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Chapter 1

Running the first program

The following instructions will help you write your first SaC program.

1.1 A Checklist

To successfully write and run your first SaC program, you will need:

• An ANSI C compiler, such as gcc. Though not needed directly, the
SaC compiler relies on it.

• The SaC compiler sac2c. It can be downloaded at <http://www.sac-
home.org/>. For convenience, you should make sure, that sac2c is located
in your $PATH.

• The SaC standard library that comes with sac2c as part of the SaC
distribution. To make sure sac2c will be able to find it, the environment
variable $SACBASE should point to it, i.e., ls $SACBASE should yield at
least the subdirectory stdlib.

• Your favorite text editor, such as vi or emacs.

1.2 Create your first SaC Source File

Start your editor and type the following program:

Listing 1.1: Hello World� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 printf( "Hello World!\n");
7 return(0);
8 }
� �
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CHAPTER 1. RUNNING THE FIRST PROGRAM 5

As you can see, it has a strong resemblance to C. The major difference are
the module use declarations at the beginning of the program. For now, it suffices
to keep in mind, that these two use declarations for most experiments will do
the job.

In order to proceed, save this program into a file named world.sac.

1.3 Compile the Source File and Run the Pro-
gram

The SaC compiler invocation is similar to the standard invocation of C compil-
ers. A typical shell session for compiling world.sac could be:

> cd /home/sbs/sac/
> ls
world.sac
> sac2c world.sac
> ls
a.out a.out.c world.sac
> a.out
Hello World!
>

The compilation process consists of two steps. First, the SaC compiler gen-
erates a C file, which then is compiled into target code by utilizing the system’s
C compiler. If no target file name is specified, the intermediate C file is named
a.out.c so that the subsequent invocation of the C compiler creates an exe-
cutable named a.out.

In the same way the default target name a.out is borrowed from standard
C compilers, the -o option for specifying target names is adopted as well. For
example, sac2c -o world world.sac results in files world.c and world.

Note here, that the compiled program, depending on the operating system, is
linked either statically or dynamically. However, it does not require any further
linking or interpretation.



Chapter 2

Array Programming Basics

This trail gives an introduction to the basic concepts of array programming in
SaC. It consists of two lessons: Arrays as Data and Shape-Invariant Pro-
gramming. In the former lesson, the major differences between arrays in SaC
and arrays in more mainstream languages are explained. The lesson Shape-
Invariant Programming gives an introduction into the most important array
operations available in SaC. Based on these operations, several small examples
demonstrate how more complex array operations can be constructed by simply
combining the basic ones.

2.1 Lesson: Arrays as Data

In SaC, arrays are the only data structures available. Even scalar values are
considered arrays. Each array is represented by two vectors, a so-called shape
vector and a data vector. An array’s shape vector defines its shape, i.e.,
its extent within each axis, and its dimensionality (or rank), which is given
implicitly by the shape vector’s length.

The section on Defining Arrays explains how arrays of various dimen-
sionality can be defined in SaC, and how they can be generated via nesting.
Furthermore, some elementary notation such as scalars, vectors, and matri-
ces is defined.

The section on Arrays and Variables discusses the purely functional array
model used in SaC.

2.1.1 Defining Arrays

In this section, several means for specifying arrays are explained.
In principle, all arrays in SaC can be defined by using the reshape operation.

reshape expects two operands, a shape vector and a data vector, both of which
are specified as comma separated lists of numbers enclosed in square brackets.

To get started, try the following program:

6



CHAPTER 2. ARRAY PROGRAMMING BASICS 7

Listing 2.1: Defining Arrays I� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 print( reshape( [5], [1,2,3,4,5]));
7 print( reshape( [3,2], [1,2,3,4,5,6]));
8 print( reshape( [3,2,1], [1,2,3,4,5,6]));
9 return(0);

10 }
� �
It prints three arrays:

• an array of dimensionality 1 with 5 elements [1,2,3,4,5];

• an array of dimensionality 2 with 3 rows and 2 columns, and

• a 3-dimensional array with 3 elements in the leftmost axis, 2 elements in
the middle axis, and one element in the rightmost axis.

Note here, that the function print can be applied to arbitrary arrays. Be-
sides printing its argument’s dimensionality and shape, i.e., its shape vector, a
more intuitive representation of the array’s data vector is shown. However, as
the terminal allows for 2 dimensions only, arrays of higher dimensionality are
interpreted as nestings of 2-dimensional arrays. Therefore, the 3-dimensional
array is printed as a 2-dimensional array of vectors.

Exercise 1 In all these examples, the product of the shape vector matches the
length of the data vector. What do you expect to happen, if this condition does
not hold?

For reasons of convenience, we use the following terminology:

scalar always denotes an array of dimensionality 0,

vector always denotes an array of dimensionality 1, and

matrix always denotes an array of dimensionality 2.

As all arrays can be defined in terms of reshape, the following program as
well is perfectly legal:

Listing 2.2: Defining Arrays II� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 print( reshape( [1], [1]));
7 print( reshape( [], [1]));
8 return(0);
9 }
� �
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The most interesting aspect of this program is the array defined in line 7.
The empty shape vector makes it a 0-dimensional array, i.e., a scalar. The data
vector carries the scalar’s value, which, in this example, is 1.

Exercise 2 The arguments of reshape are vectors, i.e., arrays of dimension-
ality 1. Can they be specified by reshape expressions themselves?

The reshape notation is relatively clumsy, in particular, when being used for
scalars. Therefore, scalars and vectors can alternatively be specified by shortcut
notations as well.

For experimenting with these, try the following:

Listing 2.3: Shortcut Notation for Arrays� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 print( 1);
7 print( [1,2,3,4,5]);
8 print( [ [1,2], [3,4], [5,6]]);
9 print( genarray( [4,3,2], 1));

10 print( genarray( [4,3], [1,2]));
11 return(0);
12 }
� �

From these examples, we can see that scalars can be used in the same way as
in most programming languages, and that the notation used for the parameters
of reshape in the examples above in fact is a standard abbreviation of SaC.
The example in line 8 shows that nestings of arrays are implicitly eliminated,
i.e., the resulting array is identical to

reshape( [3,2], [1,2,3,4,5,6]).
For this reason, array nestings in SaC always have to be homogeneous, i.e.,
the inner array components have to have identical shapes.

Furthermore, a new function is introduced: genarray. It expects two argu-
ments, a shape vector that defines the shape of the result and a default element
to be inserted at each position of the result. As shown in the example of line 10,
the individual array elements can be non-scalar arrays as well, which implicitly
extends the dimensionality of the result array.

Exercise 3 Given the language constructs introduced so far, can you define an
array that would print as

Dimension: 3
Shape : < 5, 2, 2>
< 0 0 > < 0 0 >
< 1 0 > < 0 0 >
< 0 1 > < 0 0 >
< 0 0 > < 1 0 >
< 0 0 > < 0 1 >

, but whose definition does not contain the letter 1 more than once?
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2.1.2 Arrays and Variables

This section explains why in SaC arrays are data and not containers for values
as found in most other languages.

So far, all examples were expression based, i.e., we did not use any vari-
ables. Traditionally, there are two different ways of introducing variables. In
conventional (imperative) languages such as C, variables denote memory loca-
tions which hold values that may change during computation. In functional
languages, similar to mathematics, variables are considered place holders for
values. As a consequence, a variable’s value can never change. Although this
difference may seem rather subtle at first glance, it has quite some effects when
operations on large data structures (in our case: large arrays) are involved.

Let’s have a look at an example:

Listing 2.4: Variables as Placeholders� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 a = [1,2,3,4];
7 print( a);
8
9 b = modarray( a, [0], 9);

10 print( b);
11
12 return(0);
13 }
� �

The function modarray expects three arguments: an array to be ”modified“,
an index that indicates the exact position within the array to be ”modified“,
and the value that is to be inserted at the specified position. As we would
expect, the resulting array b is almost identical to a, only the very first element
has changed into 9.

Note here, that indexing in SaC always starts with index 0!
Referring to the container / place holder discussion, the crucial question is:

does the variable a denote a container, whose value is changed by modarray? If
this would be the case, a and b would share the same container, and every access
to a after line 9 would yield [9,2,3,4]. If a in fact is a place holder, it will
always denote the array [1,2,3,4], no matter what functions have obtained a
as an argument.

To answer this question, you may simply shift the first call of print two
lines down. As you can see, in SaC, variables are indeed place holders.

A note for efficiency freaks:
You may wonder whether this implies that modarray always copies the
entire array. In fact, it only copies a if the place-holder property would
be violated otherwise.

As a result of this place-holder property, it is guaranteed that no function
call can affect the value of its arguments. In other words, the underlying concept
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guarantees, that all functions are ”pure“. Although this helps in avoiding nasty
errors due to non-intended side-effects, it sometimes seems to be an annoyance
to always invent new variable names, in particular, if arrays are to be modified
successively.

To cope with this problem, in SaC, variables do have a so-called scope, i.e.,
each variable definition is associated to a well-defined portion of program code
where its definition is valid. In a sequence of variable definitions, the scope of a
variable starts with the left-hand side of its definition and either reaches down to
the end of the function, or, provided at least one further definition of a variable
with the same name exists, to the right-hand side of the next such definition.
This measure allows us to reuse variable names. A slight modification of our
example demonstrates the effect of variable scopes in SaC:

Listing 2.5: Variable Scopes� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 a = [1,2,3,4];
7
8 b = modarray( a, [0], 9);
9 print( a);

10 a = b;
11 print( a);
12
13 a = modarray( a, [1], 8);
14 print(a);
15
16 return(0);
17 }
� �

Here, the use of a on the right-hand side of line 9 still refers to the definition
of line 6, whereas the use in line 11 refers to the definition in line 10.

The definition in line 13 shows, how variable scopes can be used to specify
code that looks very much ”imperative“. However, you should always keep in
mind, that in SaC, the place-holder property always holds!

Exercise 4 What result do you expect from the following SaC program?

Listing 2.6: Scope Exercise� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 a = [1,2,3,4];
7 b = [a,a];
8
9 a = modarray( modarray( a, [0], 0), [1], 0);

10 b = modarray( b, [0], a);
11 print(b);
12
13 return(0);
14 }
� �
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2.2 Lesson: Shape-Invariant Programming

The term shape-invariant programming refers to a programming style where
all array operations are defined in terms of operations that are applied to entire
arrays rather than to individual array elements. In order to realize such a
programming style, it is an essential prerequisite to be able to apply functions
to arbitrarily shaped arguments. In SaC, this is the case.

