
Skeleton-Based Parallel Programming in Eden

Rita Loogen

Philipps-Universität Marburg, Germany

Joint Work with:

Mischa Dieterle and Thomas Horstmeyer
(Philipps-Universität Marburg)

Jost Berthold
(University of Copenhagen, Denmark)
Yolanda Ortega Mallén and Lidia Sánchez-Gil
(Universidad Complutense de Madrid, Spain)

Overview

2

– Motivation and Basics

– Algorithmic Skeletons
– Parallel map implementations

– Divide and Conquer

– Skeleton Composition
– Remote data concept

– Parallel map – parallel reduce

– Implementing PSRS in Eden

– Conclusions

– Lab Notes

3

Motivation

Parallel programming at a high level of abstraction

parallelism control

» explicit processes

» implicit communication

» distributed memory

» non-functional features

» remote data

» many-to-one communication

Eden = Haskell + Parallelism

www.informatik.uni-marburg.de/~eden

+ functional language

( Haskell)

=> concise programs

=> high programming efficiency

=> higher-order functions

=> laziness

4

Eden = Haskell + Parallelism

 process definition

 eager creation of processes

parallel programming
at a high level of

abstraction

process :: (Trans a, Trans b) => (a -> b) -> Process a b

gridProcess = process gridFunction
gridFunction (fromLeft,fromTop) = (toRight, toBottom))

where toRight = …
toBottom = …

spawn :: (Trans a, Trans b) => [Process a b] -> [a] -> [b]

(outEasts,outSouths) = unzip $
spawn (repeat gridProcess)

(zip inNorths (inWest:outEasts))
outEast = last outEasts

process outputs

computed by

concurrent threads,

lists sent as streams

5

The Eden Module: Control.Parallel.Eden

process :: (Trans a, Trans b) => (a -> b)-> Process a b

spawn :: (Trans a, Trans b) => [Process a b] -> [a]->[b]

Definition of type class Trans which
• contains transmissible data types (most pre-defined types)
• defines (implicitly used) communication functions

overloaded for lists (-> streams) and tuples (-> concurrency)

more features like

e.g. remote data
definitions of
process, Process and spawn

Evaluating spawn [process f] [e]

6

graph of
process

abstraction
process f

`spawn` graph of
argument
expression

e

thread(s) in new child process
will evaluate(s) the application

(f $ e) to normal form
and send(s) the result to the

parent process

new concurrent thread (s)
in parent process

evaluate(s) e to normal form
and send(s) the result to the

child process

main process

child process

creates

result of e

result of f $ e

[[]]

7

Lazy evaluation vs. Parallelism

• Problem: Lazy evaluation ==> distributed sequentiality

• Eden‘s approach:

– eager process creation with spawn

• default round robin process placement

• explicit process placement using spawnAt :: [Int] -> …

– eager communication:
• normal form evaluation of all process outputs

(by independent threads)
• push communication, i.e.

values are communicated as soon as available

– explicit demand control using sequential strategies
(Module Control.Seq):
• rnf :: NFData a => Strategy a
• pseq :: a -> b -> b (Module Control.Parallel)

14

parMap :: (Trans a, Trans b) =>

(a -> b) -> [a] -> [b]

parMap f = spawn (repeat (process f))

A Simple Parallelisation of map

map :: (a -> b) -> [a] -> [b]

map f xs = [f x | x <- xs]

y2 y3 y4y1

...
f f ff

...

x2 x3 x4x1
...

