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Outline of talk

- HPC, parallel architectures & the motivation behind PGAS
* The PGAS programming model
* Introduction to UPC

» basic concept
» data distribution & blocking factors
» synchronisation & work sharing

» pointers, dynamic memory allocation & collectives
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Background
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What is HPC?

- High performance computing = parallel computing
» distributing computation over many CPUs

« Performance is the key
» aim is to make codes run faster!

» not to possible to simply use faster CPUs (heat, power, physical
limitations)
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What is HPC?

« Maximise parallel speed-up S(P) on P processors

T
s(py = T
T(P)
= parallel algorithms to solve science

= parallel codes that implement algorithms

= parallel machines to run codes
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- Shared memory

» each processor has access to a global memory store

» communications via memory reads/writes

P

Parallel architectures
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Parallel architectures

* Distributed memory

» each processor has its own memory and runs a copy of the OS

» communication via the interconnect
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Parallel architectures

* Distributed memory

» each processor has its own memory and runs a copy of the OS

..............................................................................
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Parallel programming paradigms

« Data parallelism
» divide data into subsets, process all subsets in the same way
+ Task parallelism

» divide problem into independent tasks and process tasks in parallel

= divide a large problem up into smaller problems!
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Challenges facing HPC going forward

« Systems have many tens of thousands of cores
» will go up to millions before end of decade
- Programmability of heterogeneous systems

- Power/energy usage

* We need
» better algorithms
» software designed to take advantage of architecture

» improved parallel programming models
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New programming model - why?

 Parallel programming is hard because mainstream languages were designed
for serial programming

« No support for parallelism in the languages - specialist libraries are required

+ High level of complexity does not encourage well written and properly
designed software...

= MPI (Message Passing Interface) library and OpenMP API are currently the
most widely used approaches in parallel applications

= Accelerators have added CUDA and OpenACC to the mix
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PGAS

- Partitioned Global Address Space

» logically partitioned

» local portions for each process address

/ space
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PGAS vs MPI

multi-threaded control

global name space

single-sided communication

explicit parallel syntax

multi-threaded control

private name space

mostly two-sided communication

explicit communication
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PGAS languages

language

extensions P /

Chapel

Fortress

new language /

developments
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Basic concepts of UPC
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UPC

« Unified Parallel C

« Parallel extension to ISO C99

» with global shared address space

» and explicit parallelism & synchronisation

« Both commercial and open-source compilers available

» LNBL & UC Berkley: http://upc.lbl.gov

» GNU UPC: http://www.gccupc.org
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http://upc.lbl.gov
http://www.gccupc.org

UPC and the world of PGAS

* PGAS is a programming model
- UPC is only one implementation of the model
» there are many other implementations

» all implementations are different, but fundamental concept remains the
same!
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Private vs shared data

- concept of two memory spaces: private and shared

- private variables are declared as normal C variables

» multiple instances will exist

(:int x; // private variable :)

- shared variables are declared with shared qualifier

» only allocated once, accessible by all threads

(:shared int y; // shared variable :)
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The UPC model

global partitioned

thread O thread 1 thread 2 thread 3 / address space
¢ : : :

private ‘—( 5

cpu % cpu % cpu % cpu %
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The UPC model

global partitioned

thread O thread 1 thread 2 thread 3 / address space
4 i : :

shared <=+  COOTI T T
== - e = = = B L - = =
private (—( ; 5 ; 5

cpu % cpu % cpu % cpu %
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The UPC model

global partitioned

thread O thread 1 thread 2 thread 3 - address space
4 : ' :
shared ‘.J. mm
O O ' o O
I oo oo [IT]
private ‘—( 4 5 A 5 A 5 A 5

cpu % cpu % cpu % cpu %
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The UPC model

global partitioned

thread O thread 1 thread 2 thread 3 / address space

[ . 1
shared <=+ SRR :
0 o f ?
: oo [T
private ‘—( - 5 4 5 5
/ ~|

cpu % cpu % cpu % cpu %
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UPC basics

- UPC threads operate independently in SPMD fashion

- Two variables for querying environment:

» THREADS: holds total number of threads

» MYTHREAD: stores thread index (runs from 0 to THREADS-1)

\_

#include <upc.h>
#include <stdio.h>

void main() {
printf(“Thread %d of %d says: Hello!”, MYTHREAD, THREADS);

}
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Distributing data
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Data distribution

- if a shared variable is scalar, space is allocated on thread 0 only

int x;
shared int y;

thread O thread 1 thread 2 thread 3

private
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Data distribution

- if a shared variable is an array, space is by default allocated across shared
memory space in cyclic fashion

int x;
shared int y[8];

thread O thread 1 thread 2 thread 3

private

............................................................
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Data distribution

- if the number of elements in the shared array does not divide by the number
of threads, the distribution will be uneven

[:int X;

shared int y[9];

thread O

thread

thread 2

thread 3

...............

...............

private

44— memory

space
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Data distribution

int X5
shared

thread O

thread

thread 2

—p shared [blocksize]

thread 3

...............

...............

- change the default data layout by adding a “blocking factor” to shared arrays

int y[8];:}

private
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2D array decompostion

[shar'ed [8] int a[8][8];j

cpcc

example on 4 threads



2D array decompostion

[shar'ed [6] int a[8][8];j
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example on 4 threads



2D array decompostion

[shar'ed [6] int a[8][8];j

important to think about
how blocking factor can
Impact data layout!
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Slocking factor

« should be used if default distribution is not suitable
* four different cases:

» shared [n]: defines a block size of n elements
» shared [@]: all elements are given affinity to thread 0
» shared [*]: when possible, data is stored in contiguous blocks

» shared [ ]: equivalent to shared [0]
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Static vs dynamic compilation

- number of UPC threads can be specified at compile time (static) or at runtime
(dynamic)

- Advantages

» dynamic: program can be executed using any number of threads

» static: easier to distribute data based on THREADS

» Disadvantages

» dynamic: not always possible to achieve best possible distribution

» static: program needs to be executed with number of threads specified at
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Static vs dynamic compilation

“An array declaration is illegal if THREADS is specified at runtime and the
number of elements to allocate at each thread depends on THREADS.”

shared int x[4*THREADS];

shared[] int x[8];

shared int x[8];
shared[] int Xx[THREADS];

shared int x[10+THREADS];
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Static vs dynamic compilation

“An array declaration is illegal if THREADS is specified at runtime and the
number of elements to allocate at each thread depends on THREADS.”

(sh—ar‘ed int x[4*TAﬂHREADS] ;
- shared[] int x[8];

‘—} legal for static and dynamic environment

shared int x[8];
shared[] int Xx[THREADS];

shared int x[10+THREADS];
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Static vs dynamic compilation

“An array declaration is illegal if THREADS is specified at runtime and the
number of elements to allocate at each thread depends on THREADS.”

(sh-ar‘ed int x[4*TﬁHREADS] ;
- shared[] int x[8];

‘—) legal for static and dynamic environment

"shared int x[Sj;

shared[] int x[THREADS]; | ——» illegal for dynamic environment

|

shared int x[10+THREADS];
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Distributing work
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—xample: vector addition (1/3)

- three vectors with default distribution - modulo operation identifies which
thread will execute the body of the loop

r

#include <upc.h>
#define N 100*THREADS

shared int v1[N], v2[N], vliplusv2[N];

void main() {
int 1i;

for(i=0; i<N; i++)
if (MYTHREAD == i%THREADS)
vliplusv2[i] = vi1[i] + v2[i];
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—xample: vector addition (1/3)

- three vectors with default distribution - modulo operation identifies which
thread will execute the body of the loop

a )

#include <upc.h>
#define N 100*THREADS

shared int v1[N], v2[N], vliplusv2[N];

void main() {

int i; e 1 .
’ . if distribution changes, this code
for(i=0; i<N; i++) . will fail to identify local elements -
if (MYTHREAD == i%THREADS) /= . however it will still produce the
viplusv2[i] = vi[i] + v2[i]; correct result!
} ettt ettt et e e eoeoononAAassseeeeeeeeeeeeeeeeemmooonnssssssesseseeeeeeeeeeeeemmmmmnnt
- Y
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—xample: vector addition (2/3)