All built-in array operations as well as all array operations supplied by the
standard library can be applied to arguments of arbitrary shapes. However,
most of the operations that require more than one argument do have certain
restrictions with respect to which array shapes can be combined as valid argu-
ments. If an operation is applied to a set of arguments whose shapes constitute
an illegal combination, usually, a type error message is given. In cases where
this cannot be decided statically, the compiler may accept such a kind of domain
error and produce a runtime error instead.

This lesson consists of three parts: The section on Standard Array Op-
erations introduces the most important standard array operations provided by
the current SaC compiler release 1. The next section explains Axis Control
Notation, a powerful but simple way of manipulating the focus of array opera-
tions with respect to individual axes of argument arrays. With the axis-control
notation, the basic operations often can easily be combined into rather complex
operations as demonstrated in the section on Putting it all Together.

2.2.1 Standard Array Operations

In the sequel, several toy examples demonstrate the functionality of the most
basic array operations that come as part of the current SaC release. Their design
is inspired by those available in APL. However, several aspects - in particular
regarding the treatment of special cases in APL - have been adjusted to allow for
a more favourable compilation in SaC that yields better runtime performance.

A note for language design freaks:
You may have your own ideas on what primitive array operations should
be available and how the precise semantics of these should look like.
Therefore, it should be mentioned here, that all(!) array operations
introduced in the remainder of this section are not hard-wired into the
language, but they are defined in the module Array from the standard
library. This is to say that the advanced SaC programmer may write his
own set of standard array operations.

The individual parts of this section are all organized according to the follow-
ing scheme: first, a semi-formal introduction to the functionality of individual
operations is given. Then, several examples shed some more light on the exact
semantics of each operation by varying the argument-shape constellations and

1As of this writing, the latest SaC compiler release is version 1.00-beta.
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by exploring ”border-line cases“ with respect to domain restrictions if these do
exist.

Basic Operations

The most basic operations are very close to the model of arrays in SaC. They
comprise functions for inspecting, creating, and modifying an array’s shape
and content. If not stated otherwise, they are applicable to arbitrarily shaped
arguments of built-in element type. Note here, that some of them have been
introduced in earlier lessons already.

dim(a) returns the (scalar) dimensionality of the argument array a.
Domain restrictions: none.

shape(a) returns the shape vector of the argument array a.
Domain restrictions: none.

a[iv] constitutes a short-cut notation for sel( iv, a). It selects the array
element of a at index position iv. As a may be of any shape, the index
position is given as an index vector. The dimensionality of the result is
identical to the dimensionality of a minus the length of iv. Accordingly,
its shape is derived from the last components of the shape of a.
Domain restrictions:
• dim(iv) = 1

• shape(iv)[[0]] ≤ dim(a)

• ∀i ∈ {0, ...,shape(iv)[[0]]}: iv[[i]] < shape(a)[[i]].

a[iv]=expr; is a short-cut notation for an assignment of the form a = modarray(
a, iv, expr);. The result of this application is a new array which is al-
most identical to a. Only the element (subarray) at index position iv is
different; it is replaced by expr.
Domain restrictions:
• dim(iv) = 1

• shape(iv)[[0]] ≤ dim(a)

• ∀i ∈ {0, ...,shape(iv)[[0]]}: iv[[i]] < shape(a)[[i]]

• shape(expr) = shape(a[iv]).

reshape( shp, expr) computes an array with shape vector shp and data vec-
tor identical to that of expr.
Domain restrictions:
• dim( shp) = 1

•
shape(shp)[[0]]−1∏

i=0

shp[[i]] =
dim(expr)−1∏

i=0

shape(expr)[[i]].
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genarray( shp, expr) generates an array of shape shp, whose elements are
all identical to expr.
Domain restrictions: dim(shp) = 1.

Although these operations are fairly self-explaining or known from Lesson
2.1 on Arrays as Data, let us have a look at a few example applications:

Listing 2.7: Basic Operations� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 vect = [1,2,3,4,5,6,7,8,9,10,11,12];
7
8 mat = reshape( [3,4], vect);
9 print( mat);

10
11 print( mat[[1,1]]);
12 print( mat[[2]]);
13 print( mat[[]]);
14
15 mat[[1,1]] = 0;
16 print( mat);
17 mat[[2]] = [0,0,0,0];
18 print( mat);
19 mat[[]] = genarray( [3,4], 0);
20 print( mat);
21
22 empty_vect = [];
23 print( empty_vect);
24 empty_mat = reshape( [22,0], empty_vect);
25 print( empty_mat);
26 print( dim( empty_mat));
27 print( shape( empty_mat));
28
29 return(0);
30 }
� �

The different selections in Lines 11-13 show how the dimensionality of the
selected element increases as the length of the index vector decreases. If the
index vector degenerates into an empty vector, the entire array is selected. Sim-
ilarly, the applications of modarray in Lines 15-20 demonstrate the successive
replacement of individual elements, rows, or the entire array.

Lines 22-27 are meant to draw the reader’s attention to the fact that there
exists an unlimited number of distinct empty arrays in SaC!

Exercise 5 Assuming mat to be defined as in the previous example, what results
do you expect from the following expressions:

• reshape([3,0,5], [])[[]]?

• reshape([3,0,5], [])[[1]]?

• reshape([3,0,5], [])[[1,0]]?

• mat[reshape([2,0], [])]?
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Element-wise Extensions

Most of the operations that can be found as standard operations on scalars
in other languages are applicable to entire arrays in SaC. Their semantics are
simply element-wise extensions of the well-known scalar operations. The binary
operations in general do have some domain restrictions. First, the element
types of both arguments do have to be identical. Furthermore, either one of the
arguments has to be a scalar value, or both arguments have to have identical
shapes. In the former case, the value of the scalar argument is combined with
each element of the (potentially non-scalar) other argument, which dictates the
shape of the result. The latter case results in an array of the same shape as
both arguments are, with the values being computed from the corresponding
elements of the argument arrays.

In detail, the following operations are available:

arithmetic operations including addition (e1 + e2), subtraction (e1 - e2),
negation (- e1), multiplication (e1 * e2), and division (e1 / e2). Fur-
thermore, division on rational numbers (e1 div e2) and a modulo oper-
ation (e1 % e2) are supported.
Domain restrictions: the element types have to be numerical.

logical operations including conjunction (e1 && e2), disjunction (e1 || e2),
and negation (! e1).
Domain restrictions: the element types have to be Boolean.

relational operations including less-than (e1 < e2), less-or-equal (e1 <= e2),
equal (e1 == e2), not-equal (e1 != e2), greater-or-equal (e1 >= e2), and
greater-than (e1 > e2).
Domain restrictions: none.

max( e1, e2), min( e1, e2) compute the element-wise maximum and mini-
mum, respectively.
Domain restrictions: none.

where( p, e1, e2) is an element-wise extension of a conditional. It expects p,
e1, and e2 either to have identical shapes or to be scalar. If at least one
of the three arrays is non-scalar, that shape serves as shape of the result,
whose values are taken from e1 or e2 depending on the value(s) of p.
Domain restrictions:
• the element type of p has to be boolean

• the element types of e1 and e2 have to be identical

• ∃ shp: ( (shape(p) = shp ∨ shape(p) = []) ∧ (shape(e1) = shp
∨ shape(e1) = []) ∧ (shape(e2) = shp ∨ shape(e2) = []) ).

Again, these operations are fairly self-explanatory. Nevertheless, we present
a few examples:
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Listing 2.8: Elementwise Extensions� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 vect = [1,2,3,4,5,6,7,8,9];
7
8 mat = [ vect, vect+10, vect+20];
9 print( mat);

10
11 mat2 = where( (mat % 2) == 0, mat, -mat);
12 print(mat2);
13
14 print( max( mat2, 0));
15
16 return(0);
17 }
� �

The most interesting part of this example is the definition of the matrix
mat2 in Line 11. The even numbers from the matrix mat are taken as they are,
whereas the odd numbers are negated. Note here, that all sub expressions in
predicate position are in fact non-scalar arrays: (mat % 2) denotes a matrix of
zeros and ones and (mat % 2) == 0 denotes a matrix of boolean values.

Exercise 6 What results do you expect from the following expressions:

• min( reshape([3,0,5], []), 42)?

• reshape([3,0,5], []) + reshape([3,0,5], [])?

• reshape([1,1], [1]) + reshape([1], [1])?

Restructuring Operations

The operations to be introduced here do not compute new values at all. Instead,
they are meant to create slightly differently structured arrays from existing ones.
Therefore, they are applicable to arrays of all built-in element types.

take( sv, a) takes as many elements from the array a as indicated by the shape
vector sv. Each element of sv corresponds to one axis of a starting from
the leftmost one. For positive components of sv, the elements are taken
from the ”beginning“, i.e., starting with index 0, otherwise they are taken
from the ”end“ including the maximum legal index of the corresponding
axis. All axes of a where there exists no corresponding element in sv are
taken entirely.
Domain restrictions:
• dim(sv) = 1

• shape(sv)[[0]] ≤ dim(a)

• ∀i ∈ {0, ...,shape(sv)[[0]]}: |sv[[i]]| ≤ shape(a)[[i]]
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drop( sv, a) drops as many elements from the array a as indicated by the
shape vector sv. Each element of sv corresponds to one axis of a starting
from the leftmost one. For positive components of sv, the elements are
dropped from the ”beginning“, i.e., starting with index 0, otherwise they
are dropped from the ”end“ starting from the maximum legal index of
the corresponding axis. All axes of a where there exists no corresponding
element in sv are left untouched.
Domain restrictions:
• dim(sv) = 1

• shape(sv)[[0]] ≤ dim(a)

• ∀i ∈ {0, ...,shape(sv)[[0]]}: |sv[[i]]| ≤ shape(a)[[i]]

tile( sv, ov, a) takes a tile of shape sv from a starting at the index specified
by the offset vector ov. For axes where no values of sv or ov are specified
these are assumed to be identical to the extent of a along that axis or 0,
respectively.
Domain restrictions:
• dim(sv) = dim(ov) = 1

• shape(sv)[[0]] ≤ dim(a)

