The PGAS model &
INntroduction to UPC

Dr Michele Weiland
Project Manager, EPCC
The University of Edinburgh

cpcc

Outline of talk

- HPC, parallel architectures & the motivation behind PGAS
* The PGAS programming model
* Introduction to UPC

» basic concept
» data distribution & blocking factors
» synchronisation & work sharing

» pointers, dynamic memory allocation & collectives

cpcc

Background

cpcc

What is HPC?

- High performance computing = parallel computing
» distributing computation over many CPUs

« Performance is the key
» aim is to make codes run faster!

» not to possible to simply use faster CPUs (heat, power, physical
limitations)

cpcc

What is HPC?

« Maximise parallel speed-up S(P) on P processors

T
s(py = T
T(P)
= parallel algorithms to solve science

= parallel codes that implement algorithms

= parallel machines to run codes

cpcc

- Shared memory

» each processor has access to a global memory store

» communications via memory reads/writes

P

Parallel architectures

I

P

|

F)

I

P

I

BUS

<

memory j

cpcc

Parallel architectures

* Distributed memory

» each processor has its own memory and runs a copy of the OS

» communication via the interconnect

P

M

cpcc

Parallel architectures

* Distributed memory

» each processor has its own memory and runs a copy of the OS

..

. Inrecent years, these single
i processors have become multi- ;

» communication via the interconnect . .
ﬂ core chips or heterogeneous

e R nodes with accelerators |

= S ——— _
=

R
N\

\.

)

{_Interconnect

/| P|M

Pm) LB epcc|

Parallel programming paradigms

« Data parallelism
» divide data into subsets, process all subsets in the same way
+ Task parallelism

» divide problem into independent tasks and process tasks in parallel

= divide a large problem up into smaller problems!

cpcc

Challenges facing HPC going forward

« Systems have many tens of thousands of cores
» will go up to millions before end of decade
- Programmability of heterogeneous systems

- Power/energy usage

* We need
» better algorithms
» software designed to take advantage of architecture

» improved parallel programming models

cpcc

New programming model - why?

 Parallel programming is hard because mainstream languages were designed
for serial programming

« No support for parallelism in the languages - specialist libraries are required

+ High level of complexity does not encourage well written and properly
designed software...

= MPI (Message Passing Interface) library and OpenMP API are currently the
most widely used approaches in parallel applications

= Accelerators have added CUDA and OpenACC to the mix

cpcc

PGAS

- Partitioned Global Address Space

» logically partitioned

» local portions for each process address

/ space

cpcc

PGAS vs MPI

multi-threaded control

global name space

single-sided communication

explicit parallel syntax

multi-threaded control

private name space

mostly two-sided communication

explicit communication

cpcc

PGAS languages

language

extensions P /

Chapel

Fortress

new language /

developments

cpcc

Basic concepts of UPC

cpcc

UPC

« Unified Parallel C

« Parallel extension to ISO C99

» with global shared address space

» and explicit parallelism & synchronisation

« Both commercial and open-source compilers available

» LNBL & UC Berkley: http://upc.lbl.gov

» GNU UPC: http://www.gccupc.org

cpcc

http://upc.lbl.gov
http://www.gccupc.org

UPC and the world of PGAS

* PGAS is a programming model
- UPC is only one implementation of the model
» there are many other implementations

» all implementations are different, but fundamental concept remains the
same!

cpcc

Private vs shared data

- concept of two memory spaces: private and shared

- private variables are declared as normal C variables

» multiple instances will exist

(:int x; // private variable :)

- shared variables are declared with shared qualifier

» only allocated once, accessible by all threads

(:shared int y; // shared variable :)

cpcc

The U

thread O

PC model

thread 1

thread 2

thread 3

-

\

cpu %

cpu %

cpu %

cpu %

cpcc

The U

PC model

thread O

thread 1

thread 2

-

global partitioned

thread 3 / address space

cpu %

cpu %

cpu %

cpu %

cpcc

The UPC model

global partitioned

thread O thread 1 thread 2 thread 3 / address space
¢ : : :

private ‘—(5

cpu % cpu % cpu % cpu %

cpcc

The UPC model

global partitioned

thread O thread 1 thread 2 thread 3 / address space
4 i : :

shared <=+ COOTI T T
== - e = = = B L - = =
private (—(; 5 ; 5

cpu % cpu % cpu % cpu %

cpcc

The UPC model

global partitioned

thread O thread 1 thread 2 thread 3 - address space
4 : ' :
shared ‘.J. mm
O O ' o O
I oo oo [IT]
private ‘—(4 5 A 5 A 5 A 5

cpu % cpu % cpu % cpu %

cpcc

The UPC model

global partitioned

thread O thread 1 thread 2 thread 3 / address space

[. 1
shared <=+ SRR :
0 o f ?
: oo [T
private ‘—(- 5 4 5 5
/ ~|

cpu % cpu % cpu % cpu %

cpcc

UPC basics

- UPC threads operate independently in SPMD fashion

- Two variables for querying environment:

