:xss)
= sortMerge xsl xs2 : mergePairs xss
mergePairs xs = Xs

—> Total number of processes = noPe
—> eagerly created processes
-> round robin placement leads to 1 process per PE

module

import
import
import
import

import

main

main =

Main where

Eden Program

Control.Parallel.Eden
Control.Parallel.Eden.Map (parMap)
Control.Parallel.Eden.Auxiliary (unshuffle)
System.Environment (getArgs)

System.Random

IO ()
do ins <- getArgs
let (v:a:xs) = ins
let rs = randomlist (read a :: Int) 42

putStrln (rnf rs pseq rnf (ms v rs) "pseq "Done")

ms :: String -> [Int] -> [Int]
-—- sequential mergeSort

ms "seq" xs = mergeSort xs

-- simple parMap

ms "parMap" xs

mergeAll $ parMap mergeSort (unshuffle (noPe-1) xs)

12

Compiling, Running, Analysing Eden Programs

1. Compile Eden programs on multicores with
ghceden —parcp --make —02 —eventlog myprogram.hs

and on clusters or multicores with

ghceden —parmpi --make —02 —eventlog myprogram.hs

or ghceden —parpvm --make —02 —eventlog myprogram.hs

2. Run compiled programs with
myprogram <parameters> +RTS -Is -N<noPe> -RTS

If you use pvm, you first have to start it.
Provide pvmhosts or mpihosts file

3. Analyse eventlog (trace file) with
edentv myprogram_... -N4_-RTS.parevents

13

Experimental Results

e For all measurements in this lecture, | have used ghc-eden-7.8.2 on a
64-core machine:

4 x AMD Opteron(tm) Processor 6378
(16 Cores, 16MMB L3-Cache, 2,4 GHz)
64 GB DDR3 SDRAM, 1600 MHz

: i t e Runtime Results for parMap-mergesort on 8 cores:

‘ SLOWDOWN

e What is going wrong? Use EdenTV to analyse program behaviour.

* Input size 5.000
* sed. runtime: 0,020 s
* par. runtime: 0,103 s

AIPL Edinburgh, 2014 14

Eden-TV
Eden

Parallel runtime system

(Management of processes/threads B | EdenTV
and communication)

parallel machine

EdenTV provides
- four different views (activity profiles)

Machines (PEs) - Processes - Threads - Processes/Machine
- message overlays (except for thread profiles)
- zooming

AiPL Edinburgh, 2014

Colour Code Used in Activity Profiles

e An Eden process consists of several threads
(one per output channel).

e Thread State Transition Diagram:

deblock

new
thread runnable suspend thread
thread
kill thread block |
thread

kill thread

e States of processes and machines are derived from thread
states

16

EdenTV Activity Profile of Parallel MergeSort

(Processes/Machine View)

Input size: 5.000

seq. runtime: 0,020 s

par. runtime: 0,103 s
SLOWDOWN

Additional Infos by EdenTV
* 8Pes
8 processes
15 threads
* 42 conversations
10042 messages

Reason for Slowdown:
Too many messages ?

17

Reducing Number of Messages
by Chunking Streams

Split a list (stream) into chunks:

chunk :: Int -> [a] -> [[al]l

chunk size [] = []

chunk size xs = ys : chunk size zs
where (ys,zs) = splitAt size xs

Combine with parallel map-implementation of mergesort:

par ms ¢ :: (Ord a, Show a, Trans a) =>
Int -> -— chunk size
[a] -> [a]
par_ms_c size XS concat = unchunk
= mergeAll $ map concat $
parMap ((chunk size) . mergeSort . concat)

(map (chunk size) (unshuffle (noPe-1) xs)))

18

Resulting Activity Profile
(Processes/Machine View) rar. runtimel: 0,103 s

Previous results for input size 5000

Seq. runtime: 0,020s

P7:Sys

Input size: 5.000
Chunk size: 50
par. runtime: 0,027 s

Additional Infos by EdenTV
* 8Pes
8 processes
15 threads
* 42 conversations
10042 252 messages

Much better, but still
SLOWDOWN

Time for

- parallel system start up (0,005s)

- random list generation (0,016 s)

dominates runtime.