• shape(ov)[[0]] ≤ dim(a)

• ∀i ∈ {0, ...,shape(ov)[[0]]}: ov[[i]] ≤ shape(a)[[i]]

• ∀i ∈ {0, ...,min( shape(ov)[[0]], shape(sv)[[0]])}:
ov[[i]] + sv[[i]] ≤ shape(a)[[i]]

• ∀i ∈ {min( shape(ov)[[0]], shape(sv)[[0]]), ..., shape(sv)[[0]]}:
sv[[i]] ≤ shape(a)[[i]]

e1 ++ e2 concatenates arrays e1 and e2 with respect to the leftmost axis. As
in SaC all arrays are homogeneous, this requires all but the leftmost axis
to be of identical extent.
Domain restrictions:
• e1 and e2 have to be of identical element type

• drop( 1, shape(e1)) = drop( 1, shape(e2)).

rotate( ov, a) rotates the array a with respect to those axes specified by the
offset vector ov. Starting from the leftmost axis, the elements of ov specify
by how many positions the elements are rotated towards increasing indices
(positive values) or towards decreasing indices (negative values). Domain
restrictions:
• dim(ov) = 1

• shape(ov)[[0]] ≤ dim(a)
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shift( ov, expr, a) shifts the array a with respect to those axes specified by
the offset vector ov. The element positions that become ”void“ are filled
by the (scalar) default element expr. Again, depending on the sign of the
values of ov the elements are either shifted towards increasing or decreasing
indices.
Domain restrictions:
• dim(ov) = 1
• shape(ov)[[0]] ≤ dim(a)

• shape(expr)[[0]] = []

A few examples:

Listing 2.9: Restructuring Operations� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 vect = [1,2,3,4,5,6,7,8,9];
7
8 mat = [ vect, vect+10, vect+20];
9 print( mat);

10
11 print( take( [2,-2], mat) );
12 print( take( [2], mat) );
13 print( take( [], mat) );
14
15 print( take( [0], mat) );
16 print( take( [2, 0], mat) );
17 print( take( [2], reshape( [3,0,5], [])) );
18
19 print( drop( [0, -1], mat) );
20
21 print( mat ++ mat);
22
23 print( rotate( [-1, 42], mat) );
24 print( rotate( [ 1], mat) );
25
26 print( shift( [0, -2], 0, mat) );
27 print( shift( [0, -22], 0, mat) );
28 print( shift( [1], 0, mat) );
29
30 return(0);
31 }
� �

The applications of take in Lines 11-13 demonstrate, how the dimensionality
of mat remains unaffected by the length of the first argument. Only the shape
of the result and the ”side“ from which the elements are taken is defined by it.

The applications in Lines 15-17 demonstrate how empty arrays are dealt
with in the individual argument positions. In particular from the example in
Line 17 it can be seen how well the concept of having an unlimited number of
different empty arrays available fits nicely into the overall framework.

The remaining examples are rather straightforward. The only aspect of
interest here may be the ”overflows“ in the rotation and shift parameters in
Lines 24 and 28, respectively.
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Exercise 7 Which of the following expressions can be reformulated in terms of
take, ++, and the basic operations defined in the previous parts?

• drop( v, a)?

• tile( v, o, a)?

• shift( [n], e, a)?

• shift( [m,n], e, a)?

• rotate( [n], a)?

• rotate( [m,n], a)?

Can we define the general versions of shift and rotate as well?

Reduction Operations

The library of standard array operations that comes with the current SaC release
also contains a set of functions that fold all (scalar) elements of an array into a
single one. The most common ones of these are described here.

sum( a) sums up all elements of the array a. If a is an empty array, 0 is
returned.
Domain restrictions: the element type has to be numerical.

prod( a) multiplies all elements of the array a. If a is an empty array, 1 is
returned.
Domain restrictions: the element type has to be numerical.

all( a) yields true, iff all elements of a are true. If a is an empty array, true
is returned.
Domain restrictions: the element type has to be boolean.

any( a) yields true, iff at least one element of a is true. If a is an empty array,
false is returned.
Domain restrictions: the element type has to be boolean.

maxval( a) computes the maximum value of a. If a is an empty array, the
minimal number of the according element type is returned.
Domain restrictions: the element type has to be numerical.

minval( a) computes the minimum value of a. If a is an empty array, the
maximal number of the according element type is returned.
Domain restrictions: the element type has to be numerical.

A few examples:
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Listing 2.10: Reduction Operations� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 vect = [1,2,3,4,5,6,7,8,9];
7
8 mat = [ vect, vect+10, vect+20];
9

10 print( sum( mat) );
11 print( prod( vect) );
12 print( all( mat >= 1) );
13 print( any( mat > 1) );
14 print( maxval( mat) );
15 print( minval( mat) );
16
17 return(0);
18 }
� �

Most of these examples, again, are fairly self explanatory. However, you may
get an idea of the specificational advantages of shape-invariant programming
when having a closer look at Lines 12 and 13. They demonstrate the rather
intuitive style of program specifications that results from it.

Exercise 8 All operations introduced in this part apply to all elements of the
array they are applied to. Given the array operations introduced so far, can you
specify row-wise or column-wise summations for matrices? Try to specify these
operations for a 2 by 3 matrix first.

2.2.2 Axis Control Notation

As can be seen from Exercise 8, without further language support, it is rather
difficult to apply an array operation to certain axes of an array only. This
section introduces two language constructs of SaC which, when taken together,
can be used to that effect. While Generalized Selections are convenient for
separating individual axes of an array, Set Notations allow to recombine such
axes into a result array after applying arbitrary operations to them. However,
as the two constructs in principle are orthogonal, we introduce them separately
before showing how they can be combined into an instrument for Axis Control.

Generalized Selections

The selection operation introduced in Section 2.2.1 does not only allow scalar el-
ements but entire subarrays of an array to be selected. However, the selection of
(non-scalar) subarrays always assumes the given indices to refer to the leftmost
axes, i.e., all elements with respect to the rightmost axes are actually selected.
So far, a selection of arbitrary axes is not possible. As an example use-case
consider the selection of rows and columns of a matrix. While the former can
be done easily, the latter requires the array to be transposed first.

To avoid clumsy notations, SaC provides special syntactical support for se-
lecting arbitrary subarrays called Generalized Selections. The basic idea is to
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indicate the axes whose elements are to be selected entirely by using dot-symbols
instead of numerical values within the index vectors of a selection operation.

Note here, that vectors containing dot-symbols are not first class
citizens of the language, i.e., they can exclusively be specified within
selection operations directly!

There are two kinds of dot-symbols, single-dots which refer to a single axis
and triple-dots which refer to as many axes as they are left unspecified within
a selection. In order to avoid ambiguities, a maximum of one triple-dot symbol
per selection expression is allowed.

A few examples:

Listing 2.11: Generalized Selections� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 vect = [1,2,3,4,5,6,7,8,9];
7
8 mat = [ vect, vect+10, vect+20];
9 print( mat);

10
11 print( mat[[1]] );
12 print( mat[[1,.]] );
13 print( mat[[1,...]] );
14
15 print( mat[[.,1]] );
16 print( mat[[...,1]] );
17
18 print( mat[[1,...,1]] );
19
20 arr3d = [ mat, mat];
21 print( arr3d);
22
23 print( arr3d[[.,1]] );
24 print( arr3d[[...,1]] );
25
26 return(0);
27 }
� �

The examples in Lines 11-13 demonstrate different versions for selecting the
second row of the matrix mat. However, as the rightmost axis is to be selected,
a dot-free version (cf. Line 11) suffices for this task. The selection of the second
column of mat is shown in Lines 15 and 16.

Line 18 demonstrates that the triple-dot notation can also be successfully
applied if no axis can be matched at all.

The difference between the single-dot and the triple-dot notation is shown in
Lines 23 and 24. While the selection in Line 23 is identical to arr3d[[.,1,.]],
the one in Line 24 is identical to arr3d[[.,.,1]].

Only in cases where the number of single-dots plus the number of numerical
indices exceeds the number of axes available, an error message will be generated.

Exercise 9 How can a selection of all elements of mat be specified using gen-
eralized selections? Try to find all 9 possible solutions!
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Exercise 10 Referring to Exercise 5, can this new notation be used for selecting
”over“ empty axis? For example, can you specify a selection vector <vec>, so
that reshape([3,0,5], [])[ <vec> ] == reshape( [3,0], []) holds?

Set Notation

The means for composing arrays that have been described so far are rather
restricted. Apart from element-wise definitions all other operations treat all
elements uniformly. As a consequence, it is difficult to define arrays whose el-
ements differ depending on their position within the array. The so-called set
notation facilitates such position dependent array definitions. Essentially, it
consists of a mapping from index vectors to elements, taking the general form

{ <index vector> -> <expression> }
where <index vector> either is a variable or a vector of variables and <expression>
is a SaC expression that refers to the index vector or its components and defines
the individual array elements. The range of indices this mapping operation is
applied to usually can be determined by the expression given and, thus, it is
not specified explicitly.

A note for language design freaks:
You may wonder why we restrict the expressiveness of the set notation
by relying on compiler driven range detection rather than an explicit
range specification. The reason for this decision is the observation that
in many situations the capabilities of the set notation suffice whereas an
explicit specification of ranges would obfuscate the code.
Furthermore, as you will see in chapter 4, SaC provides a more versatile
language construct for defining arrays. However, the expressiveness of
that construct comes for quite some specificational overhead.

Let us have a look at some examples:

Listing 2.12: Basic Set Notation� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 vect = [0,1,2,3,4,5,6,7,8,9];
7
8 mat = { [i] -> vect[[i]]*10+vect };
9 print( mat);

10
11 mat_inc = { iv -> mat[iv] + 1};
12 print( mat_inc);
13
14 mat_trans = { [i,j] -> mat[[j,i]] };
15 print( mat_trans);
16
17 mat_diag = { [i,j] -> where( i==j , mat[[i,j]] , 0) };
18 print( mat_diag);
19
20 return(0);
21 }
� �
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The set notation in Line 8 defines a vector whose components at position [i]
are vectors that are computed from adding a multiple of 10 to the vector vect.
The legal range of i is derived from the selection vect[[i]] yielding in fact
a matrix with shape [10,10]. An explicit element-wise increment operation is
specified in Line 11. Since the operation does not need to refer to individual axes
a variable iv is used for the entire index vector rather than having variables for
individual index components. Line 14 shows how the matrix can be transposed,
and Line 17 changes all non-diagonal elements to 0.

