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This document guides you through programming with Swan.
You should have been set up with a copy of Swan on your local directory. It is available from https://github.

com/hvdieren/swan.
You will notice difference in notation between theory and practice. This is due to Swan being implemented as a library

rather than through a compiler. A detailed overview of the Swan API is provided in appendix.

1 Compiling Swan Programs
Swan contains two major parts: the scheduling library (swan/schedulers) and a directory of benchmarks (swan/benchmarks).
There are also some utils (swan/utils) and example programs used for testing (swan/tests and swan/tutorial).
When providing pathnames, we will assumes that the top-level swan directory is called swan.

First, enable a recent gcc compiler (version 4.8.2):

$ scl enable devtoolset-2 bash

To compile, step into the top-level swan directory and follow these steps (these commands are assuming a bash shell):

$ ./configure --disable-fortify-source
$ make util-dir scheduler-dir

If you type simply ’make’ you will do a lot more compilation than necessary for this tutorial.
Now you should have the scheduler library swan/schedulers/libschedulers.a and also several library files

under swan/utils.
Now go into the directory swan/tutorial and study the code in fib.cc and check what it does. Then, compile

using

$ make fib

Execute fib using all available cores with argument 32:

$ time ./fib 32

Execute fib using 1 core:

$ time NUM_THREADS=1 ./fib 32

or:

$ export NUM_THREADS=1
$ time ./fib 32

What you should see is that the parallel execution is faster than the single-core execution, although it won’t be as
much faster as the number of cores in your computer. The Fibonacci number written out should be the same regardless of
the number of threads used.

2 Pipeline Parallelism
1. In the directory swan/tutorial, review the source code in pipeline.cc.

2. Compile the program and execute it several times using 8 threads.

$ NUM_THREADS=8 ./pipeline 10
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Observe the differences in output. Does every execution produce an output that is correct given the dependences
specified in the program?

3. Now change the program at lines 70 and 71 and change the declarations of object t<...> to unversioned<...>.
Also change the call at line 79 to a spawn. Recompile and reexecute the program. Explain the impact on program
output.

3 Dataflow in Linear Algebra
The task dataflow model has received strong support because of its natural fit to linear algebra. Linear algebra operations,
such a matrix multiply, transpose and matrix factorisations, are expressed recursively as primitive operations on blocks
of the original matrices. In this instance, we will take a closer look at an implementation of LU factorization on sparse
matrices.

1. Move to the directory swan/benchmarks/sparse lu/src wfo and inspect the file sparse lu.cc. The
main algorithm is in the function LU, which takes as arguments a 2-dimensional array of points to blocks of a
matrix. NULL pointers represent missing (zero) blocks as the matrix is sparse.

2. Inspect the source code to understand the parallelism in this algorithm. Try to estimate how much parallelism is in
the code by inspecting the loop bounds.

3. Compile the code (run make) and run it with several thread counts (from 1 to the number of cores in your machine).
You may need to repeat the measurements a few times to obtain stable execution times.

4. Analyse the performance scalability of the code. How well does it scale? Did you expect this from analysing the
code?

4 Hyperqueue
Now let’s turn to an example using the hyperqueue.

1. Review the source code of swan/tutorial/hyperqueue.cc.

2. Compile the program and execute it. The program takes four parameters as follows: ./hyperqueue <n>
<producers> <consumers> <delay>, where

<n> Number of items to send through queue
<producers> Number of producer tasks
<consumers> Number of consumer tasks
<delay> Sleep time in microseconds applied for each item pushed or popped

Execute the program as follows:

$ NUM_THREADS=1 ./hyperqueue 10 1 1 0

Inspect the program output.

3. Now unset the number of threads (or set it to the maximum number of threads in your machine) and re-execute.
Explain the observed behavior.

4. Increase the number of items in the queue (first positional argument) to 100 or 1000 and re-execute. Re-execute a
few times. Explain the observed program outcome.