» THREADS: holds total number of threads

» MYTHREAD: stores thread index (runs from 0 to THREADS-1)

_

#include <upc.h>
#include <stdio.h>

void main() {
printf(“Thread %d of %d says: Hello!”, MYTHREAD, THREADS);

}

cpcc

Distributing data

cpcc

Data distribution

- if a shared variable is scalar, space is allocated on thread 0 only

int x;
shared int y;

thread O thread 1 thread 2 thread 3

private

cpcc

Data distribution

- if a shared variable is an array, space is by default allocated across shared
memory space in cyclic fashion

int x;
shared int y[8];

thread O thread 1 thread 2 thread 3

private

..

cpcc

Data distribution

- if the number of elements in the shared array does not divide by the number
of threads, the distribution will be uneven

[:int X;

shared int y[9];

thread O

thread

thread 2

thread 3

...............

...............

private

44— memory

space

epcc

Data distribution

int X5
shared

thread O

thread

thread 2

—p shared [blocksize]

thread 3

...............

...............

- change the default data layout by adding a “blocking factor” to shared arrays

int y[8];:}

private

cpcc

2D array decompostion

[shar'ed [8] int a[8][8];j

cpcc

example on 4 threads

2D array decompostion

[shar'ed [6] int a[8][8];j

cpcc

example on 4 threads

2D array decompostion

[shar'ed [6] int a[8][8];j

important to think about
how blocking factor can
Impact data layout!

cpcc

example on 4 threads

Slocking factor

« should be used if default distribution is not suitable
* four different cases:

» shared [n]: defines a block size of n elements
» shared [@]: all elements are given affinity to thread 0
» shared [*]: when possible, data is stored in contiguous blocks

» shared []: equivalent to shared [0]

cpcc

Static vs dynamic compilation

- number of UPC threads can be specified at compile time (static) or at runtime
(dynamic)

- Advantages

» dynamic: program can be executed using any number of threads

» static: easier to distribute data based on THREADS

» Disadvantages

» dynamic: not always possible to achieve best possible distribution

» static: program needs to be executed with number of threads specified at

cpcc

Static vs dynamic compilation

“An array declaration is illegal if THREADS is specified at runtime and the
number of elements to allocate at each thread depends on THREADS.”

shared int x[4*THREADS];

shared[] int x[8];

shared int x[8];
shared[] int Xx[THREADS];

shared int x[10+THREADS];

epcc

Static vs dynamic compilation

“An array declaration is illegal if THREADS is specified at runtime and the
number of elements to allocate at each thread depends on THREADS.”

(sh—ar‘ed int x[4*TAﬂHREADS] ;
- shared[] int x[8];

‘—} legal for static and dynamic environment

shared int x[8];
shared[] int Xx[THREADS];

shared int x[10+THREADS];

cpcc

Static vs dynamic compilation

“An array declaration is illegal if THREADS is specified at runtime and the
number of elements to allocate at each thread depends on THREADS.”

(sh-ar‘ed int x[4*TﬁHREADS] ;
- shared[] int x[8];

‘—) legal for static and dynamic environment

"shared int x[Sj;

shared[] int x[THREADS]; | ——» illegal for dynamic environment

|

shared int x[10+THREADS];

cpcc

Distributing work

cpcc

—xample: vector addition (1/3)

- three vectors with default distribution - modulo operation identifies which
thread will execute the body of the loop

r

#include <upc.h>
#define N 100*THREADS

shared int v1[N], v2[N], vliplusv2[N];

void main() {
int 1i;

for(i=0; i<N; i++)
if (MYTHREAD == i%THREADS)
vliplusv2[i] = vi1[i] + v2[i];

cpcc

—xample: vector addition (1/3)

- three vectors with default distribution - modulo operation identifies which
thread will execute the body of the loop

a)