Exercise 11 Which of these operations can be expressed in terms of the array
operations defined so far?

Exercise 12 What results do you expect if mat is an empty matrix, e.g., reshape(
[10,0], [])?

As we can see from the set notation in Line 8, non-scalar expressions within
the set notation per default constitute the inner axes of the result array. This can
be changed by using .-symbols for indicating those axes that should constitute
the result axis.

A few examples:

Listing 2.13: Advanced Set Notation� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 vect = [0,1,2,3];
7
8 mat = { [.,i] -> vect[[i]]*4 + vect };
9 print( mat);

10
11 arr3d = { [i] -> vect[[i]]*16 + mat};
12 print( arr3d);
13
14 arr3d = { [.,.,i] -> vect[[i]]*16 + mat};
15 print( arr3d);
16
17 arr3d = { [.,i] -> vect[[i]]*16 + mat};
18 print( arr3d);
19
20 return(0);
21 }
� �

These examples show how the result of evaluating the expression on the right
of the arrow can be directed into any axes of the overall result array. As can be
seen in Line 17, the axes of the expressions can even be put into non-adjacent
axes of the result.

Exercise 13 The .-symbol in the set notation allows us to direct a computation
to any axes of the result. This is identical to first putting the result into the
innermost axes and then transposing the result. Can you come up with a general
scheme that translates set notations containing .-symbols into set notations that
do without?
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Axis Control

Although generalized selections and the set notation per se can be useful, their
real potential shows when they are used in combination. Together, they con-
stitute means to control the axes a given operation is applied to. The basic
idea is to use generalized selections to extract the axes of interest, apply the
desired operation to the extracted subarrays and then recombine the results to
the overall array.

For example, we can now easily sum up the individual rows or columns of a
matrix:

Listing 2.14: Axis Control: sum� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 vect = [0,1,2,3,4,5,6,7,8,9];
7
8 mat = { [.,i] -> vect[[i]]*10+vect };
9 print( mat);

10
11 sum_rows = { [i] -> sum( mat[[i]]) };
12 print( sum_rows);
13
14 sum_cols = { [i] -> sum( mat[[.,i]]) };
15 print( sum_cols);
16
17 return(0);
18 }
� �

Reduction operations, in general, are prone to axis control, as they often need
to be applied to certain particular axes rather than entire arrays. Other popular
examples are the maximum (maxval) and minimum (minval) operations:

Listing 2.15: Axis Control: max� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 vect = [0,1,2,3];
7
8 arr3d = { [i,j] -> vect[[i]]*4 + vect[[j]]*16 + vect };
9 print( arr3d);

10
11 max_inner_vects = { [i,j] -> maxval( arr3d[[i,j]]) };
12 print( max_inner_vects);
13
14 max_inner_arrays = { [i] -> maxval( arr3d[[i]]) };
15 print( max_inner_arrays);
16
17 max_outer_arrays = { [i] -> maxval( arr3d[[.,.,i]]) };
18 print( max_outer_arrays);
19
20 return(0);
21 }
� �
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In Line 8, we directly generate a 3 dimensional array from the vector vect.
Lines 11, 14, and 17 compute maxima within different slices of that array.
max_inner_vects is a matrix containing the maxima within the innermost
vectors, i.e., the 3-dimensional array is considered a matrix of vectors whose
maximum values are computed. For max_inner_arrays, the array is consid-
ered a vector of matrices; it contains the maximum values of these subarrays.
The last example demonstrates, that outer dimensions can be considered for
reduction as well.

Further demand for axis control arises in the context of array operations
that are dedicated to one fixed axis (usually the outermost one) and that need
to be applied to another one. Examples for this situation are the concatenation
operation (++) and reverse:

Listing 2.16: Axis Control: ++, reverse� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 vect = [0,1,2,3];
7
8 arr3d = { [i,j] -> vect[[i]]*4 + vect[[j]]*16 + vect };
9 print( arr3d);

10
11 print( arr3d ++ arr3d);
12 print( { [i] -> arr3d[[i]] ++ arr3d[[i]] });
13 print( { [i,j] -> arr3d[[i,j]] ++ arr3d[[i,j]] });
14
15 print( reverse( arr3d));
16 print( { [i] -> reverse( arr3d[[i]]) });
17 print( { [i,j] -> reverse( arr3d[[i,j]]) });
18
19 return(0);
20 }
� �

Line 11 shows a standard application of the concatenation of two arrays.
It affects the outermost axis only, resulting in an array of shape [ 8, 0, 0].
The two subsequent lines show, how to apply concatenation to other axis. Es-
sentially, the selections on the right hand sides select the sub expressions to be
concatenated and the surrounding set notation glues the concatenated subarrays
back together again.

The examples in Lines 15-17 show the same exercise for the operation reverse
which reverses the order of the elements within an array with respect to the out-
ermost axis.

Exercise 14 The operation take is defined in a way that ensures inner axes
to be taken completely in case the take vector does not provide enough entities
for all axes. How can take be applied to an array so that the outermost axis
remains untouched and the selections are applied to inner axes, starting at the
second one? (You may assume, that the take vector has fewer elements than the
array axes!) Can you specify a term that - according to a take vector of length
1 - takes from the innermost axis only?
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Exercise 15 Can you merge two vectors of identical length element-wise? Ex-
tend your solution in a way that permits merging n-dimensional arrays on the
outermost axis.

2.2.3 Putting it all Together

The array operations presented so far constitute a substantial subset of the func-
tionality that is provided by array programming languages such as APL. When
orchestrated properly, these suffice to express rather complex array operations
very concisely. In the sequel, we present two examples that make use of this
combined expressive power: matrix product and relaxation.

Matrix Product

The matrix product of two matrices A and B (denoted by A�B) is defined as
follows:

Provided A has as many columns as B has rows, the result of A�B has as
many rows as A and as many columns as B. Each element (A�B)i,j is defined
as the scalar product of the i-th row of A and the j-th column of B, i.e., we
have (A�B)i,j =

∑
k Ai,k ∗Bk,j .

This definition can directly be translated into the following SaC code:

Listing 2.17: Matrix Product� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 id = [ [1d, 0d, 0d], [0d, 1d, 0d], [0d, 0d, 1d]];
7
8 vect = [1d, 2d, 3d, 4d];
9 mat = [ vect, vect+4d, vect+8d];

10 print( mat);
11
12 res = { [i,j] -> sum( id[[i,.]] * mat[[.,j]]) };
13 print( res);
14
15 return(0);
16 }
� �

After defining two matrices id and mat in Lines 6 and 8, respectively, the
matrix product id � mat is specified in Line 12. id[[i,.]] selects the i-th
row of id and mat[[.,j]] refers to the j-th column of mat. The index ranges
for i and j are deduced from the accesses into id and mat, respectively. A
variable k as used in the mathematical specification is not required as we can
make use of the array operations * and sum.

Relaxation

Numerical approximations to the solution of partial differential equations are
often made by applying so-called relaxation methods. These require large
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arrays to be iteratively modified by so-called stencil operations until a certain
convergence criterion is met. Fig. 2.1 illustrates such a stencil operation. A
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Figure 2.1: A 5-point-stencil relaxation with cyclic boundaries

stencil operation re-computes all elements of an array by computing a weighted
sum of all neighbor elements. The weights that are used solely depend on the
positions relative to the element to be computed rather than the position in the
result array. Therefore, we can conveniently specify these weights by a single
matrix of weights as shown on the left side of Fig. 2.1.

In this example, only 4 direct neighbor elements and the old value itself
are taken into account for computing a new value. (Hence its name: 5-point-
stencil operation). As can be seen from the weights, a new value is computed
from old ones by adding an eight-th each of the values of the upper, lower, left,
and right neighbors to half of the old value.

As demonstrated on the right side of Fig. 2.1 our example assumes so-called
cyclic boundary conditions. This means that the missing neighbor elements
at the boundaries of the matrix are taken from the opposite sides as indicated
by the elliptic curves.

In the sequel, we concentrate on the specification of a single relaxation step,
i.e., on one re-computation of the entire array. This can be specified as a single
line of SaC code:

Listing 2.18: Relaxation with Cyclic Boundaries� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 weights = [ [0d, 1d, 0d], [1d, 4d, 1d], [ 0d, 1d, 0d]] / 8d;
7
8 vect = [1d, 2d, 3d, 4d];
9 mat = [ vect, vect+4d, vect+8d, vect+12d];

10 print( mat);
11
12 mat = { [i,j] -> sum( { iv -> weights[iv] * rotate( iv-1, mat)}[[...,i,j]] ) };
13 print( mat);
14
15 return(0);
16 }
� �
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Line 6 defines the array of weights as given on the left side of Fig. 2.1. Our
example array is initialized in Lines 8-9. The relaxation step is specified in Line
12. At its core, all elements are re-computed by operations on the entire array
rather than individual elements. This is achieved by applying rotate for each
legal index position iv into the array of weights weights. Since the expression
{ iv -> weights[iv] * rotate( iv-1, mat)} computes a 3 by 3 array of
matrices (!) the reduction operation sum needs to be directed towards the outer
two axes of that expression only. This is achieved through axis control using a
selection index [...,i,j] within a set notation over i and j.

Exercise 16 Another variant of relaxation problems requires the boundary el-
ements to have a fixed value. Can you modify the above solution in a way that
causes all boundary elements to be 0? [Hint: You may consider the boundary
elements to actually be located outside the matrix]



Chapter 3

Basic Program Structure

This trail gives a brief introduction into the main language constructs most of
which have been adopted from standard C. We assume some familiarity with
standard C and, therefore, only give a quick overview and highlight the differ-
ences between SaC and C.

3.1 Lesson: Functions and their Types

3.1.1 Function Definitions

Like in other modern programming languages functions constitute the main
form of structuring programs in SaC. SaC functions very much resemble their
C counterparts. The most prominent difference is that SaC functions can have
multiple return values, as illustrated in the following example.