5. Now increase the number of producers to 10. Explain the impact on program output.

6. Now increase the number of consumers to 10. Explain the impact on program output.
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5 Programming Exercises

5.1 An Irregular Pipeline
Pipelines are often irregular, which can pose difficulties and/or inefficiencies for programming models. In this exercise,
you will create a pipeline parallel program where a pipeline stage is skipped from time to time.

1. Copy the file swan/tutorial/pipeline.cc to swan/tutorial/irpipeline.cc and add the target
irpipeline to the variable EXAMPLES in swan/tutorial/Makefile.

2. Add a pipeline stage B2 to the program that takes a single argument with in/out side effect and multiplies that value
by -1. Stage B2 is executed between stages B and C and is passed in the object obj bc. However, B2 is executed
only if the loop counter i is even.

Edit the code as requested, compile and execute. Check that the output is correct.

5.2 Matrix Multiply
Study the matrix multiply code in swan/tutorial/matmul.cc. Again, data is laid out in blocked format. For your
convenience, initialization and correctness checking code has been parallelized.

1. Parallelize the function multiply matrix by adding task side effect annotations to the calls to the function
mult add block and turning these calls into spawn statements. Don’t forget to insert a sync statement and to
call multiply matrix using run.

Compile the code and execute it on one thread and on multiple threads. Is the code correct? Does performance
scale?

2. Parallelize again the function multiply matrix without using side effect annotations but using only the Cilk-
style spawn and sync statements.1

Compile the code and execute it on one thread and on multiple threads. Is the code correct? How does performance
compare against the task dataflow version?

1It is understood that proper Cilk methodology requires you to recursively decompose the iteration space into smaller pieces as this increases the
efficiency of the scheduler. We will leave that as homework.
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A Appendix: Swan API
Swan is currently implemented as a C++11 library. As such, the syntax used in practice deviates slightly from the desired
syntax. The section shows the details.

A.1 Variable Annotation
Variables on which dependence tracking is to be performed must be annotated at declaration time. There are two annota-
tions: object t (the equivalent of the term versioned used in publications and presentations) and unversioned.
The difference between the two is that renaming may be applied to a object t but not to an unversioned variable.

The annotations are applied as C++ templates to the intended variable type:

template<typename T>
class object_t;

template<typename T>
class unversioned;

Example:

unversioned<int> i; // an integer variable with dataflow support
object_t<double> d; // a double variable with dataflow support
object_t<std::string> s; // a string object with dataflow support
object_t<float[]> array( 128 ); // an 128-element array of floats

In each case, dataflow dependences are tracked on the object as a whole. E.g., for the array of float, tasks are
assumed to touch the whole array or none of it.

Hyperqueues are declared with type hyperqueue:

hyperqueue<int> queue; // a queue of integers

A.2 Argument Annotation Types
Variables of type object t, unversioned and hyperqueue should never be passed to function arguments. The
spawn, call and leaf call functions explicitly forbid this. These variables should be cast to one of the argument
annotation types (a.k.a. dependence types) listed below.

Applicable to object t<T> and unversioned<T>
indep<T> The task will access argument in read-only manner
outdep<T> The task will over-write every single element of the argument. After writing an ele-

ment, it may also read that element.
inoutdep<T> The task may read and write individual elements of the argument, or the argument as

a whole.
cinoutdep<T> The task may read and write the argument as with inoutdep<T>. Moreover, this

task may be reordered relative to other tasks applied to the same argument with the
same annotation, relative to dependence constraints introduced by other task argu-
ments. This annotation guarantees mutually exclusive access to the argument.

reduction<M> The task will apply a reduction operation that is both commutative and distributive.
The type <M> is struct that defines a base type, an initialisation function and the binary
reduction operation.

Applicable to hyperqueue<T>
pushdep The task may push on the hyperqueue.
popdep The task may pop from the hyperqueue.

Note that all these variable and dependence types live in the namespace obj.

A.3 Statements
The key statements in Swan are run, spawn, call, leaf call and sync.
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A.4 run
run starts a parallel region. Due to absence of a compiler at the moment, it is not practical to implement paral-
lel/serial reciprocity, i.e., the ability to arbitrarily nest parallel and serial code regions. run enters a parallel region
while leaf call leaves the parallel region. Upon exit form a parallel region using leaf call, it is not possible to
re-enter a parallel region in Swan.