1 process

per list element

Case Study: Merge Sort

Haskell Code:

mergeSort :: (Ord a, Show a) => [a] -> [a]

mergeSort [] = []

mergeSort [x] = [x]

mergeSort xs = sortMerge (mergeSort xs1) (mergeSort xs2)

where [xs1,xs2] = unshuffle 2 xs

9

unsorted
list

unsorted
sublist 1

unsorted
sublist 2

sorted
sublist 1

sorted
sublist 2

sorted
listunshuffle 2 merge

Parallel Mergesort Using parMap

10

unsorted
list

unsorted
sublist 2

unsorted
sublist noPe-2

sorted
sublist 2

sorted
sublist noPe-2

sorted
listunshuffle (noPe-1) merge many lists

unsorted
sublist 1

mergesort
sorted

sublist 1

mergesort

mergesort

mergesort

unsorted
sublist noPe-1

sorted
sublist noPe-1

Eden Code

par_ms :: (Ord a, Show a, Trans a) => [a] -> [a]

par_ms xs

= mergeAll $ parMap mergeSort (unshuffle (noPe-1) xs))

mergeAll :: Ord a => [[a]] -> [a]

mergeAll [xs] = xs

mergeAll xss = mergeAll (mergePairs xss)

mergePairs :: Ord a => [[a]] -> [[a]]

mergePairs (xs1:xs2:xss)

= sortMerge xs1 xs2 : mergePairs xss

mergePairs xs = xs

 Total number of processes = noPe

 eagerly created processes

 round robin placement leads to 1 process per PE

module Main where

import Control.Parallel.Eden

import Control.Parallel.Eden.Map (parMap)

import Control.Parallel.Eden.Auxiliary (unshuffle)

import System.Environment (getArgs)

import System.Random

main :: IO ()

main = do ins <- getArgs

let (v:a:xs) = ins

let rs = randomlist (read a :: Int) 42

putStrLn (rnf rs `pseq` rnf (ms v rs) `pseq` "Done")

ms :: String -> [Int] -> [Int]

-- sequential mergeSort

ms "seq" xs = mergeSort xs

-- simple parMap

ms "parMap" xs

= mergeAll $ parMap mergeSort (unshuffle (noPe-1) xs)

...

Eden Program

12

Compiling, Running, Analysing Eden Programs

13

1. Compile Eden programs on multicores with
ghceden –parcp --make –O2 –eventlog myprogram.hs

and on clusters or multicores with
ghceden –parmpi --make –O2 –eventlog myprogram.hs

or ghceden –parpvm --make –O2 –eventlog myprogram.hs

2. Run compiled programs with
myprogram <parameters> +RTS –ls -N<noPe> -RTS

3. Analyse eventlog (trace file) with
edentv myprogram_..._-N4_-RTS.parevents

If you use pvm, you first have to start it.
Provide pvmhosts or mpihosts file

Experimental Results

• For all measurements in this lecture, I have used ghc-eden-7.8.2 on a
64-core machine:

4 x AMD Opteron(tm) Processor 6378
(16 Cores, 16MB L3-Cache, 2,4 GHz)
64 GB DDR3 SDRAM, 1600 MHz

• Runtime Results for parMap-mergesort on 8 cores:

• What is going wrong? Use EdenTV to analyse program behaviour.

14AiPL Edinburgh, 2014

• Input size 5.000
• seq. runtime: 0,020 s
• par. runtime: 0,103 s

SLOWDOWN

Eden-TV

15

Parallel runtime system
(Management of processes/threads

and communication)

parallel machine

Eden

EdenTV

AiPL Edinburgh, 2014

EdenTV provides
- four different views (activity profiles)

Machines (PEs) - Processes - Threads - Processes/Machine
- message overlays (except for thread profiles)
- zooming
…

Colour Code Used in Activity Profiles

• An Eden process consists of several threads

(one per output channel).

• Thread State Transition Diagram:

• States of processes and machines are derived from thread

states 16

runnable

blockedrunning

finished

new

thread

kill thread

kill thread

kill thread

deblock

thread

block

thread
run thread

suspend

thread

EdenTV Activity Profile of Parallel MergeSort
(Processes/Machine View)

17

• Input size: 5.000
• seq. runtime: 0,020 s
• par. runtime: 0,103 s

SLOWDOWN

• Additional Infos by EdenTV
• 8 Pes

8 processes
15 threads

• 42 conversations
10042 messages

Reason for Slowdown:
Too many messages ?