Listing 3.1: Function definitions� �
1 use ScalarArith: all;
2
3 int, int divmod( int x, int y)
4 {
5 return( x/y, x%y);
6 }
7
8 int main()
9 {

10 d, m = divmod( 8, 3);
11
12 return( d);
13 }
� �

A function with multiple return values, like divmod in the above example,
has a comma-separated list of return types in front of the function name and
the return-statement likewise contains a comma-separated list of expressions.
Obviously both lists must coincide in length to make up a well-formed program.
Functions with multiple return values cannot appear in expression positions in

28
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SaC, but their results need to be directly assigned to identifiers as illustrated
above.

Exercise 17 Extend the above example program to compute the greatest com-
mon denominator of two numbers using Euclid’s algorithm. In particular, use
the function divmod.

Exercise 18 What happens, if you use the same variable name for both results
of divmod?

3.1.2 Built-in Types

SaC supports all basic types of standard C such as int, float, double, char
etc.

A note for bit freaks:
All basic types are mapped one-to-one to their C counterparts and,
hence, the same rules apply to them in SaC as in C. As a consequence of
this, the concrete bit widths used for representation and, hence, the range
of values for integer types are platform-dependent. Although this may be
considered undesireable we find it acceptable from a compatibility-with-C
perspective.

In addition to the C-inhereted types, SaC supports three more basic types:
the boolean type bool and the integer type byte, both signed and unsigned.
Although these are internally mapped to the same C type, on the level of SaC,
there is a strict separation between them. Neither can be used in places where
the other is expected. This separation also applies to the standard C types
which rules out tacit coercions as one would find them in C or Java.

A note for language design freaks:
The reader may wonder why we enforced this strict separation. The rea-
son is two-fold: First, it prevents from accidental coercions and second,
it makes type-inference more accessible for the user in the absence of
explicit type declarations.
Just imagine an overloading of a function foo for integer and double
arguments which would yield different results depending on the type of
argument. If we had implicit coercions in place it would be completely
unclear how the result of foo( 0) would be computed!

As a consequence of this strict separation, programmers need to apply some
rigor when it comes to specifying constant values. They have to be attributed
with the appropriate suffixes to indicate the desired runtime representation.
Note here, that we adopted the suffixes and default rules from C. Here a few
examples:
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Listing 3.2: Element-Type segregation� �
1 use StdIO: all;
2 use Array: all;
3
4 bool foo( double x)
5 {
6 return( true);
7 }
8
9 bool bar( float x)

10 {
11 return( false);
12 }
13
14 int main()
15 {
16 /**
17 * type error: foo is not defined on int!
18 */
19 a = foo( 0);
20
21 /**
22 * correct calls:
23 */
24 a = foo( 0.0);
25 a = foo( 0d);
26
27 /**
28 * type error: bar is not defined on double!
29 */
30 a = bar( 0.0);
31
32 /**
33 * correct calls:
34 */
35 a = bar( 0f);
36 a = bar( 0.0f);
37
38 return(0);
39 }
� �

Exercise 19 How can you modify the above program in a way that allows the
programmer by a simple define to switch the argument type of foo between float
and double and all the calls to foo accordingly?

[Hint: Use the C preprocessor to make the necessary modifications]

3.1.3 Subtyping

For each basic type there is an entire hierarchy of array types that specify the
shape of an array (remember that any expression in SaC denotes an array) at
different levels of accurateness. Using type int as a running example, int itself
denotes an integer array with rank zero, the empty vector [] as shape vector and
a single element, in other words the equivalent of a scalar value. Then, there are
(real) array types denoting arrays of rank greater than zero, e.g. int[4] denotes
a 4-element vector while int[10,20] denotes a 10 by 20 element matrix.

Whereas all these types specify exact shapes, SaC also features types that
solely denote the rank of some array, but leave the concrete shape open, e.g. int[.]
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describes the type of all integer vectors (of any length) and int[.,.] is the
type of all integer matrices. In order to support rank-invariant programming,
SaC, furthermore, has types that not only abstract from concrete shapes but
even from concrete ranks. These are int[*] which is the type of all integer
arrays of any rank and shape, including rank-zero arrays (usually referred to
as scalars) and int[+], the type of all “true” integer arrays, i.e. arrays of rank
greater than zero.

SaC defines a subtype relationship between array types in the obvious way.
Figure 3.1 shows this relationship for arrays of integer elements in a graphical
form. Whenever two types are in subtype relationship they are connected by a

int[*]

int[+]

int[.] int[.,.] int[.,.,.] · · ·

int[1] int[4] · · · int[7,2] int[2,9]· · · int[9,8,11] · · ·int

Figure 3.1: The hierarchy of array types of integer elements.

line. For example, int[+] is a subtype of int[*], int[.] and int[.,.] are
both subtypes of int[+] and int[12] and int[42] are subtypes of int[.].
As we can see, the subtyping hierarchy of SaC has exactly four levels.

3.1.4 Function Overloading

The real power of subtyping unfolds when it is combined with function over-
loading. It allows programmers to specify multiple functions of the same name,
as long as they differ in the types or their arguments. Which definition is chosen
for any given application of such a function depends on the type of the actual
arguments. This combines a high degree of code reuse with the ability to later
add special definitions for a few special cases.

A note for OO-freaks:
This can be seen as a more general form of inheritance. If you restrict
overloading to one argument only, say the first one, it equates to in-
heritance in OO languages. However, the overloading of SaC is much
more powerful. Not only does it support inheritance on all arguments
but it also supports overloading across different types. These features
render several of the well-known OO programming pattern such as the
visitor pattern superfluous in SaC. Instead, the desired overloading can
be specified directly.

Here, an example for element-type overloading:
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Listing 3.3: Function overloading� �
1 use ScalarArith: all;
2 use StdIO: all;
3
4 int twice( int x)
5 {
6 return( 2 * x);
7 }
8
9 double twice( double x)

10 {
11 return( 2.0 * x);
12 }
13
14 int main()
15 {
16 a = twice( 5);
17 print(a);
18
19 b = twice( 5.9);
20 print(b);
21
22 return(0);
23 }
� �

When utilising the overloading on our hierarchy of array types we can even
achieve a pattern matching like programming style as demonstrated in the next
example. Here, we have three instances of the function quicksort, one for
vectors of any length, one for vectors of length one and one for empty vectors.
The latter two boil down to the identity function. As a result we can safely access
the first element of the argument vector v in the general instance because any
argument vector is guaranteed to have at least two elements.� �

1 int[.] quicksort( int[.] v)
2 {
3 pivot = v[[1]];
4 ...
5 }
6
7 int[1] quicksort( int[1] v)
8 {
9 return( v);

10 }
11
12 int[0] quicksort( int[0] v)
13 {
14 return( v);
15 }
� �

Exercise 20 In a C program, functions like + can be applied to arbitrary com-
binations of integer and double arguments. Try to mimic that behaviour in SaC
by defining a function cPlus and by overloading it appropriately.

Exercise 21 In OO languages inheritance cannot always be statically resolved.
This leads to what is referred to as dynamic dispatch, i.e., the disambiguation
of function calls at runtime. Is that required in SaC too? If so, can you come
up with an example program that demonstrates this?
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3.2 Lesson: Function Bodies

3.2.1 Variable Declarations

Local variables within bodies of SaC functions are typically not declared (in
contrast to C), but the SaC compiler infers proper types for local variables or
yields an appropriate error message. Nevertheless, it is syntactically legal to
add explicit variable declarations in SaC in exactly the same way as in C.

There is one difference to C, however: While C allows local variable dec-
larations at the beginning of each code block and in the latest C99 standard
instructions and declarations can even be interleaved, SaC only supports vari-
able declarations on the level of function bodies, and they must precede any
instruction.

Exercise 22 Rewrite your solution to computing the greatest common denom-
inator of two numbers from the previous exercise such that each subexpression
is assigned to an identifier, i.e. flatten any nested expression. Then add explicit
variable declarations for each local variable used.

Exercise 23 The previous exercise only used scalar types, more precisely int.
What happens if you replace int in all variable declarations by its supertype
int[*]?

3.2.2 Assignments

As we have already seen in the previous trails, SaC allows for C-style assign-
ments to variables. In contrast to C, assignments cannot be placed within
expression positions and the comma-operator of C is not supported. However,
the combinations of operators and assignment are the same in SaC as in C

Listing 3.4: Operator assignments in SaC� �
1 use ScalarArith: all;
2 use StdIO: all;
3
4 int main()
5 {
6 a = 42;
7 print( a);
8 a += 5;
9 print( a);

10 a -= a;
11 print( a);
12
13 return( a);
14 }
� �

Note that despite the term “Single Assignment” in the name of SaC, the
language actually supports repeated assignment of values to the same variable
as in the above example. This seeming contradiction can be explained as follows:
Each assignment opens up a new scope of an identifier bound to some value.
Accordingly, the second assignmnent to a in the above example opens up a new
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scope for a new identifier a that only coincidentally carries the same name as
the identifier introduced in the code line before. However, because these two
variables do carry the same name, the second assignment shadows the scope of
the first assignment meaning that no access to the first a is possible any more.

3.2.3 Conditionals

In SaC, we support three forms of conditionals:

• branching with consequence only (if-then),

• branching with consequence and alternative (if-then-else) and

• conditional expressions.

All three forms use a syntax that is identical to that of C, as the following
listing illustrates. Similarity with C extends to the use of curly brackets to
build blocks of multiple statements and their potential absence if the condition
covers a single statement only

Listing 3.5: Conditionals in SaC� �
1 use ScalarArith: all;
2 use StdIO: all;
3
4 int main( )
5 {
6 a = 5;
7 b = 7;
8 printf( "a=%d, b=%d\n", a, b);
9

10 if (a<b) a = b;
11 printf( "a=%d, b=%d\n", a, b);
12
13 if (a>=b) {
14 a = b;
15 }
16 else {
17 b = a;
18 }
19 printf( "a=%d, b=%d\n", a, b);
20
21 b = a<b ? a : b;
22 printf( "a=%d, b=%d\n", a, b);
23
24 return( b);
25 }
� �

As in C all forms of conditionals can be nested in any way, and the dangling
else ambiguity is resolved as in C proper.

A small difference to standard C is that the predicate expression of any
conditional must be of type bool. There is no implicit treatment of integer
values as predicates. Another subtle difference to C stems from the functional
nature of SaC: a variable defined only in one branch of a conditional, will cause
the SaC compiler to raise an error because the value may be undefined.
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The switch-statement of C is currently not supported by SaC. This is not so
much motivated by conceptual concerns, but rather by pragmatic considerations
like the ratio between expressiveness gained and implementation effort caused.