- alternative implementation would iterate in steps of THREADS and eliminate
the need for the modulo operation

a )

#include <upc.h>
#define N 100*THREADS

shared int v1[N], v2[N], viplusv2[N];

void main() {
int i;

for (i=MYTHREAD; i<N; i+=THREADS)
vlplusv2[i] = v1[i] + v2[i];
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—xample: vector addition (2/3)

- alternative implementation would iterate in steps of THREADS and eliminate
the need for the modulo operation

(" )

#include <upc.h>
#define N 100*THREADS

shared int v1[N], v2[N], viplusv2[N];

void main() {

Sl s . if distribution changes, this code
. will fail to identify local elements -
for (i=MYTHREAD; i<N; i+=THREADS) . however it will still produce the
vlplusv2[i] = v1[i] + vZ[1]; : correct result!
y o
\_ J
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Work sharing with upc_forall

« work distribution, assigns tasks to threads

 4th parameter defines affinity to thread

[upc_for‘all (expression; expression; expression; affinity) j

« Condition: iterations of upc_forall must be independent!
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Work sharing with upc_forall

if integer expression:
 work distribution, assigns tasks to threads |{
\. affinity%THREADS == MYTHREAD

 4th parameter defines affinity to thread

[upc_for‘all (expression; expression; expression; affinity) j

« Condition: iterations of upc_forall must be independent!
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Work sharing with upc_forall

S

~_

if “pointer to shared”:
if integer expression:

\_ object pointed to has affinity to MYTHREAD
~ , \_ affinity%THREADS == MYTHREAD _

7, _

* 4th paramétedi éﬁinity

[upc_for‘all (expression; expression; expression; aFFinity) j

« Condition: iterations of upc_forall must be independent!
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—xample: vector addition (3/3)

- implementation using upc_forall, taking advantage of the affinity parameter

#include <upc.h>
#define N 100*THREADS

shared int v1[N], v2[N], viplusv2[N];

void main() {
int i;

upc_forall(i=0; i<N; i++; 1i)
vlplusv2[i] = v1[i] + v2[i];
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—xample: vector addition (3/3)

- implementation using upc_forall, taking advantage of the affinity parameter

e )
#include <upc.h>
#define N 100*THREADS
shared int v1[N], v2[N], viplusv2[N];
void main() {
int 1;
: : : : “I” Is short for
upc_forall(i=0; i<N; i++; i) i%THREADS=MYTHREAD
viplusv2[i] = VI[i] + V2[1]; = @ e
}
< _J
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Implications of data & work distribution
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Side-effects of shared data

Holding data in shared memory space has implications

1. the lifetime of the shared data needs to extend beyond the scope in which it
was defined

» storage duration
2. the shared data needs to be kept up-to-date

» synchronisation
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Storage duration of shared objects

Shared objects cannot have automatic storage duration

» any variable inside a function!

Why?

» SPMD model means a shared variable may be accessed outside the
lifetime of the function!

~ = = = ————
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Synchronisation

- SPMD model means threads operate independently
« Synchronisation vital to ensure all threads reach same point in execution
» necessary for memory and data consistency

» only read data that is up-to-date, only overwrite data that is no longer
needed

« UPC uses barriers for synchronisation

» most commonly used: upc_barrier
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—xample: maximum of an array

f #define max(a,b) (((a)>(b)) ? (a) : (b))

shared int maximum[ THREADS];
shared int globalMax = 0;
shared int a[ THREADS*10];

void main(int argc, char **argv) {
.. // initialise array a

upc_barrier;

upc_forall(int i=0; i<THREADS*10; i++; 1){
maximum[MYTHREAD] = max(maximum[MYTHREAD], a[i]);

}

upc_barrier;
if (MYTHREAD == @){
for (int thread=0; thread<THREADS; thread++){
globalMax = max(globalMax,maximum[thread]);
}
}

upc_barrier;
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—xample: maximum of an array

" udefine max(a,b) (((a)>(b)) ? (a) : (b)) R

.............................................................................................