Reducing Number of Messages
by Chunking Streams

Split a list (stream) into chunks:

chunk :: Int -> [a] -> [[a]]

chunk size [] = []

chunk size xs = ys : chunk size zs

where (ys,zs) = splitAt size xs

Combine with parallel map-implementation of mergesort:

par_ms_c :: (Ord a, Show a, Trans a) =>

Int -> -- chunk size

[a] -> [a]

par_ms_c size xs

= mergeAll $ map concat $

parMap ((chunk size) . mergeSort . concat)

(map (chunk size) (unshuffle (noPe-1) xs)))

18

concat = unchunk

Resulting Activity Profile
(Processes/Machine View)

19

Previous results for input size 5000
Seq. runtime: 0,020 s
Par. runtime I: 0,103 s

• Input size: 5.000
• Chunk size: 50
• par. runtime: 0,027 s

• Additional Infos by EdenTV
• 8 Pes

8 processes
15 threads

• 42 conversations
10042 252 messages

Much better, but still
SLOWDOWN

Time for
- parallel system start up (0,005s)
- random list generation (0,016 s)
dominates runtime.

Activity Profile for Input Size 1.000.000

20

• Input size 1.000.000
• Chunk size 1000
• seq. runtime: 6,827 s
• list generation: 1,18 s
• par. runtime: 2,724 s

• 8 Pes, 8 processes,
15 threads

• 2044 messages

 speedup of parallel
sort is

3.66 on 8 PE

unshuffle merge

ZOOM

21

Algorithmic Skeletons

AiPL Edinburgh, 2014

22

Algorithmic Skeletons

• patterns of parallel computations
=> in Eden:

parallel higher-order functions

• typical patterns:
– parallel maps and master-worker systems:

parMap, farm, offline_farm, mw (workpoolSorted)

– map-reduce

– divide and conquer

– topology skeletons: pipeline, ring, torus, grid, trees …

See Eden‘s

Skeleton Library

Control.Parallel.Eden.<...>

with <…> in Map, MapReduce, DivConq, Topology, Workpool,

Iteration

y1 ... yl

yi

f

yi+1

f

yj

f

y1

f ...

...

...

...

...

... yk+1

f

yl

f
...

...

xi xi+1 xjx1 xk+1 xl
...

combine

distribute

x1 ... xl

23

Parallel map implementations: parMap vs farm

farm

farm :: (Trans a, Trans b) =>
([a] -> [[a]]) -> ([[b]] -> [b]) ->
(a -> b) -> [a] -> [b]

farm distribute combine f xs
= combine (parMap (map f)

(distribute xs))

parMap

parMap :: (Trans a, Trans b) =>
(a -> b) -> [a] -> [b]

parMap f xs
= spawn (repeat (process f)) xs

y2 y3 y4y1

...
f f ff

...

x2 x3 x4x1
...

x1 x2 x3 x4

y1 y2 y3 y4

Distribution and Collection Functions

farm :: (Trans a, Trans b) =>

([a] -> [[a]]) -> -- distribute

([[b]] -> [b]) -> -- combine

(a->b) -> [a] -> [b]

farm distribute combine f xs

= combine . (parMap (map f)) . distribute

Choose e.g.

• distribute = unshuffle np / combine = shuffle

• distribute = splitIntoN np / combine = concat

leading to alternative parallel maps implementations:

mapFarmS, mapFarmB ::

(Trans a, Trans b) =>

(a -> b) -> [a] -> [b]

mapFarmS = farm (unshuffle (max (noPe-1) 1)) shuffle

mapFarmB = farm (splitIntoN (max (noPe-1) 1)) concat 24

1 process

per PE

1 process

per sub-tasklist

with static

task distribution

Reducing Communication Costs in Skeletons

Techniques:

1. Chunking

2. Offline Processes

Combine Chunking with Parallel Map:

chunkMap :: Int -> (([a] -> [b]) -> ([[a]] -> [[b]]))

-> (a -> b) -> [a] -> [b]

chunkMap chunksize mapscheme f xs

= concat (mapscheme (map f) (chunk chunksize xs))

25

Communication vs Parameter Passing

Process inputs
- can be communicated: spawn [process f] [inp]

- can be passed as parameter spawn [process (\ () -> f inp)] [()]
() is dummy process input

26

graph of
process

abstraction

graph of
input

expression

will be packed (serialised)
and sent to remote PE

where child process is created
to evaluate the application

of this expression to the input

will be evaluated in parent process
by concurrent thread

and then sent to child process

`spawn`[[]]

Offline Processes and Skeletons

• Offline processes run without input or with a trivial input.