3.2.4 Loops

SaC supports all three loop constructs of standard C: while, do and for with
the familiar syntax, as illustrated by the following code fragment.

Listing 3.6: Loops in SaC� �
1 use ScalarArith: all;
2 use StdIO: all;
3
4 int main()
5 {
6 a = 10;
7
8 while (a>0) {
9 a = a - 2;

10 print( a);
11 }
12
13 do {
14 print( a);
15 a = a + 1;
16 }
17 while (a<7);
18
19 for (i=1,j=2 ; i+j < 42 ; i++, j++) {
20 a *= 2;
21 print( a);
22 }
23
24 return( a);
25 }
� �

In analogy to conditionals, the loop predicate expression must be of type
bool. Note that SaC does even support the comma operator in for-loops
(though not in general terms as pointed out before).

These C-style loop constructs can make code look very imperative. Despite
these syntactic similarities, always bear in mind that SaC loops are (only) syn-
tactic sugar for equivalent tail-end recursive functions. While the functional
semantics almost completely coincides with the pragmatic expectations of a C
programmer, some subtle issues may arrise concerning the definedness of vari-
ables. For example, the SaC compiler would complain about the above example
saying that the variable b in the while-loop may be used uninitialised if it is
not defined before. This is because the compiler assumes that the body of a
while-loop may not be executed at all. Of course, you may know better, but
the SaC compiler at the moment makes no particular effort to prove this fact
when it analyses the definedness of variables.
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3.2.5 Explicit Control Flow Manipulation

The control flow manipulation statements of C, i.e. goto, break and continue,
as well as labels are not supported by SaC. This is due to the fact that SaC is
indeed a functional language and as such there is actually no control flow, even
though the C-like syntax suggests one.

3.3 Lesson: Advanced Topics

3.3.1 User-defined Types

SaC allows programmers to define their own types using a syntax that is identical
to C.

Listing 3.7: User-defined types� �
1 use StdIO: all;
2
3 typedef int myint;
4 typedef float[100,100] real_matrix;
5 typedef double[2] complex;
6
7 int main()
8 {
9 complex c;

10 double[2] d;
11
12 c = (:complex) [1.2,2.3];
13 d = (:double[2]) c;
14 print( d);
15
16 return( 0);
17 }
� �

Following the keyword typedef we have the defining type followed by the
defined type name. Note that in contrast to C, defining type and defined type are
not considered synonyms. Types like double[2] and complex are distinguished
properly and a function that expects a value of type double[2] as an argument
will not accept a value of type complex instead.

SaC requires explicit type casts to change the type of a value from the
defining type to the defined type or vice versa as in the following example.

Note that for the time being any defining type in a type definition must
exactly specify some shape; the various less specific types are not supported.
While this looks incomplete at first glance, it is noteworthy that such type
definitions would immediately lead to arrays of non-uniform shape, e.g. a matrix
whose rows have different length. There is no doubt that this would be an
extremely powerful extension to the homogeneously shaped arrays that SaC
supports today, but it would likewise require a non-trivial extension of the code
generator and runtime system that we leave for future research.
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3.3.2 Type Conversions

SaC uses C-like cast expressions to change the type of an expression whenever
the data repesentation remains unaffected, i.e. between user-defined types and
their defining types or vice versa. In contrast to C, SaC does not use cast
expressions to actually change data representations, e.g. when converting from
an integer type to a floating point type, between floating point types of different
precision or between integer types of different bit width. For all these purposes
SaC uses dedicated conversion functions to express the fact that such conversions
actually require an operation performed at runtime rather than just changing
the type interpretation of a value.

These conversion functions are named tobool and tochar for converting
into non-numerical values. For all numerical types these functions are named
“to” plus an optional “u” for unsigned integer types followed by the first letter
of the type name (“ll” in the case of long long int). The following example
illustrates type conversions in SaC.

Listing 3.8: Type conversions� �
1 use ScalarArith: all;
2 use StdIO: all;
3
4 int main()
5 {
6 double x;
7 float y;
8 int z;
9

10 x = 2.3;
11 print(x);
12
13 y = tof( x);
14 print(y);
15
16 z = toi( y);
17 print(z);
18
19 return( z);
20 }
� �



Chapter 4

With-Loops

This trail aims at providing a hands-on introduction to the key language con-
struct of SaC: the With-Loop. It constitutes the generalisation of the set-
expression as introduced in the lesson 2.2 on Shape-Invariant Programming
and can be seen as a shape-invariant form of the map-reduce template or the
array comprehensions found in other functional languages. However, in contrast
to these, the With-Loop was carefully designed to enable radical code optimi-
sations as well as compilation into high-performance, concurrently executable
code.

A note for language design freaks:
In fact, almost all array operations introduced in earlier trails are defined
by With-Loops within the standard library. This design combines two
maior advantages:

• better performance, as the conformity enables optimisations to
be more generally applicable, and

• increased flexibility, as the user can modify the definition of all
standard operations.

The introduction of With-Loops comes in a single lesson which step-wise
introduces all features and variants of With-Loops in SaC.

4.1 Lesson: With-Loop Basics

4.1.1 Basic Components

Generally, With-Loops are composed of three different components:

• sets of index vectors (referred to as generator-ranges),

• functions that map index vectors to arbitrary values (generator-expressions),
and

38
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• combining operations (with-loop operators) that take such values and
construct arrays from them.

In its simplest form, a With-Loop contains one component of each kind. It
then maps the function defined by the generator-expression to all index vectors
from the generator-range in a data-parallel fashion. This leads to a set of index-
value-pairs which are combined into a result array by means of the given with-
loop operator. Let’s have a look at a simple example:

Listing 4.1: Simple With-Loop� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 a = with {
7 ( [0] <= iv < [5]) : 42;
8 } : genarray( [7], 0);
9

10 print(a);
11
12 return(0);
13 }
� �

Here, the With-Loop in lines 6-8 computes the vector [ 42, 42, 42, 42, 42, 0, 0].
The generator-range is specified by the code snippet in round brackets in line
7: ( [0] <= iv < [5]). It denotes the set of vectors { [0], [1], ..., [4] }.
The generator-expression here is the constant 42. Hence, the mapping function
fmap maps any index vector iv into 42, i.e., we have fmap(iv) =42. Finally, the
with-loop operation is specified as genarray( [7], 0). This operation computes
an array of shape [7] where

a[iv] =

{
fmap(iv) iff iv ∈ {[0],[1], ...,[4]}
0 otherwise.

Generator-ranges and generator-expressions always occur in pairs. Jointly
they form a syntactical unit, which we refer-to as generator. As we will see
later, With-Loops can contain arbitrary numbers of generators. They are en-
closed in curly brackets.

Exercise 24 What result do you expect if we eliminate the generator from the
above example?

What results do you expect if we modify the generator-range in the above
example into:

• ( [-2] <= iv < [3])?

• ( [0] <= iv < [8])?

• ( [6] <= iv < [5])?

• ( [8] <= iv < [5])?

• ( [6] <= iv < [0])?
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[Hint: You should compile these examples with the option -check c being en-
abled]

4.1.2 Generator Ranges

SaC offers quite some flexibility when it comes to specifying generator ranges.
First of all, the use of index vectors in the bounds enables the convenient spec-
ification of n-dimensional index ranges. Let us look at a few examples for the
2-dimensional case:

Listing 4.2: Generator Range Specifications� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 a = with {
7 ( [0,2] <= [i,j] < [5,6]) : 42;
8 } : genarray( [5,6], 0);
9 print(a);

10
11 shp = [5,6];
12 a = with {
13 ( 0*shp <= iv < shp) : 42;
14 } : genarray( shp, 0);
15 print(a);
16
17 a = with {
18 ( . < iv < .) : 42;
19 } : genarray( [5,6], 0);
20 print(a);
21
22 a = with {
23 ( . <= jv=[x,y] <= [4,5]) : 42;
24 } : genarray( [5,6], 0);
25 print(a);
26
27 a = with {
28 ( . <= [i,j] <= . step [1,4] ) : 42;
29 } : genarray( [5,6], 0);
30 print(a);
31
32 a = with {
33 ( . <= [i,j] <= . step [2,4] width [1,2] ) : 42;
34 } : genarray( [5,6], 0);
35 print(a);
36
37 return(0);
38 }
� �

As we can see from the first With-Loop in lines 6-8, a vector of scalar indices
can be used where we previously used the variable iv to denote the entire index
vector. In cases where the dimensionality of the With-Loop is statically fixed,
this sometimes comes in handy. However, if we want to adopt a more generic,
shape-invariant programming style, it becomes mandatory to use vectors for the
index variable as well as for the bounds.
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Note here, that the ability to use vectors rather than componentised in-
dices and bounds is absolutely crucial here! It constitutes the enabling
factor for specifying With-Loops in a shape-invariant style as the length
of those vectors may remain unknown until runtime. It is this particular
feature that sets the With-Loops apart from most conventional language
constructs for data-parallel array operations.

The With-Loop in lines 12-14 demonstrates a typical case where the dimen-
sionality of the resulting array is solely determined by a vector (here shp). A
slightly more elegant way for the most frequent case is the use of a syntactical
shortcut supported by SaC. The symbol ”.“ can be used in the position for
the lower and upper bound, denoting the lowest legal index and the highest
legal index into the array to be created, respectively. This is examplified in the
With-Loop in lines 17-19. Note here, that this generator-range does not cover
the entire legal index space of the resulting array! As the ”.“ allways represents
legal indices, we have to make sure that we use <= on both sides if we want to
cover the entire range. The example presented here, excludes the extreme cases
and, thus, covers all inner elements of the resulting array only.

Exercise 25 What happens if the length of the vectors within the generator-
range or the shape expresssion in the genarray-operation do not match? [Hint:
You should compile these example with the option -check c being enabled]

The With-Loop in lines 22-24 demonstrates how both, a vector version of
the index vector and scalarised versions can be made available for the generator-
expression. It also examplifies that a mix of the .-symbol and explicit expres-
sions can be used for the bounds.

The remaining two With-Loops demonstrate the ability to specify rectan-
gular grids of indices. The vector that follows the keyword step specifies the
stride of the reoccurence pattern per axis. As a consequence, the With-Loop
in lines 27-29 computes an array whose every fourth column is 42 starting with
the very first one.