19

Activity Profile for Input Size 1.000.000

P75y

oSy

P8:Sys

F7:Sys

U

—H-II[I_WI"\I i IIIIIIIHH
N O 11 l

U U TTRE AT (AN
I AT \
g

W W)

H‘

* Input size 1.000.000
e Chunk size 1000

* seg. runtime: 6,827 s
* list generation: 1,18 s
* par. runtime: 2,724 s

* 8 Pes, 8 processes,
15 threads
* 2044 messages

- speedup of parallel
sort is
3.66 on 8 PE

)
Y Y

unshuffle merge

20

Algorithmic Skeletons

"

AiPL Edinburgh, 2014

21

Algorithmic Skeletons

e patterns of parallel computations
=> in Eden:

parallel higher-order functions
e typical patterns:

— parallel maps and master-worker systems:
parMap, farm, offline_farm, mw (workpoolSorted)

— map-reduce

— divide and conquer

— topology skeletons: pipeline, ring, torus, grid, trees ...

)

See Eden's
Skeleton Library
Control.Parallel.Eden .<...>

with <...>in Map, MapReduce, DivCong, Topology, Workpool,
Iteration

22

Parallel map implementations: parMap vs farm

parMap

__

parMap

:: (Trans a, Trans b) =>
(a->b) ->[a] ->[b]

parMap f xs

spawn (repeat (process f)) xs

farm :: (Trans a, Trans b) =>
([al -> [[al]) -> ([[b]] -> [b]) ->
(a->b) ->[a] ->[b]
farm distribute combine f xs
= combine (parMap (map f)
(distribute xs))

23

Distribution and Collection Functions

farm :: (Trans a, Trans b) => 1 process
([a]l] -> [[al]l]) -> -- distribute | per sub-tasklist
([[b]] -> [b]) -> —— combine with static
(a_>b) -> [a] -> [b] task distribution

farm distribute combine f xs \\~—«//////ﬂ—

= combine . (parMap (map f)) . distribute

Choose e.g.

 distribute = unshuffle np / combine shuffle
« distribute = splitIntoN np / combine = concat
leading to alternative parallel maps implementations:

mapFarmS, mapFarmB :: 1 process
(Trans a, Trans b) => //”—) per PE
(a -> b) -> [a] -> [b]

mapFarmS = farm (unshuffle [(max (noPe-1) 1)) shuffle
mapFarmB = farm (splitIntoN (max (noPe-1) 1)) concat ,,

Reducing Communication Costs in Skeletons

Techniques:
1. Chunking
2. Offline Processes

Combine Chunking with Parallel Map:

chunkMap :: Int -> (([a] -> [b]) -> ([[a]l]l -> [[b]l]))
-> (a -> b) -> [a] -> [Db]
chunkMap chunksize mapscheme f xs

= concat (mapscheme (map f) (chunk chunksize xs))

25

Communication

Process inputs
- can be communicated:

- can be passed as parameter
() is dummy process input

graph of
process
abstraction

—

/

YT
will be packed (serialised)
and sent to remote PE
where child process is created
to evaluate the application
of this expression to the input

vs Parameter Passing

spawn [process f] [inp]
spawn [process (\ () -> finp)] [()]

graph of
input
expression

— /

——
will be evaluated in parent process

by concurrent thread

and then sent to child process
26

Offline Processes and Skeletons

Offline processes run without input or with a trivial input.

expressions are copied without prior evaluation.

This may save communication costs.

Offline skeletons use offline processes.

This may cause redundant evaluations, because input ‘

Offline skeletons are useful, if the input data is not yet
evaluated.