• This may cause redundant evaluations, because input
expressions are copied without prior evaluation.

• This may save communication costs.

• Offline skeletons use offline processes.

• Offline skeletons are useful, if the input data is not yet
evaluated.

27

28

Farm vs Offline Farm

offlineFarm :: (Trans a, Trans b) => Int ->
([a] -> [[a]]) -> ([[b]] -> [b]) ->
(a -> b) -> [a] -> [b]

farm :: (Trans a, Trans b) =>
([a] -> [[a]]) -> ([[b]] -> [b]) ->
(a -> b) -> [a] -> [b]

y1 ... yl

yi

f

yi+1

f

yj

f

y1

f ...

...

...

...

...

... yk+1

f

yl

f
...

...

xi xi+1 xjx1 xk+1 xl
...

combine

distribute

x1 ... xl

Suppress Streaming and/or Input Evaluation

• Streaming for lists or concurrent evaluation of tuples can be
avoided by wrapping a box around the input expression:

• A simple modification leads to lazy boxes which suppress the
evaluation of input expressions before communication:

29

newtype LBox a = LBox {unLBox :: a}

instance Trans a => Trans (LBox a)

instance NFData a => NFData (LBox a)

where rnf (LBox _) = () -– suppress evaluation

newtype Box a = Box {unBox :: a}

instance Trans a => Trans (Box a)

instance NFData a => NFData (Box a)

where rnf (Box x) = rnf x -- normal form evaluation

30

Parallel map implementations

• static task distribution / regular task decomposition:

• dynamic task distribution /

irregular task decomposition:

increasing granularity

parMap farm offlineFarm

PE PE

...

...

...

P

TT

P

TT

PE PE

... ...

...

PP

T TTT

PP

workpool

w 1 w np-1w 0

merge

T TT

PE PEPE

PE PE

...

P
T...T

P
T...T

workpoolSorted ::

Int -- number of workers

-> Int -- prefetch

-> (a->b) -- worker function

-> [a]->[b] -- input -> output

31

Idea: parallel computation of lines

image :: Double -> Complex Double -> Complex Double -> Integer -> String

image threshold ul lr dimx

= header ++ (concat $ map xy2col lines)

where

xy2col ::[Complex Double] -> String

xy2col line = concatMap (rgb.(iter threshold (0.0 :+ 0.0) 0)) line

(dimy, lines) = coord ul lr dimx

Example: Parallel
Functional Program for
Mandelbrot Sets

dimx
ul

lr

Replace map by
parallel map implementation

Problem size: 2000 x 2000

Chunking size: 50Mandelbrot Traces

32AiPL Edinburgh, 2014

20,622 s, 8 Machines, 8 Processes, 23 Threads, 42 Conversations, 116 Messages

farm (splitIntoN)

Problem size: 2000 x 2000

Chunking size: 50Mandelbrot Traces

33AiPL Edinburgh, 2014

14,630 s, 8 Machines, 8 Processes, 23 Threads, 35 Conversations, 72 Messages

offlinefarm (splitIntoN)

Problem size: 2000 x 2000

Chunking size: 50Mandelbrot Traces

34AiPL Edinburgh, 2014

17,464s, 8 Machines, 8 Processes, 23 Threads, 42 Conversations, 116 Messages

farm (unshuffle)

Problem size: 2000 x 2000

Chunking size: 50Mandelbrot Traces

35AiPL Edinburgh, 2014

14,800 s, 8 Machines, 8 Processes, 23 Threads, 35 Conversations, 72 Messages

offlinefarm (splitIntoN)