#include <upc.h>
#define N 100*THREADS

shared int v1[N], v2[N], vliplusv2[N];

void main() {

int i; e 1 .
’ . if distribution changes, this code
for(i=0; i<N; i++) . will fail to identify local elements -
if (MYTHREAD == i%THREADS) /= . however it will still produce the
viplusv2[i] = vi[i] + v2[i]; correct result!
} ettt ettt et e e eoeoononAAassseeeeeeeeeeeeeeeeemmooonnssssssesseseeeeeeeeeeeeemmmmmnnt
- Y

cpcc

—xample: vector addition (2/3)

- alternative implementation would iterate in steps of THREADS and eliminate
the need for the modulo operation

a)

#include <upc.h>
#define N 100*THREADS

shared int v1[N], v2[N], viplusv2[N];

void main() {
int i;

for (i=MYTHREAD; i<N; i+=THREADS)
vlplusv2[i] = v1[i] + v2[i];

cpcc

—xample: vector addition (2/3)

- alternative implementation would iterate in steps of THREADS and eliminate
the need for the modulo operation

(")

#include <upc.h>
#define N 100*THREADS

shared int v1[N], v2[N], viplusv2[N];

void main() {

Sl s . if distribution changes, this code
. will fail to identify local elements -
for (i=MYTHREAD; i<N; i+=THREADS) . however it will still produce the
vlplusv2[i] = v1[i] + vZ[1]; : correct result!
y o
_ J

cpcc

Work sharing with upc_forall

« work distribution, assigns tasks to threads

 4th parameter defines affinity to thread

[upc_for‘all (expression; expression; expression; affinity) j

« Condition: iterations of upc_forall must be independent!

cpcc

Work sharing with upc_forall

if integer expression:
 work distribution, assigns tasks to threads |{
\. affinity%THREADS == MYTHREAD

 4th parameter defines affinity to thread

[upc_for‘all (expression; expression; expression; affinity) j

« Condition: iterations of upc_forall must be independent!

cpcc

Work sharing with upc_forall

S

~_

if “pointer to shared”:
if integer expression:

_ object pointed to has affinity to MYTHREAD
~ , _ affinity%THREADS == MYTHREAD _

7, _

* 4th paramétedi éﬁinity

[upc_for‘all (expression; expression; expression; aFFinity) j

« Condition: iterations of upc_forall must be independent!

cpcc

—xample: vector addition (3/3)

- implementation using upc_forall, taking advantage of the affinity parameter

#include <upc.h>
#define N 100*THREADS

shared int v1[N], v2[N], viplusv2[N];

void main() {
int i;

upc_forall(i=0; i<N; i++; 1i)
vlplusv2[i] = v1[i] + v2[i];

cpcc

—xample: vector addition (3/3)

- implementation using upc_forall, taking advantage of the affinity parameter

e)
#include <upc.h>
#define N 100*THREADS
shared int v1[N], v2[N], viplusv2[N];
void main() {
int 1;
: : : : “I” Is short for
upc_forall(i=0; i<N; i++; i) i%THREADS=MYTHREAD
viplusv2[i] = VI[i] + V2[1]; = @ e
}
< _J

cpcc

Implications of data & work distribution

cpcc

Side-effects of shared data

Holding data in shared memory space has implications

1. the lifetime of the shared data needs to extend beyond the scope in which it
was defined

» storage duration
2. the shared data needs to be kept up-to-date

» synchronisation

cpcc

Storage duration of shared objects

Shared objects cannot have automatic storage duration

» any variable inside a function!

Why?

» SPMD model means a shared variable may be accessed outside the
lifetime of the function!

~ = = = ————

cpcc

Synchronisation

- SPMD model means threads operate independently
« Synchronisation vital to ensure all threads reach same point in execution
» necessary for memory and data consistency

» only read data that is up-to-date, only overwrite data that is no longer
needed

« UPC uses barriers for synchronisation

» most commonly used: upc_barrier

cpcc

—xample: maximum of an array

f #define max(a,b) (((a)>(b)) ? (a) : (b))

shared int maximum[THREADS];
shared int globalMax = 0;
shared int a[THREADS*10];

void main(int argc, char **argv) {
.. // initialise array a

upc_barrier;

upc_forall(int i=0; i<THREADS*10; i++; 1){
maximum[MYTHREAD] = max(maximum[MYTHREAD], a[i]);