shared int maximum[THREADS]; ‘here: shared variables have file scope!
shared int globalMax = 0;
shared int a[ THREADS*10];

void main(int argc, char **argv) {
.. // initialise array a

upc_barrier;

upc_forall(int i=0; i<THREADS*10; i++; 1){
maximum[MYTHREAD] = max(maximum[MYTHREAD], a[i]);

}

upc_barrier;
if (MYTHREAD == @){
for (int thread=0; thread<THREADS; thread++){
globalMax = max(globalMax,maximum[thread]);
}
}

upc_barrier;
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—xample: maximum of an array

" udefine max(a,b) (((a)>(b)) ? (a) : (b)) R

.............................................................................................

shared int maximum[THREADS]; ‘here: shared variables have file scope!
shared int globalMax = 0;
shared int a[ THREADS*10];

void main(int argc, char **argv) {
.. // initialise array a

upc_barrier;
upc_forall(int i=0; i<THREADS*10; i++; 1){
maximum[MYTHREAD] = max(maximum[MYTHREAD], a[i]);

upc_barrier; ‘ensure all threads found local maximum

if (MYTHREAD == 0){ e
for (int thread=0; thread<THREADS; thread++){

globalMax = max(globalMax,maximum[thread]);

}

}

upc_barrier;

}
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—xample: maximum of an array

f #define max(a,b) (((a)>(b)) ? (a) : (b))

.............................................................................................

shared int maximum[THREADS]; ‘here: shared variables have file scope!
shared int globalMax = 0;
shared int a[ THREADS*10];

void main(int argc, char **argv) {
.. // initialise array a

upc_barrier;
upc_forall(int i=0; i<THREADS*10; i++; 1){
maximum[MYTHREAD] = max(maximum[MYTHREAD], a[i]);

upc_barrier; -ensure all threads found local maximum

if (MYTHREAD == 0){ e
for (int thread=0; thread<THREADS; thread++){

globalMax = max(globalMax,maximum[thread]);

}

+

upc_barrier;

} Emake sure globalMax is found before being used!i




Working sharing & performance

- perform as much computation as possible on local data

» remote memory operations are expensive!

#include <upc.h>
shared int a[THREADS][THREADS];
shared int b[THREADS], c[THREADS];

void main (void)

{

int i, j;

upc_forall( i = @ ; i < THREADS ; i++; &c[1i]) {
c[i] = o;
for ( j= @ ; j < THREADS ; j++)
c[i] += a[i][j]1*b[]];
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Working sharing & performance

- perform as much computation as possible on local data

» remote memory operations are expensive!

a4 )
#include <upc.h>
shared int a[THREADS][THREADS];
shared int b[THREADS], c[THREADS];

void main (void)

{

int i, j;

upc_forall( i = @ ; i < THREADS ; i++; &c[1i]) {
c[i] = 6;
for ( j= @ ; j < THREADS ; j++)
c[i] += a[1][J]*b[]];
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Working sharing & performance

- perform as much computation as possible on local data

» remote memory operations are expensive!

#include <upc.h>
shared [THREADS] int a[ THREADS][THREADS];
shared int b[THREADS], c[THREADS];

void main (void)

{

int i, j;

upc_forall( i = @ ; i < THREADS ; i++; &c[1i]) {
c[i] = o;
for ( j= @ ; j < THREADS ; j++)
c[i] += a[i][j]1*b[]];
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Working sharing & performance

- perform as much computation as possible on local data

» remote memory operations are expensive!

.........................................................................................

~ ‘ensure matrix A is distributed by row ™
#include <upc.h> e
shared”| THREADS] »int a[ THREADS][THREADS];
shared int B[ THREADS], c[THREADS];
void main (void)
{
int i, j;
upc_forall( i = @ ; i < THREADS ; i++; &c[1i]) {
c[i] = ©;
for ( j= @ ; j < THREADS ; j++)
c[i] += a[1][J]*b[]];
}
}
\
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Working sharing & performance

- perform as much computation as possible on local data

» remote memory operations are expensive!

.........................................................................................