27

Farm VS Offline Farm

farm :: (Trans a, Trans b) => offlineFarm ::(Trans a, Trans b) => Int ->
([al ->[[al]) -> ([[b]] -> [b]) -> ([al -> [[al]) -> ([[b]] -> [b]) ->
(a->b) ->[a] -> [b] (a ->b) ->[a] -> [b]
(%) g (%)
AL TTTE IS
_______ — T i o i
91 T8 19-910-9) - gD
flo ey 6] 1] if f ;IIEIIE EIIE
)) G () i) (W : @ @: @ i ! @ @ E
""" *\'\/ \\
® ' ® ® | o

28

Suppress Streaming and/or Input Evaluation

e Streaming for lists or concurrent evaluation of tuples can be
avoided by wrapping a box around the input expression:

newtype Box a = Box {unBox :: a}

instance Trans a => Trans (Box a)
instance NFData a => NFData (Box a)
where(rnf (Box x) = rnf x| -- normal form evaluation

e Asimple modification leads to lazy boxes which suppress the
evaluation of input expressions before communication:

newtype LBox a = LBox {unlLBox :: a}

instance Trans a => Trans (LBox a)
instance NFData a => NFData (LBox a)
where(rnf (LBox) = () | -- suppress evaluation

29

"

Parallel map implementations

e static task distribution / regular task decomposition:

parMap

33

P RPRY
/ T

E

farm

1

PE] [PE

'ﬁlﬁﬂ 'ﬁ!ﬂ”
PE PE

offlineFarm

Increasing granularity

e dynamic task distribution /

irregular task decomposition:

workpoolSorted ::

Int
-> Int
-> (a->b)
-> [a]->[Db]

number of workers
prefetch

worker function
input -> output

PE

<:Z§N%§poﬂgizi}i)
!

PE

30

Example: Parallel -

Functional Program for
Mandelbrot Sets

Idea: parallel computation of lines

Ir

image :: Double -> Complex Double -> Complex Double -> Integer -> String
image threshold ul lr dimx
= header ++ (concat $ map xy2col lines) (Replace map by
where parallel map implementation
xy2col ::[Complex Double] -> String
xy2col line = concatMap (rgb. (iter threshold (0.0 :+ 0.0) 0)) line

(dimy, lines) = coord ul 1lr dimx
31

Problem size: 2000 x 2000

Mandelbrot Traces Chunking size: 50

farm (splitintoN)

lllllllIIIIIMIIIIIIIIIIIIlhll|\||“.-.
i‘ i) J”m

20, 622 s, 8 Machlnes 8 Processes 23 Threads 42 Conversatlons 116 Messages

AiPL Edinburgh, 2014 32

Problem size: 2000 x 2000

Mandelbrot Traces Chunking size: 50

offlinefarm (splitintoN)

e
Illllllll\\“l-“\\\\llI“
A A

14, 630 s, 8 Machlnes 8 Processes 23 Threads 35 Conversatlons 72 Messages

AiPL Edinburgh, 2014 33

Problem size: 2000 x 2000
Mandelbrot Traces Chunking size: 50

farm (unshuffle)

1T T A
1 A u|1

e 0 T
O 11 T RO
100 0 AR ||-‘
|

000 O S

0.0 12.0 14.0

17,464s, 8 Machines, 8 Processes, 23 Threads, 42 Conversations, 116 Messages

AiPL Edinburgh, 2014 34

Problem size: 2000 x 2000

Mandelbrot Traces Chunking size: 50

offlinefarm (splitintoN)

14,800 s, 8 Machines, 8 Processes, 23 Threads, 35 Conversations, 72 Messages

AiPL Edinburgh, 2014

35

Problem size: 2000 x 2000
Mandelbrot Traces Chunking size: 50

workpool (prefetch 2)

MR A N A A N
O R I
L]

1 N

g R

16,951s, 8 Machines, 8 Processes, 30 Threads, 42 Conversations, 116 Messages

AiPL Edinburgh, 2014

36

Mandelbrot Traces

L O

T R
1 L A

LG

Problem size: 2000 x 2000
Chunking size: 50

offlineworkpool (prefetch 2)
(LBox simulation)