}

upc_barrier;
if (MYTHREAD == @){
for (int thread=0; thread<THREADS; thread++){
globalMax = max(globalMax,maximum[thread]);
}
}

upc_barrier;

cpcc

—xample: maximum of an array

" udefine max(a,b) (((a)>(b)) ? (a) : (b)) R

...

shared int maximum[THREADS]; ‘here: shared variables have file scope!
shared int globalMax = 0;
shared int a[THREADS*10];

void main(int argc, char **argv) {
.. // initialise array a

upc_barrier;

upc_forall(int i=0; i<THREADS*10; i++; 1){
maximum[MYTHREAD] = max(maximum[MYTHREAD], a[i]);

}

upc_barrier;
if (MYTHREAD == @){
for (int thread=0; thread<THREADS; thread++){
globalMax = max(globalMax,maximum[thread]);
}
}

upc_barrier;

cpcc

—xample: maximum of an array

" udefine max(a,b) (((a)>(b)) ? (a) : (b)) R

...

shared int maximum[THREADS]; ‘here: shared variables have file scope!
shared int globalMax = 0;
shared int a[THREADS*10];

void main(int argc, char **argv) {
.. // initialise array a

upc_barrier;
upc_forall(int i=0; i<THREADS*10; i++; 1){
maximum[MYTHREAD] = max(maximum[MYTHREAD], a[i]);

upc_barrier; ‘ensure all threads found local maximum

if (MYTHREAD == 0){ e
for (int thread=0; thread<THREADS; thread++){

globalMax = max(globalMax,maximum[thread]);

}

}

upc_barrier;

}

cpcc

—xample: maximum of an array

f #define max(a,b) (((a)>(b)) ? (a) : (b))

...

shared int maximum[THREADS]; ‘here: shared variables have file scope!
shared int globalMax = 0;
shared int a[THREADS*10];

void main(int argc, char **argv) {
.. // initialise array a

upc_barrier;
upc_forall(int i=0; i<THREADS*10; i++; 1){
maximum[MYTHREAD] = max(maximum[MYTHREAD], a[i]);

upc_barrier; -ensure all threads found local maximum

if (MYTHREAD == 0){ e
for (int thread=0; thread<THREADS; thread++){

globalMax = max(globalMax,maximum[thread]);

}

+

upc_barrier;

} Emake sure globalMax is found before being used!i

Working sharing & performance

- perform as much computation as possible on local data

» remote memory operations are expensive!

#include <upc.h>
shared int a[THREADS][THREADS];
shared int b[THREADS], c[THREADS];

void main (void)

{

int i, j;

upc_forall(i = @ ; i < THREADS ; i++; &c[1i]) {
c[i] = o;
for (j= @ ; j < THREADS ; j++)
c[i] += a[i][j]1*b[]];

cpcc

Working sharing & performance

- perform as much computation as possible on local data

» remote memory operations are expensive!

a4)
#include <upc.h>
shared int a[THREADS][THREADS];
shared int b[THREADS], c[THREADS];

void main (void)

{

int i, j;

upc_forall(i = @ ; i < THREADS ; i++; &c[1i]) {
c[i] = 6;
for (j= @ ; j < THREADS ; j++)
c[i] += a[1][J]*b[]];

cpcc

Working sharing & performance

- perform as much computation as possible on local data

» remote memory operations are expensive!

#include <upc.h>
shared [THREADS] int a[THREADS][THREADS];
shared int b[THREADS], c[THREADS];

void main (void)

{

int i, j;

upc_forall(i = @ ; i < THREADS ; i++; &c[1i]) {
c[i] = o;
for (j= @ ; j < THREADS ; j++)
c[i] += a[i][j]1*b[]];

cpcc

Working sharing & performance

- perform as much computation as possible on local data

» remote memory operations are expensive!

...

~ ‘ensure matrix A is distributed by row ™
#include <upc.h> e
shared”| THREADS] »int a[THREADS][THREADS];
shared int B[THREADS], c[THREADS];
void main (void)
{
int i, j;
upc_forall(i = @ ; i < THREADS ; i++; &c[1i]) {
c[i] = ©;
for (j= @ ; j < THREADS ; j++)
c[i] += a[1][J]*b[]];
}
}
\

cpcc

Working sharing & performance

- perform as much computation as possible on local data

» remote memory operations are expensive!

...

