
Propositions as Sessions

Austeja Elvina Brasiunaite
Sam Lindley

J. Garrett Morris
Philip Wadler

University of Edinburgh

AIPL, Heriot Watt
Tuesday 19 August 2014

1

Kohei Honda, 1959–2012

2

EPSRC Programme Grant EP/K034413/1
From Data Types to Session Types:

A Basis for Concurrency and Distribution (ABCD)
Simon Gay, Nobuko Yoshida, Philip Wadler

3

4

Propositions as Types

propositions as types
proofs as programs

normalisation of proofs as evaluation of programs

5

Propositions as Types is robust

propositions as types
proofs as programs

normalisation of proofs as evaluation of programs

Intuitionistic Natural Deduction ↔ Simply-Typed Lambda Calculus

Quantification over propositions ↔ Polymorphism

Quantification over individuals ↔ Dependent types

Modal Logic ↔ Monads (state, exceptions)

Classical-Intuitionistic Embedding ↔ Continuation Passing Style

6

. . . but there’s a missing link

propositions as types
proofs as programs

normalisation of proofs as evaluation of programs

Intuitionistic Natural Deduction ↔ Simply-Typed Lambda Calculus

Quantification over propositions ↔ Polymorphism

Quantification over individuals ↔ Dependent types

Modal Logic ↔ Monads (state, exceptions)

Classical-Intuitionistic Embedding ↔ Continuation Passing Style

??? ↔ Process Calculus

7

Propositions as Sessions

propositions as types
proofs as programs

normalisation of proofs as evaluation of programs

propositions as session types
proofs as processes

cut elimination as communication

8

Lines of development

Girard, 1987

�
�
�	

@
@
@R

Abramsky, 1994 Honda, 1993

? ?

Bellin and Scott, 1994 Honda, Vasconcelos, and Kubo, 1998

?
�
�	 ?

Caires and Pfenning, 2010 Gay and Vasconcelos, 2010

@
@
@R

�
�

�	

this paper

9

ILL vs. CLL

• Caires and Pfenning, 2010: Intuitionistic Linear Logic

Γ; ∆ ` P :: y : A Γ; ∆′ ` Q :: x : B

Γ; ∆, ∆′ ` νy. x〈y〉.(P | Q) :: x : A⊗B
⊗-R

Γ; ∆ ` P :: y : A Γ; ∆′, x : B ` Q :: z : C

Γ; ∆, ∆′, x : A (B ` νy.x〈y〉.(P | Q) :: z : C
(-L

Γ; ∆, y : A ` R :: x : B

Γ; ∆ ` x(y).R :: x : A (B
(-R

Γ; ∆, y : A, x : B ` R :: z : C

Γ; ∆, x : A⊗B ` x(y).R :: z : C
⊗-L

• this paper: Classical Linear Logic

P ` Γ, y : A Q ` ∆, x : B

x[y].(P | Q) ` Γ, ∆, x : A⊗B
⊗

R ` Θ, y : A, x : B

x(y).R ` Θ, x : AOB
O

10

Part I

CP
Classical Processes

Caires-Pfenning

11

Part II

GV
Good Variation

Gay-Vasconcelos

12

Part III

Demo

13

Session Types

S ::=

!T .S output value of type T then behave as S

?T .S input value of type T then behave as S

⊕{li : Si}i∈I select from behaviours Si with label li

N{li : Si}i∈I offer choice of behaviours Si with label li

end! terminator, convenient for use with output

end? terminator, convenient for use with input

Each session S has a dual S:

!T .S = ?T .S ?T.S. = !T .S

⊕(li : Si)i∈I = N(li : Si)i∈I N(li : Si)i∈I = ⊕(li : Si)i∈I

end! = end? end? = end!

14

Types

T, U, V ::=

S session (linear)

T ⊗ U tensor product (linear)

T (U function (linear)

T → U function (unlimited)

Unit unit (unlimited)

Each type is classified as linear or unlimited:

lin(S) lin(T ⊗ U) lin(T (U)

un(T → U) un(Unit)

15

Part IV

Conclusions

16

17