Problem size: 2000 x 2000

Chunking size: 50Mandelbrot Traces

36AiPL Edinburgh, 2014

16,951s, 8 Machines, 8 Processes, 30 Threads, 42 Conversations, 116 Messages

workpool (prefetch 2)

Problem size: 2000 x 2000

Chunking size: 50Mandelbrot Traces

37AiPL Edinburgh, 2014

15,291s, 8 Machines, 8 Processes, 30 Threads, 42 Conversations, 116 Messages

offlineworkpool (prefetch 2)

(LBox simulation)

38

Divide-and-conquer

dc :: (a->Bool) -> (a->b) -> (a->[a]) -> ([b]->b) -> a->b

dc trivial solve split combine task

= if trivial task then solve task

else combine (map rec_dc (split task))

where rec_dc = dc trivial solve split combine

1

1 2

2

1 4 5 8

1

41

3

63

5

8572

3 6 2 7

regular binary scheme

with default placing:
1

1 2

2

1 4 3 5

1

41

3

43

3

5342

3 4 2 4

39

Explicit Placement via Ticket List

1

1 2

2

1 4 5 8

1

41

3

63

5

8572

3 6 2 7

1 2

2

1 5 4 8

1

51

3

73

4

8462

3 7 2 6

2, 3, 4, 5, 6, 7, 8

4,3,

unshuffle

5, 7 6, 8

5 7 6 8

1

Divide-and-Conquer Skeletons

• Distributed expansion

• Flat expansion

40

disDC :: (Trans a, Trans b) =>

Int -- branch degree

-> [Int] -- tickets

-> ... -- type of DC

flatDC :: (Trans a,Trans b) =>

((a->b) -> [a] -> [b])

-- parallel map skeleton

-> Int -- depth

-> ... -- type of DC

Parallelizing MergeSort Using disDC
-- divide and conquer: distributed expansion

ms "disDC" xs n d p

= concat $ disDC 2 [2..p] triv solve split combine (chunk d xs)

-- disDC does not work with ghc-7.6.2, use dcNtickets_c instead

where

threshold = n `div` p

triv xss = length (concat xss) < threshold

split = unshuffle 2

solve xss = (chunk d) . mergeSort .concat $ xss

combine _ (b1:b2:_)

= chunk d $ sortMerge (concat b1) (concat b2)

-- divide and conquer: flat expansion with parMap skeleton

ms "flatDC" xs n d p

= concat $

flatDC parMap depth triv solve split combine (chunk d xs)

where

depth = floor ((log (fromIntegral p)) / log 2) :: Int

threshold ... -- as above

Chunking of input and output lists using chunk and concat to unchunk 41

Runtime Behaviour – disDC Skeleton

42

input size 1000000
chunk size 1000
parallel runtime 3,22 s

8 machines
8 processes
23 threads
42 conversations
3042 messages

Runtime Behaviour – flatDC Skeleton

43

input size 1000000
chunk size 1000
parallel runtime 3,75 s

8 machines
9 processes
25 threads
43 conversations
1793 messages

44

Skeleton Composition

AiPL Edinburgh, 2014

Parallel MapReduce = ParMap ParRed

• Parallelisation of mergesort can be seen as a special map-
reduce:

parms np xs = (parRed sortMerge) . (parMap mergesort) $

(unshuffle np xs)

45AiPL Edinburgh, 2014

Main process

sortMerge

sortMerge

sortMerge

sortMerge

mergesort

mergesort

mergesort

mergesort

Parallel MapReduce = ParMap ParRed

• Parallelisation of mergesort can be seen as a special map-
reduce:

parms np xs = (parRed sortMerge) . (parMap mergesort) $

(unshuffle np xs)

46AiPL Edinburgh, 2014

Main process

mergesort

mergesort

mergesort

sortMerge

sortMerge

sortMerge

sortMerge mergesort

The „Remote Data“-Concept

• Functions:

– Release local data with release :: a -> RD a

– Fetch released data with fetch :: RD a -> a

• Replace

– spawn [process g] . spawn [process f] $ [inp]

with

– spawn [process (g o fetch)] . spawn [process (release o f)] $
[inp]

47

g f

inp

g f

inp

Parallel MapReduce = ParMap ParRed

parRed :: (Trans a) =>

(a -> a -> a) -- Reduction function

-> a -- neutral element

-> [RD a] -> RD a -- Input  Output

parms np xs = fetch . (parRed sortMerge) .