~ ‘ensure matrix A is distributed by row
#include <upc.h> T
shared”| THREADS] »int a[ THREADS][THREADS];
shared int B[ THREADS], c[THREADS];
void main (void)
{
int i, j;
upc_forall( i = @ ; i < THREADS ; i++; &c[1i]) {
c[i] = ©;
for ( j= @ ; j < THREADS ; j++)
c[i] += a[1][J]*b[]];
}
}
\
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Advanced concepts
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UPC pointers

1. private to private int *p1l;
2. private to shared shared int *p2;
3. shared to private int *shared p3;

4. shared to shared shared int *shared p4;
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UPC pointers

1. private to private int *p1l;
2. private to shared shared int *p2;
3. shared to private int *shared p3;

4. shared to shared shared int *shared p4;

§—— shared

€ private

cpcc




U

PC pointers

1. private to private

2. private to shared

3. shared to private

4. shared to shared

int *pl1; ) AZTEEE TR
shared int *p2;
int *shared p3;

shared int *shared p4;

€— shared

€ private

cpcc



UPC pointers

1. private to private
2. private to shared
3. shared to private

4. shared to shared

int *pil;

shared int

*p2;

int *shared p3;

private pointer into the
- shared memory space !

shared int *shared p4;

pal

€— shared

LN
/
p2

"N

N

€ private
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UPC pointers

1. private to private int *p1l;

2. private to shared shared int *p2;

. shared pointer into the private
. memory space - not recommended!

4. shared to shared shared int *shared p4;

/‘k\\‘ §—— shared

€ private

cpcc

3. shared to private( int *shared p3;




UPC pointers

1. private to private int *p1l;
2. private to shared shared int *p2;

3. shared to private int *shared p3;

4. shared to shared( shared int *shared p4; shared pointer into the
shared memory space '

> 04 €— shared

€ private

cpcc




UPC pointers

- pointers in UPC have 3 fields

» thread: the thread affinity of the pointer
» address: the local address of the block

» phase: the location of the element with a block

- it is allowed to cast a shared pointer to private (although there will be some
loss of thread and phase information), but a cast the other way round would
produce unknown results and is therefore not allowed
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Dynamic memory allocation

* in private memory space, usual C functions apply
- in shared space, UPC offers three different functions

» upc_alloc: allocate local shared spaces
» upc_global alloc: allocate multiple global spaces
» upc_all alloc: allocate a global shared memory space collectively

« upc_free used to deallocate shared memory
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UPC collectives

requires upc_collective.h header file

Implemented by most compilers, but performance not necessarily optimised

two types of collectives

» relocalisation: upc_all broadcast, upc_all scatter, upc_all gather, ...

» computational: upc_all reduceT, upc_all sort, ...

calls to these functions must be performed by all threads
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Sroadcast

/f#include <upc_collective.h> R
shared [] int A[2];
shared [2] int B[N][2];

\kupc_all_broadcast(B, A, 2*sizeof(int), UPC_IN ALLSYNC | UPC_OUT_ALLSYNC); )

thread O A |A

thread 1

thread 2

thread N
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Sroadcast

(f#include <upc_collective.h> R

shared [] int A[2];
shared [2] int B[N][2];

\kupc_all_broadcast(B, A, 2*sizeof(int), UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC); )

thread O A |A A |A A |A

thread 1 A |A

thread 2 :D A |A

thread N A |A

cpcc



Summary
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PGAS programming model - why?

* global view paradigm

« explicit support for parallelism

- compiler can help programmer with performance, scalability, programmability
» we are still far from this goal

» potential reduction in memory footprint = reduction in energy consumption

cpcc



References & further reading

- UPC Language Specification (Version 1.2) on the Berkley Unified Parallel C
project homepage:

http://upc.gwu.edu/docs/upc specs 1.2.pdf

- GNU Unified Parallel C toolset: http://www.gccupc.org

- Tarek ElI-Ghazawi et al. “UPC.: Distributed Shared Memory Programming”.
Available through the Wiley Online Library.

* Yili Zheng, Costin lancu, Paul Hargrove, Seung-Jai Min, Katherine Yelick.
“Extending Unified Parallel C for GPU Computing”. SIAM Conference on

Parallel Processing for Scientific Computing.
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