The use of the vector after the keyword width enables the programmer to
denote more than one index per stepping period. The With-Loop in lines 32-34
computes a matrix where 1x2 blocks of the value 42 are placed in the upper left
corner of each 2x4 grid of the resulting array.

Exercise 26 Can you achieve the same result array as the last With-Loop of
the above examples without using the step/width facility? [Hint: The solution
may be surprisingly short!]

4.1.3 Generator Expressions

As we have seen in the previous sections, each generator expression implicitly
defines a mapping function from indices to expressions. The parameters of these
functions are derived from the index variables introduced in the associated gen-
erator range specifications. More complex generator expressions can be specified
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by assignment blocks that can be inserted between a generator range and the
associated generator expression. Here a few examples:

Listing 4.3: Non-trivial generator expressions� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 a = with {
7 ( [0,1] <= [i,j] < [6,6]) {
8 div, mod = divmod( i, j);
9 } : mod;

10 } : genarray( [6,6], 0);
11 print(a);
12
13 a = with {
14 ( . <= [i,j] <= . ) : ( i==j ? 1: 0) ;
15 } : genarray( [6,6], 0);
16 print(a);
17
18 a = with {
19 ( . <= [i] <= .) {
20 mval = i;
21 val = sum( with {
22 (. <= [i] <= .) : i
23 } : genarray( [mval], 0));
24 } : val;
25 } : genarray( [6], 0);
26 print(a);
27
28 return(0);
29 }
� �

The first With-Loop in lines 6-10 shows a typical scenario. The function
divmod reurns two values rather than just one. Rather than defining an explicit
mapping function that passes on the desired return value, we can specify this
selection directly.

The With-Loop in lines 13-15 demonstrates how non-trivial expressions can
be used even without necessitating the introduction of an assignment block.

The scope of variables that are defined in such an assignment block is strictly
local to that block. Such a varable can neither be referenced within other
generators of the same With-Loop nor outside of the With-Loop. Note, however,
that With-loops can be arbitrarily nested. An example for such a nesting is
schon in the With-Loop in lines 18-22 of the examples above.

Exercise 27 What do you expect to happen, if a variable that is defined in
such an assignment block has the same name as the index variable? Where is
the ”modified“ version observable?

Why can the variable mval in the example above be safely replaced by i?

4.1.4 Reductions and further With-Loop Operations

Besides the genarray with-loop operator described so far, SaC supports a few
more. These are:
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• a modarray operator which ”modifies“ an existing array, and

• two fold operators that enable the specification of reduction operations

The modarray variant is very similar to the genarray variant. The only
difference is that neither the shape of the result nor a default element for un-
specified index positions are explicit. Both of these are taken from a specified
array that serves as a template. The second With-Loop in lines 11-13 of the
example below demonstrates this. Here, a new array b is computed from the
array a by negating each second element of a. As in lesson 2.1 on arrays as data,
printing a in line 15 shows that in fact two different arrays have been created.

Listing 4.4: Further With-Loop operators� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 a = with {
7 ( . <= [i] <= .) : i;
8 } : genarray( [6], 0);
9 print(a);

10
11 b = with {
12 ( . <= iv <= . step [2] ) : -a[iv];
13 } : modarray(a);
14 print(b);
15 print(a);
16
17 c = with {
18 ( [0] <= iv <= [5]) : a[iv];
19 } : fold( *, 1);
20 print(c);
21
22 d = with {
23 ( [0] <= iv <= [5]) : a[iv];
24 } : foldfix( *, 1, 0);
25 print(d);
26
27 return(0);
28 }
� �

The two final examples demonstrate how reduction operations can be speci-
fied in SaC. The first variant (lines 17-19) is the standard variant for reductions.
It requires the specification of a folding function (* in this case) and of a neutral
element (1 here). As with the earlier variants, all index vectors from the gen-
erator range are mapped according to the generator expression. Subsequently
all computed values are folded using the specified folding function. Note here,
that no particular folding order is guaranteed! In order to obtain deterministic
results on a multicore machine this requires the specified folding operation to
be both, associative and commutative.

The final With-Loop in lines 22-24 is a slight variant of the fold version.
It stems from the observation that some reductions can be shortcut when a
certain fixpoint value has been met. In the given example of multiplication this
is the value 0. Whether the underlying implementation makes use of this extra
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information or not is not specified. The computational result of both, the fold
and the foldfix variant are the same, provided that the specified fixpoint value
infact constitutes one for the specified folding operation.



Chapter 5

Working with Modules

This chapter explains the basic principles of using modules in SaC. Prior to
modules, a short introduction into SaC name spaces is given.

5.1 Name Spaces

In general, name spaces are used to extend the set of possible identifiers and thus
inhibit potential name clashes. SaC supports multiple name spaces, although
these are not explicitly defined by the programmer. Instead, every module and
program has its own name space. The name space of a module is denoted by
its name, a program uses main as its name space identifier. As an example of
using name spaces, look at the modified hello world listing below.

Listing 5.1: Hello world program with name spaces� �
1 int main()
2 {
3 StdIO::printf( "Hello World!\n");
4 return(0);
5 }
� �

Instead of an import statement, a qualified function name is used. A qual-
ified identifier always consists of a name space identifier, followed by a double
colon and the unqualified identifier, in this case a function identifier. Besides of
functions, fully qualified names may as well be used for types and global objects.

As it would be bothering to precede each identifier with the name space it
belongs to, SaC supports multiple ways to automatically decide the right name
space and generate a fully qualified identifier implicitly (or internally).

5.2 Use Statements

To simplify the use of identifiers from other modules, SaC allows us to specify a
search space whose identifiers can be used in an unqualified fashion. By default,
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this search space contains all identifiers from the current name space. To add
a complete name space to the current search space, you may use the statement
use name space all; where name space gives the name of a name space. Using
this technique, the hello world example can as well be expressed as follows:

Listing 5.2: hello world with use statement� �
1 use StdIO: all;
2
3 int main()
4 {
5 printf( "Hello World!\n");
6 return( 0);
7 }
� �

However, an identifier is not allowed to have multiple occurrences within
the search space as far as types and global objects are concerned. For function
symbols the same holds modulo overloading based on parameter types.

To further avoid name clashes, SaC supports a more specific way to define
search spaces. Instead of the keyword all, a comma separated list of identifiers
can be given. The following version of hello world uses a more specific use
statement:

Listing 5.3: hello world with specific use statement� �
1 use StdIO: {printf};
2
3 int main()
4 {
5 printf( "Hello World!\n");
6 return( 0);
7 }
� �

In this example, only printf is made available to the search space and can
thus be used without explicitly specifying its name space. In some occasions
it can be useful to add all identifiers except a given set to the search space.
Consider a module FastIO reimplementing all functions of StdIO. To use FastIO
except the printf function, but StdIO::printf one might write:

Listing 5.4: hello world with use all but statement� �
1 use FastIO: all except {printf};
2 use StdIO: {printf};
3
4 int main()
5 {
6 printf( "Hello World!\n");
7 return( 0);
8 }
� �

This adds all identifiers from FastIO to the current search space except
FastIO::printf. This allows the function printf to be imported from module
StdIO.
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5.3 Import statement

So far, we added identifiers to the search space of the SaC compiler to avoid
explicitly specifying their name spaces each time they are referenced. As func-
tion signatures have to differ in number of arguments or their types, the use
statement prevents overloading of functions by shape across module bound-
aries. In fact, SaC only supports overloading by shape within a single name
space. Otherwise, the meaning of a fully qualified identifier could differ when
being used in different scopes. To nonetheless allow for successive overloading
in separate modules, SaC provides a mechanism for cloning functions using the
import statement.

Listing 5.5: hello world with import statement� �
1 import StdIO: {printf};
2
3 int main()
4 {
5 main::printf( "Hello World!\n");
6 return( 0);
7 }
� �

In this example, the statementimport StdIO: printf creates a (concep-
tual) copy of the function printf in the current name space main. Consider
a module foo containing a function int[*] bar( int[*]). This function can
now be overloaded as follows:

Listing 5.6: bar overloading� �
1 import foo: {bar};
2
3 int[+] bar(int[+] x)
4 {
5 ...
6 }
7
8 int main()
9 {

10 ...
11
12 y = bar(x);
13
14 ...
15 }
� �

Within the name space main there are two instances of bar, the one imported
from foo and the one defined within main itself. Keep in mind, that there is
a conceptual copy in main, so both are defined in main and so overloading can
take place.

Be careful when importing types, as an imported type is regarded as different
to its origin type by the type system as they were defined in different name
spaces. However, you might still exchanges values between both types by means
of a cast expression.



CHAPTER 5. WORKING WITH MODULES 48

5.4 Putting It Together

Both types of module statements can be mixed in any possible way, as long as
no name clash is introduced by them. Always keep in mind that an import
statement adds all identifiers to the current name space and thus to the current
search space, as well. The following example creates a name clash by using and
importing the same identifier:

Listing 5.7: name clash example� �
1 use StdIO: all;
2 import StdIO: {printf};
3
4 int main()
5 {
6 printf("Never see this!\n");
7
8 return( 0);
9 }
� �

Here, printf is imported to the current name space, so there is an identifier
main::printf, which is part of the compiler search space. Furthermore, the
use statement adds the complete name space of module StdIO to the current
name space, especially the identifier StdIO::printf. Thus there are two iden-
tifiers with the same unqualified name within the search space. To solve this, a
restriction to the use statement can be used.

Listing 5.8: name clash example� �
1 use StdIO: all except {printf};
2 import StdIO: {printf};
3
4 int main()
5 {
6 printf("Hey, it works!\n");
7
8 return( 0);
9 }
� �

In this example, the identifier StdIO::printf is no longer added to the
compiler search space and thus no name clash originates.

5.5 Implementing Modules

A SaC module implementation essentially looks just like a program, being a
collection of type, global object and function definitions. Unlike a program, a
module starts with the key word module followed by the module name, i.e. the
name space, and a semicolon.