(parMap (release.mergesort) $

(unshuffle np xs)

48AiPL Edinburgh, 2014

Main process

mergesort

mergesort

mergesort

sortMerge

sortMerge

sortMerge

sortMerge mergesort

Runtime Behaviour

49

3,399s, 8 Machines, 17 Processes, 81 Threads, 96 Conversations, 2475 Messages

Runtime Behaviour

50

3,399s, 8 Machines, 17 Processes, 81 Threads, 96 Conversations, 2475 Messages

PSRS – Parallel Sorting by Regular Sampling

• 4 Phases:

1. split input list into p equal-sized segments,
in parallel: sort segments and select p sample elements of each
segment

2. collect and sort all p² samples (p samples from each process) ,
select (p-1) pivot elements and broadcast them to all processes

3. Each process decomposes its segments into p partitions
according to the pivot elements and sends the jth partition to
process j (1<= j <= p)

4. Each process merges the p partitions it received

• Complexity: O(n/p log(n)) if n > p³

51

4

3

2

1

PSRS in Eden

psrs :: (Trans a, Ord a) => Int -> [a] -> [a]

psrs p xs = concat results

where

-- rdys :: [Rd [a]]

(samples, rdys)

= unzip $ parMap (\ xs-> let ys = sort xs

in (getSamples p ys, release ys))

(unshuffle p xs)

globalSamples = getGlobalSamples p . mergeAll $ samples

-- partitions :: [[Rd [a]]]

partitions = parMap (\ (handle, pivots)

-> ((map release).(decompose pivots).fetch $

handle)))

(zip rdys (replicate p globalSamples)))

parts = transpose partitions

results = parMap (mergeAll . (map fetch)) parts

52

Main Process

decompose

decompose

decompose

decompose

decompose

parmapparmap

sort & select

sort & select

sort & select

sort & select

sort & select

PSRS Process Network

53

mergeAll

mergeAll

mergeAll

mergeAll

mergeAll

parmap

unshuffle compute globalSamples concat
PE 1

PE 3

PE 4

PE 5

PE 6

PE 2

PSRS Runtime Behaviour

54

2,760s, 8 Machines, 22 Processes, 177 Threads, 210 Conversations, 2311 Messages

3 processes per PE i with i>=2:

Pi.3: merger
Pi.2: decomposition
Pi.1: sort and select samples

PSRS Runtime Behaviour: Communication

55

2,76s, 8 Machines, 22 Processes, 177 Threads, 210 Conversations, 2311 Messages

input list
distribution

all-to-all
exchange of

partitions

collection of
samples

result
collection

Conclusions

• Eden = Haskell + Coordination
– Explicit process definitions
– Implicit communication (data transfer) defined via type class Trans
– Remote Data

-> pass data directly from producer to consumer processes

• Programming Methodology:
Use or adapt algorithmic skeletons from the skeleton library:
– parallel maps: parMap, farm, offlineFarm …

– master-worker: flat, hierarchical, distributed …

– divide-and-conquer: distributed expansion, flat expansion …

– topology skeletons: ring, torus, all-to-all, …

– skeleton iteration

or design your own skeletons

• Compose skeletons using remote data to implement arbitrary
parallel algorithms

56

Conclusions

• Eden compiler extends GHC with parallel runtime system

• on distributed systems, middleware like MPI and PVM is used
for communication
( compile options –parmpi and –parpvm)

• on multicores, a special implementation using copying instead
of message passing is available
( compile option –parcp)

• EdenTV is a powerful tool to analyse the runtime behaviour of
Eden programs

57

Lab Notes

• Look at exercises.pdf for instructions on how to set up the
environment for experiments
– on the lab machines and

– on the beowulf cluster

• There are four exercises marked as easy, medium or advanced.
Try to do one or two of them.

58