A.4.1 Format

template<typename TR, typename... Tn>
TR run( TR (*func)( Tn... ), Tn... args );

A.5 spawn
A spawn statement indicates that the spawned function may execute in parallel with the calling function given that the se-
mantics of dataflow dependences and sync statements are respected. Spawned functions can take any of the dependence
types as argument.

Spawned functions with a non-void return value require that a memory location is identified where the return value of
the function can be stored. The memory location must remain alive until the next sync statement is encountered. Such a
memory location is declared using the chandle type.

Here is an example:

int fib( int n ) {
if( n < 2 )

return n;
else {

chandle<int> x;
spawn( fib, x, n-1 );
int y = call( fib, n-2 );
ssync();
return x + y;

}
}

A.5.1 Format

template<typename TR, typename... Tn>
typename std::enable_if<std::is_void<TR>::value>::type
spawn( TR (*func)( Tn... ), chandle<TR> & ch, Tn... args );

template<typename TR, typename... Tn>
typename std::enable_if<std::is_void<TR>::value>::type
spawn( TR (*func)( Tn... ), Tn... args );

template<typename TR, typename... Tn>
typename std::enable_if<!std::is_void<TR>::value>::type
spawn( TR (*func)( Tn... ), chandle<TR> & ch, Tn... args );

A.6 call
call explicitly labels function calls. The requirement for this is an artefact of the implementation of Swan as a library.
Swan internally allocates stack frames and links them in a cactus stack. Every segment of the cactus stack should be large
enough to hold the stack data for a number of function calls. However, now and then it is necessary or useful to explicitly
reserve more stack space, which can be done by annotating a normal function call with call.

Note that call statements accept only arguments with outdep and pushdep annotations. The reason hereto is that
a call must always be able to execute immediately (called function is not suspended). The argument annotations that allow
this are outdep (due to renaming) and pushdep (due to allocating a fresh queue segment). Using call statements
with annotations is useful a.o. for writing pipeline parallel code.

A.6.1 Format

template<typename TR, typename... Tn>
TR call( TR (*func)( Tn... ), Tn... args );
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A.7 leaf call
leaf call enters serial code execution. Again due to the internal stack management of the library implementation of
Swan, it is prudent to annotate library functions such as printf with leaf call.

A.7.1 Format

template<typename TR, typename... Tn>
TR leaf_call( TR (*func)( Tn... ), Tn... args );

A.8 sync
The sync statement is represented by the function ssync. The name is ssync rather sync to avoid clashes with the
sync system function.

A.8.1 Format

void ssync();

A.9 Argument Passing
Yet another side effect of implementing Swan as a library are some restrictions on argument passing. Swan implements
most of the x86-64 calling conventions within run, call, spawn and leaf call. It accepts all scalar types as
arguments, pointer types and the Swan-specific argument annotation types. It does not accept reference types and has
limited support for class types.

For class types, only types without non-trivial copy constructors and without non-trivial destructors are supported,
i.e., the copy constructor and the destructor must be the implicitly-declared default function and it should not have virtual
functions or virtual base classes. Arguments of such class types are passed by invisible reference at the assembly level,
which is not supported by Swan. More details on these class types are in the x86-64 ABI specification.

It is possible to pass arguments with class types with trivial copy constructors and trivial destructors by value in Swan.
Hereto, it is necessary to declare the non-static data members of the class type. For example:

struct struct_type {
int x, y;
char * p, * q;
unsigned char * u;
static int s; // not passed by argument

};
namespace platform_x86_64 {

template<size_t ireg, size_t freg, size_t loff>
struct arg_passing<ireg, freg, loff, struct_type>

: arg_passing_struct5<ireg, freg, loff, struct_type,
int, int, char *, char *, unsigned char *> {

// empty
};

}

void f( struct_type s );
struct_type s;
spawn( f, s ); // works

Note that declaring the data members is rarely required. In any case, it is possible to pass arguments of class type by
pointer.
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