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Propositions as Types

propositions as types
proofs as programs

normalisation of proofs as evaluation of programs
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Propositions as Types is robust

propositions as types
proofs as programs

normalisation of proofs as evaluation of programs

Intuitionistic Natural Deduction ↔ Simply-Typed Lambda Calculus

Quantification over propositions ↔ Polymorphism

Quantification over individuals ↔ Dependent types

Modal Logic ↔ Monads (state, exceptions)

Classical-Intuitionistic Embedding ↔ Continuation Passing Style
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. . . but there’s a missing link

propositions as types
proofs as programs

normalisation of proofs as evaluation of programs

Intuitionistic Natural Deduction ↔ Simply-Typed Lambda Calculus

Quantification over propositions ↔ Polymorphism

Quantification over individuals ↔ Dependent types

Modal Logic ↔ Monads (state, exceptions)

Classical-Intuitionistic Embedding ↔ Continuation Passing Style

??? ↔ Process Calculus
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Propositions as Sessions

propositions as types
proofs as programs

normalisation of proofs as evaluation of programs

propositions as session types
proofs as processes

cut elimination as communication
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ILL vs. CLL

• Caires and Pfenning, 2010: Intuitionistic Linear Logic

Γ; ∆ ` P :: y : A Γ; ∆′ ` Q :: x : B

Γ; ∆, ∆′ ` νy. x〈y〉.(P | Q) :: x : A⊗B
⊗-R

Γ; ∆ ` P :: y : A Γ; ∆′, x : B ` Q :: z : C

Γ; ∆, ∆′, x : A ( B ` νy.x〈y〉.(P | Q) :: z : C
(-L

Γ; ∆, y : A ` R :: x : B

Γ; ∆ ` x(y).R :: x : A ( B
(-R

Γ; ∆, y : A, x : B ` R :: z : C

Γ; ∆, x : A⊗B ` x(y).R :: z : C
⊗-L

• this paper: Classical Linear Logic

P ` Γ, y : A Q ` ∆, x : B

x[y].(P | Q) ` Γ, ∆, x : A⊗B
⊗

R ` Θ, y : A, x : B

x(y).R ` Θ, x : AOB
O
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Part I

CP
Classical Processes

Caires-Pfenning
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Part II

GV
Good Variation

Gay-Vasconcelos
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Part III

Demo
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Session Types

S ::=

!T .S output value of type T then behave as S

?T .S input value of type T then behave as S

⊕{li : Si}i∈I select from behaviours Si with label li

N{li : Si}i∈I offer choice of behaviours Si with label li

end! terminator, convenient for use with output

end? terminator, convenient for use with input

Each session S has a dual S:

!T .S = ?T .S ?T.S. = !T .S

⊕(li : Si)i∈I = N(li : Si)i∈I N(li : Si)i∈I = ⊕(li : Si)i∈I

end! = end? end? = end!
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Types

T, U, V ::=

S session (linear)

T ⊗ U tensor product (linear)

T ( U function (linear)

T → U function (unlimited)

Unit unit (unlimited)

Each type is classified as linear or unlimited:

lin(S) lin(T ⊗ U) lin(T ( U)

un(T → U) un(Unit)
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Part IV

Conclusions
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