15,291s, 8 Machines, 8 Processes, 30 Threads, 42 Conversations, 116 Messages

AiPL Edinburgh, 2014

37

Divide-and-conquer

dec :: (a->Bool) -> (a->b) -> (a->[a]) -> ([b]->b) -> a->b
dc trivial solve split combine task
= if trivial task then solve task
else combine (map rec dc (split task))
where rec _dc = dc trivial solve split combine

regular binary scheme D

with default placing:
0
/2

p\@
>\
h_
/

38

Explicit Placement via Ticket List

39

Divide-and-Conquer Skeletons

e Distributed expansion

disDC :: (Trans a, Trans b) =>
Int -- branch degree
-> [Int] -- tickets
-> ... -- type of DC

e Flat expansion

flatDC ::

(Trans a,Trans b) =>

((a->b) -> [a] -> [b])
-- parallel map skeleton

-> Int
-> ...

-- depth
-- type of DC

o (¢ [[Tof [o

40

Parallelizing MergeSort Using disDC

-- divide and conquer: distributed expansion

ms "disDC" xs n d p

concat $ disDC 2 [2..p] triv solve split combine (chunk d xs)
—- disDC does not work with ghc-7.6.2, use dcNtickets c instead

where
threshold = n 'div p
triv xss = length (concat xss) < threshold
split = unshuffle 2

solve xss = (chunk d) . mergeSort .concat $ xss
combine (bl:b2:)
= chunk d § sortMerge (concat bl) (concat b2)

-- divide and conquer: flat expansion with parMap skeleton
ms "flatDC" xs n d p

= concat $
flatDC parMap depth triv solve split combine (chunk d xs)
where
depth = floor ((log (fromIntegral p)) / log 2) :: Int
threshold ... -— as above

Chunking of input and output lists using chunk and concat to unchunk a1

Runtime Behaviour — disDC Skeleton

input size 1000000
chunk size 1000
"=#1 parallel runtime 3,22 s

8 machines
| 8 processes
| 23 threads

«s:| 42 conversations
“'l 3042 messages

42

Runtime Behaviour — flatDC Skeleton

===z | input size 1000000

| chunk size 1000 1111

.| parallel runtime 3,75 s

-1| 8 machines
ress | 9 processes
| 25 threads
| 43 conversations
| 1793 messages

43

Skeleton Composition

"

AiPL Edinburgh, 2014

44

Parallel MapReduce = ParMap - ParRed

e Parallelisation of mergesort can be seen as a special map-
reduce:

parms np xs = (parRed sortMerge) . (parMap mergesort) $

(unshuffle np xs)
Main process

sortMerge mergesort

1 L sortMerge mergesort
sortMerge mergesort

L sortMerge mergesort

AIPL Edinburgh, 2014 45

Parallel MapReduce = ParMap - ParRed

e Parallelisation of mergesort can be seen as a special map-
reduce:

parms np xs = (parRed sortMerge) . (parMap mergesort) $

(unshuffle np xs)
Main process

sortMerge e——| Mmergesort

1 AL sortMerge «——— mergesort
sortMerge e | mergesort

L sortMerge «——— mergesort

AIPL Edinburgh, 2014 46

The ,,Remote Data“-Concept

e Functions:

— Release local data with release :a->RDa
— Fetch released data with fetch +2:RDa->a
e Replace
— spawn [process g] . spawn [process f] S [inp] inp
with

— spawn [process (g o fetch)] . spawn [process (release o f)] $
[inp]

Parallel MapReduce = ParMap - ParRed

parRed :: (Trans a) =>
(a -> a -> a) -- Reduction function
-> a -- neutral element
-> [RD a] -> RD a -- Input - Output
parms np xs = fetch . (parRed sortMerge)

(parMap (release.mergesort) $

(unshuffle np xs)

Main process

sortMerge e

mergesort

AL sortMerge |[€&——

mergesort

sortMerge PR

mergesort

AL sortMerge [€«——

mergesort

AIPL Edinburgh, 2014

48

Runtime Behaviour

49

Runtime Behaviour

AN
I | '
T ¥
53

l e
S EVEI=FR ‘ il‘
1.5 2.