~ ‘ensure matrix A is distributed by row
#include <upc.h> T
shared”| THREADS] »int a[THREADS][THREADS];
shared int B[THREADS], c[THREADS];
void main (void)
{
int i, j;
upc_forall(i = @ ; i < THREADS ; i++; &c[1i]) {
c[i] = ©;
for (j= @ ; j < THREADS ; j++)
c[i] += a[1][J]*b[]];
}
}
\

cpcc

Advanced concepts

cpcc

UPC pointers

1. private to private int *p1l;
2. private to shared shared int *p2;
3. shared to private int *shared p3;

4. shared to shared shared int *shared p4;

cpcc

UPC pointers

1. private to private int *p1l;
2. private to shared shared int *p2;
3. shared to private int *shared p3;

4. shared to shared shared int *shared p4;

§—— shared

€ private

cpcc

U

PC pointers

1. private to private

2. private to shared

3. shared to private

4. shared to shared

int *pl1;) AZTEEE TR
shared int *p2;
int *shared p3;

shared int *shared p4;

€— shared

€ private

cpcc

UPC pointers

1. private to private
2. private to shared
3. shared to private

4. shared to shared

int *pil;

shared int

*p2;

int *shared p3;

private pointer into the
- shared memory space !

shared int *shared p4;

pal

€— shared

LN
/
p2

"N

N

€ private

cpcc

UPC pointers

1. private to private int *p1l;

2. private to shared shared int *p2;

. shared pointer into the private
. memory space - not recommended!

4. shared to shared shared int *shared p4;

/‘k\\‘ §—— shared

€ private

cpcc

3. shared to private(int *shared p3;

UPC pointers

1. private to private int *p1l;
2. private to shared shared int *p2;

3. shared to private int *shared p3;

4. shared to shared(shared int *shared p4; shared pointer into the
shared memory space '

> 04 €— shared

€ private

cpcc

UPC pointers

- pointers in UPC have 3 fields

» thread: the thread affinity of the pointer
» address: the local address of the block

» phase: the location of the element with a block

- it is allowed to cast a shared pointer to private (although there will be some
loss of thread and phase information), but a cast the other way round would
produce unknown results and is therefore not allowed

cpcc

Dynamic memory allocation

* in private memory space, usual C functions apply
- in shared space, UPC offers three different functions

» upc_alloc: allocate local shared spaces
» upc_global alloc: allocate multiple global spaces
» upc_all alloc: allocate a global shared memory space collectively

« upc_free used to deallocate shared memory

cpcc

UPC collectives

requires upc_collective.h header file

Implemented by most compilers, but performance not necessarily optimised

two types of collectives

» relocalisation: upc_all broadcast, upc_all scatter, upc_all gather, ...

» computational: upc_all reduceT, upc_all sort, ...

calls to these functions must be performed by all threads

cpcc

Sroadcast

/f#include <upc_collective.h> R
shared [] int A[2];
shared [2] int B[N][2];

\kupc_all_broadcast(B, A, 2*sizeof(int), UPC_IN ALLSYNC | UPC_OUT_ALLSYNC);)

thread O A |A

thread 1

thread 2

thread N

cpcc

Sroadcast

(f#include <upc_collective.h> R

shared [] int A[2];
shared [2] int B[N][2];

\kupc_all_broadcast(B, A, 2*sizeof(int), UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);)

thread O A |A A |A A |A

thread 1 A |A

thread 2 :D A |A

thread N A |A

cpcc

Summary

cpcc

PGAS programming model - why?

* global view paradigm

« explicit support for parallelism

- compiler can help programmer with performance, scalability, programmability
» we are still far from this goal

» potential reduction in memory footprint = reduction in energy consumption

cpcc

References & further reading

- UPC Language Specification (Version 1.2) on the Berkley Unified Parallel C
project homepage:

http://upc.gwu.edu/docs/upc specs 1.2.pdf

- GNU Unified Parallel C toolset: http://www.gccupc.org

- Tarek ElI-Ghazawi et al. “UPC.: Distributed Shared Memory Programming”.
Available through the Wiley Online Library.

* Yili Zheng, Costin lancu, Paul Hargrove, Seung-Jai Min, Katherine Yelick.
“Extending Unified Parallel C for GPU Computing”. SIAM Conference on

Parallel Processing for Scientific Computing.

http://upc.gwu.edu/docs/upc_specs_1.2.pdf
http://www.gccupc.org

