
The Design and Implementation of Scalable Parallel
Haskell

Malak Aljabri, Phil Trinder,and Hans-Wolfgang Loidl

MMnet’13: Language and Runtime Support for Concurrent Systems
Heriot Watt University

May 8, 2013

Aljabri, Trinder, Loidl (HW University) Scalable Parallel Haskell May 8, 2013 1 / 12

Parallel Architectures

Parallel architectures are increasingly multi-level e.g. clusters of
multicores.
A hybrid parallel programming model is often used to exploit
parallelism across the cluster of multicores e.g. using MPI + OpenMP.
Managing two abstractions is a burden for the programmer and
increases the cost of porting to a new platform.

Network

multicore multicore

Aljabri, Trinder, Loidl (HW University) Scalable Parallel Haskell May 8, 2013 2 / 12

Glasgow Parallel Haskell (GpH) Implementations

Identify parallelism, do not control it.

Parallelism is supported internally by the language implementation.

Two main GpH implementations:

1 GHC-SMP: shared memory.

2 GHC-GUM: distributed memory.

Both implementations use different but related runtime environment
(RTE) mechanisms.

Good performance results can be achieved on shared memory
architectures and on networks individually, but a combination of both,
for clusters of multi-cores, is lacking.

Aljabri, Trinder, Loidl (HW University) Scalable Parallel Haskell May 8, 2013 3 / 12

Work Distribution in GHC-GUM

Existing Load Balancing:

1 Searching for Local Work.
2 Searching for Remote Work.

Aljabri, Trinder, Loidl (HW University) Scalable Parallel Haskell May 8, 2013 4 / 12

Work Distribution in GHC-SMP

Existing Load Balancing:

Spark pools are implemented as bounded work-stealing queues.
A work-stealing queue is a lock-free data structure.
The owner can push and pop from one end of the queue without
synchronization.
Other threads can steal from the other end of the queue.

Aljabri, Trinder, Loidl (HW University) Scalable Parallel Haskell May 8, 2013 5 / 12

GUMSMP

A multilevel parallel Haskell implementation for clusters of multicores.

Integrates the advantages of the two GpH implementations.

Provides improvements for automatic load balancing.

The main potential benefits of GUMSMP are:
Providing a scalable model.
Efficient exploitation of the the specifics of distributed and shared
memory on different levels of the hierarchy.
Providing a single high-level programming model.

Aljabri, Trinder, Loidl (HW University) Scalable Parallel Haskell May 8, 2013 6 / 12

GUMSMP Design Overview

Memory Management: the same virtual shared heap as GHC-GUM.

Communication: the same mechanism implemented in GHC-GUM.

Load Balancing: the combination of GHC-SMP and GHC-GUM
mechanisms.

Aljabri, Trinder, Loidl (HW University) Scalable Parallel Haskell May 8, 2013 7 / 12

GUMSMP Work Distribution Mechanism

New Load Balancing:

Work distribution of GUMSMP is hierarchy aware.
It uses a work-stealing algorithm, through sending FISH message, on
networks (inherited from GHC-GUM).
Within a multicore it will search for a spark by directly accessing
spark pools (inherited from GHC-SMP).

Aljabri, Trinder, Loidl (HW University) Scalable Parallel Haskell May 8, 2013 8 / 12

GUMSMP Design Objectives

Even but asymmetric load balancing Important to maintain even
load distribution, but accept imbalances as the communication cost
increases.

Mostly passive load distribution Essential to maintain passive load
distribution, but switch to active in some cases e.g high-watermark.

Effective latency hiding The system must be designed so that
communication cost is not in the critical path of cooperating
computations.

Aljabri, Trinder, Loidl (HW University) Scalable Parallel Haskell May 8, 2013 9 / 12

GUMSMP

Current Implementation

We achieved the basic functionality on a limited number of PEs.

With 3 PEs, 5 cores each we have:

 PEs

Sparks

PE 1 PE2 PE3

Global sparks 1 1 2

Local Sparks 13 10 16

Aljabri, Trinder, Loidl (HW University) Scalable Parallel Haskell May 8, 2013 10 / 12

Conclusion

The design of the new multi-level parallel Haskell implementation
GUMSMP is presented.

Designed for high-performance computation on networks of
multi-cores.

The design focuses on flexible work distribution policies.

Even but asymmetric load balancing.
Mostly passive load distribution.
Effective latency hiding.

The main benefits:

Scalable model.
Efficient exploitation of distributed and shared memory on different
levels of the hierarchy.
Single programming model.

Aljabri, Trinder, Loidl (HW University) Scalable Parallel Haskell May 8, 2013 11 / 12

GUMSMP

Thanks for Listening ..

Aljabri, Trinder, Loidl (HW University) Scalable Parallel Haskell May 8, 2013 12 / 12