3,399s, 8 Machlnes 17 Processes, 81 Threads, 96 Conversations, 2475 Messages

50

PSRS — Parallel Sorting by Regular Sampling

"

4 Phases:

1. splitinput list into p equal-sized segments,
in parallel: sort segments and select p sample elements of each
segment

2. collect and sort all p> samples (p samples from each process),
select (p-1) pivot elements and broadcast them to all processes

3. Each process decomposes its segments into p partitions
according to the pivot elements and sends the jth partition to
process j (1<=j <= p)

4. Each process merges the p partitions it received

Complexity: O(n/p log(n)) if n > p3

51

PSRS in Eden

psrs (Trans a, Ord a) => Int -> [a] -> [a]
psrs p Xxs = concat results
where
—— rdys [Rd [a]] 1
(samples, rdys)
= unzip $ parMap (\ xs-> let ys = sort xs
in (getSamples p ys, release vys))
(unshuffle p xs)
globalSamples = getGlobalSamples p mergeAll $ samples 2
—-— partitions [[RA [a]]] 3
partitions = parMap (\ (handle, pivots)
-> ((map release) . (decompose pivots).fetch $
handle)))
(zip rdys (replicate p globalSamples)))
parts = transpose partitions
results = parMap (mergeAll (map fetch)) parts 4

52

PSRS Process Network

.)
Main Process
PE1
[unshuffle][compute globalSamples] [concat]
o 4 J
,/"—v--_-_---__----_-~\\\ ,/"—$----- --------- \\\ ----------------
PE2 : |sort&select ------> decompose . mergeAll
(¢ ! : i 4 * !)
E3 sort & select | ___i 5| decompose mergeAll
\ e @ ; i e ¢ A
PE 4 sort & select ==§====:£=> decompose mergeAll
. * i : i . v i J
PE5 sort & select ==§====;=> decompose mergeAll
e @ : i e ¢ A
PE 6 sort & select ==§====i==> decompose mergeAll |

- ——— -—————— -—— - —— -——— -

-

53

PSRS Runtime Behaviour

3 processes per PE i with i>=2:

Pi.3: merger
Pi.2: decomposition

Pi.1: sort and select samples

54

PSRS Runtime Behaviour: Communication

Pe:3
P2 4
P&:1 ,
P4:Sys
P43
P42 £
P44 == 5] I] | -
P5:2 |
P5:2 ‘ g1
P51 o m = | B T D e | : ‘
P3:3
P3:2 : “:c’“
P2:1
F2:2
P2:2 1
P21 i3] W |)
'
P1:Sys

IS8 =3
1A€ 1 2

\ y)
_i“P}Jt "_St collection of all-to-all result
distribution samples exchange of collection
partitions

2,76s, 8 Machines, 22 Processes, 177 Threads, 210 Conversations, 2311 Messages

55

Conclusions

e Eden = Haskell + Coordination

Explicit process definitions

Implicit communication (data transfer) defined via type class Trans
Remote Data

-> pass data directly from producer to consumer processes

e Programming Methodology:
Use or adapt algorithmic skeletons from the skeleton library:

parallel maps: parMap, farm, offlineFarm ...

master-worker: flat, hierarchical, distributed ...
divide-and-conquer: distributed expansion, flat expansion ...
topology skeletons: ring, torus, all-to-all, ...

skeleton iteration

or design your own skeletons

e Compose skeletons using remote data to implement arbitrary
parallel algorithms

56

Conclusions

e Eden compiler extends GHC with parallel runtime system

e on distributed systems, middleware like MPI and PVM is used
for communication
(= compile options —parmpi and —parpvm)

e on multicores, a special implementation using copying instead
of message passing is available
(= compile option —parcp)

e EdenTV is a powerful tool to analyse the runtime behaviour of
Eden programs

57

Lab Notes

e Look at exercises.pdf for instructions on how to set up the
environment for experiments
— on the lab machines and
— on the beowulf cluster

e There are four exercises marked as easy, medium or advanced.
Try to do one or two of them.

58