Listing 5.9: module implementation example� �
1 module mymod;
2
3 provide all except {foo};
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4 export {foo};
5
6 int foo( int x)
7 {
8 return( ...);
9 }

10
11 int bar( int x)
12 {
13 return( ...);
14 }
� �

The more interesting aspect of a module (name space) is the question which
symbols (types, global objects and functions) are made available outside the
module and which are merely accessible internally within the module itself.
Two kinds of statements using the key words provide and export provide fine-
grained control over the availability of symbols outside the current module. By
default any symbol defined in a module is only accessible in the module itself.
Using the provide statement all or selected symbols can be made available to
be ”used” by other modules or programs. With the export statement symbols
are made available for either ”use” or ”import” by other modules or programs.
The syntax of provide and export statements is very similar to that of the
corresponding use and import statements. Either all symbols are provided/-
exported uniformly, or a specific list of symbols is concerned, or all but a given
list of symbols.



Chapter 6

Case Studies

This trail will illustrate how to use SaC for real-world applications. The fol-
lowing exercises make use of the techniques introduced in this tutorial so far.
Working through this trail shall give you some more hands-on experience with
the language itself and at the same time show you how to employ SaC to solve
your every-day problems in an efficient way.

6.1 Lesson: Image Processing

Digital image processing spans across a vast area of applications. Ranging
from digital photography over astronomy to surgery-assisting medical imaging,
most applications still share as their underlying theory some sort of basic signal
processing on two-dimensional (and potentially higher-dimensional) signals. It is
common to work with discretised signals, i.e., an approximation of the originally
analogue, continuous version of the signal.

In this exercise we will focus on two basic image filters on static, two-
dimensional, 8-bit gray-scale images with a resolution of xmax × ymax, such
that an image is a 2D function

S : N× N → N

S(x, y) =

{
vxy, if x < xmax ∧ y < ymax

0, otherwise

where ∀x, y : 0 ≤ vxy ≤ 255. Informally speaking, the parameters x and
y determine the position within the image and vxy determines the gray-scale
value of the pixel at this position.

A common technique to modify an image is to apply a filter of desired
properties to it. In many cases, an image filter F again is a two dimensional
signal as the one described above. The application of a filter to an image is

50
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expressed by the 2D (discrete) convolution F ⊗ S of these two signals:

F (x, y)⊗ S(x, y) =
∞∑

j=−∞

∞∑
k=−∞

F (j, k)S(x− j, y − k)

With this simple form of filtering, a wealth of image modifications are express-
ible. Depending on the choice of the filter mask we can achieve effects such as
smoothing, sharpening, edge detection, embossing and many more.

In SaC we can represent these signals as 2D arrays where x and y are the
column and row indices and each element corresponds to one pixel. The appli-
cation of a filter to an image may then be expressed using a stencil operation
as it was introduced in an earlier part of this tutorial (Section 2.2): The filter
mask is positioned with its center point over each pixel of the original image.
At each position, the pixel value of the image and its corresponding value of the
filter mask are multiplied. The pixel value at the same position in the result
image is determined by the sum of these products (weighed sum).

Exercise 28 The Sobel operator is an edge-detection filter that computes the
gradient image from an input signal. The filtering process consists of three steps:
In the first step, horizontal edges are detected, in the second step vertical edges
are detected, and in the final step, both sub-results are combined to the resulting
gradient image. The first two steps are in fact two independent operations, each
of which requires its own individual filter mask:

Fx =

1 0 −1
2 0 −2
1 0 −1

 Fy =

 1 2 1
0 0 0
−1 −2 −1


Applying these two masks to an input image S yields two sub-results, one high-
lighting horizontal edges (Sx = Fx ⊗ S), the other highlighting vertical edges
(Sy = Fy ⊗ S). We compute the final gradient image by adding the two sub-
results Sxy = Sx + Sy. As Sxy may contain elements with a value greater than
255, we need to cap each pixel value at the maximum allowed value of 255. See
Fig. 6.1 for an example of how an image and its gradient image may look like.

Quite the opposite to edge detection, a smoothing or blurring filter is used to
make edges appear less promiment. Commonly applied filters of such kind are
the 3× 3 and 25× 25 Gaussian blurring stencils:

G9 =
1
15
·

1 2 1
2 3 2
1 2 1

 G25 =
1

331


1 4 7 4 1
4 20 33 20 4
7 33 55 33 7
4 20 33 20 4
1 4 7 4 1


Write a program that applies these operators to a given image and outputs

the result for later use:
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• Write a function apply that takes an image and a filter mask as input
and returns the convolution of the two. Use either with-loops or axis-
control notation to achieve this. Take care of boundary conditions when
implementing the convolution.

• Write a function sobel that takes an image as input and applies Fx and
Fy to the image. Furthermore, add Sx and Sy with capping so that this
function returns the final result of the Sobel operation.

• Write functions gauss9 and gauss25 that take an image as input and
apply G9 and G25 to the image.

• Write a main function that reads in an image from stdin, calls sobel,
gaussBlur9 and gaussBlur25 on this image and then write the results
back to stdout.

Yoy may want to use the following skeleton for your program:

Listing 6.1: Skeleton of sobel.sac� �
1 use Structures: all;
2 use StdIO: all;
3 use Clock: {time, gettime, difftime};
4
5 /*
6 * Helper to write matrix to stdout in plain matrix format
7 * The produced output (let’s say m.dat) can be used with gnuplot like so:
8 *
9 * gnuplot> plot "m.dat" matrix with image

10 */
11 void writeMatrix( int[.,.] m)
12 {
13 for( y=0; y<shape(m)[1]; y++) {
14 for( x=0; x<shape(m)[0]; x++) {
15 printf( "%d ", m[[x,y]]);
16 }
17 printf( "\n");
18 }
19 }
20
21 /*
22 * Convolution with given mask
23 */
24 inline
25 int[.,.] apply( int[.,.] mask, int[.,.] img)
26 {
27 /* implement convolution here */
28 }
29
30 int[.,.] sobel( int[.,.] img)
31 {
32 SY = [
33 [1, 2, 1], [0, 0, 0], [-1, -2, -1]
34 ];
35 /* complete this function here */
36 }
37
38 int[.,.] gaussBlur9( int[.,.] img)
39 {
40 /* complete this function here */
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41 }
42
43 int[.,.] gaussBlur25( int[.,.] img)
44 {
45 /* complete this function here */
46 }
47
48 int[*], time timestamp( int[*] img)
49 {
50 return( img, gettime());
51 }
52
53 int main()
54 {
55 fprintf( stderr, "\nReading image in Fibre format...\n");
56 img = FibreScanIntArray( stdin);
57
58 fprintf( stderr, "\nApplying filter ...\n");
59 img, start = timestamp( img);
60 img = sobel( img);
61 img, end = timestamp( img);
62
63 /* Call the other filters here */
64
65 fprintf( stderr, "\nFinished filtering after %fs\n", difftime( end, start));
66 fprintf( stderr, "\nWriting result image ...\n");
67 writeMatrix( img);
68
69 return( 0);
70 }
� �

Compile your source code with and without the -mt option for multi-threaded
execution and experiment with various thread counts. On faster machines it
might be necessary to apply the filter multiple times (copy and paste line 50 a
couple of times) to see measurable speed-ups.

NB: The Fibre format encodes, in addition to the raw data, shape informa-
tion. By using FibreScanIntArray this program is able process 2D images of any
size and it is not fixed to statically known input sizes.
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Figure 6.1: The SaC logo before (left) and after (right) edge detection
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6.2 Lesson: Computing Mandelbrot Images

Exercise 29 This exercise is about creating a basic implementation for com-
puting mandelbrot images.

1. To get started, you may want to use the files mandelbrot start.sac and
Fractal tier1.sac which, in essence, contain the IO-code for visualis-
ing the mandelbrot pictures. A first running version can be obtained by
implementing the missing function bodies in Fractal tier1 empty.sac:

• escapeTime which implements the iteration on arrays of complex
numbers, and

• genComplexArray which computes a two-dimensional array of com-
plex numbers that represent a descritisation of C2.

2. Waiting for the final picture can be rather unpleasant if it is not clear
whether the chosen fraction of C2 yields an interesting picture and the
iteration limit is high. therefore, as a first extension, try to modify the
main function in mandelbrot start.sac so that it computes the mandel-
brot picture with increasing resolution without changing the overall size of
the picture.

Compute resolutions [5,5], [10,10], ..., [320,320] and display them
consecutively in a [320,320] display by replicating the found values ac-
cordingly.

Hint: define a function stretchRgb which takes an array of type color[.,.]
and an integer stretching factor stretch and replicates each element of
the array into a square of shape [stretch, stretch].

3. The function intArrayToMonochrome maps all escape values into a color
by means of a clut. Can you express this operation without a With-Loop?

Hint: You may find inspiration in one of the earlier tasks!

4. Try using the compiler option -mt to experiment with multi-core machines!

5. Try using the compiler option -cuda to experiment with graphics cards!

6. Try using the compiler option -b11:cyc to inspect the high-level, optimised
intermediate code.

Exercise 30 In this exercise, we improve the way the colours are chosen in
order to obtain smoother transitions. We will use a common approach referred
to as normalized iteration counts. A normalized iteration count for a point in
the complex plane z is computed by using the iteration count t and the value at
that position zt during the final iteration. Using these two values, the normalized
iteration count is defined as tn := (t + 1)− log2(log2(|zt|)) for those values that
escape and as 0 otherwise.
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1. The module Fractal tier2.sac contains stubs for the missing function-
ality required in this exercise:

• normalizedIterationCount which implements the normalisation of
iteration counts by taking the final computed value into account.
Hint: The function escapeTime only computes the number of itera-
tions before the value at a given position escapes. To normalize these,
the final value at that position is required, as well. For this, we have
provided a function escapeValue.

• doubleArrayToRGB maps the normalized iteration counts, which are
double values, to an RGB colour-triple. To derive an RGB value,
first scale all values such that they are in the interval [0:360). This
value can then be used as the hue in the HSB model.
Hint: The module Color8 defines a function Hsb2Rgb that converts
a HSB color description into its corresponding RGB representation.

Exercise 31 In this exercise, we apply the filters from the previous case study to
the mandelbrot pictures. As before, we have provided stubs for the missing func-
tionality. For this exercise these can be found in the file Stencil tier3.sac.

1. Implement the functions apply, sobelEdges, gaussBlur and gaussBlur25
as described in the previous case study.

2. The three filters described above only operate on a single channel, e.g., a
gray-scale image. To lift these to colour images, implement a correspond-
ing function for each filter that applies the filter to each colour separately.


